
Published as a conference paper at ICLR 2025

JOINT GRAPH REWIRING AND FEATURE DENOISING
VIA SPECTRAL RESONANCE

Jonas Linkerhägner∗ Cheng Shi∗ Ivan Dokmanić
Department of Mathematics and Computer Science

University of Basel
firstname.lastname@unibas.ch

ABSTRACT

When learning from graph data, the graph and the node features both give noisy
information about the node labels. In this paper we propose an algorithm to
jointly denoise the features and rewire the graph (JDR), which improves the
performance of downstream node classification graph neural nets (GNNs). JDR
works by aligning the leading spectral spaces of graph and feature matrices. It
approximately solves the associated non-convex optimization problem in a way
that handles graphs with multiple classes and different levels of homophily or
heterophily. We theoretically justify JDR in a stylized setting and show that it
consistently outperforms existing rewiring methods on a wide range of synthetic
and real-world node classification tasks.

1 INTRODUCTION

Graph neural networks (GNNs) are a powerful deep learning tool for graph-structured data, with
applications in physics (Mandal et al., 2022; Linkerhägner et al., 2023), chemistry (Gilmer et al.,
2017), biology (Gligorijević et al., 2021) and beyond (Zhou et al., 2020). Typical tasks across
disciplines include graph classification (Duvenaud et al., 2015; Xu et al., 2019), node classification
(Kipf and Welling, 2017; Li et al., 2019) and link prediction (Pan et al., 2022).

Graph datasets contain two distinct types of information: the graph structure and the node features.
The graph encodes interactions between entities and thus the classes or communities they belong to,
similarly to the features. Recent work demonstrates that rewiring the graph by judiciously adding
and removing edges may improve downstream GNN performance. That work argues that in a GNN,
the graph serves not only to encode interactions but also to organize message passing computations
(Battaglia et al., 2018). Even when it correctly encodes interactions it may not be an effective
computational graph—rewiring it may then facilitate information flow.

Graph rewiring methods can be categorized into preprocessing and end-to-end. Preprocessing meth-
ods rewire the graph by relating its geometric and spectral properties to information flow (Topping
et al., 2022; Nguyen et al., 2023; Karhadkar et al., 2023). End-to-end methods (Giraldo et al., 2023;
Gutteridge et al., 2023; Qian et al., 2024) dynamically rewire the graph during training, leveraging
both the graph and the node features. Unlike preprocessing methods, they do not output an im-
proved graph which restricts their interpretability and reusability. Our focus is on the preprocessing
methods.

There are thus two mechanisms that hurt performance of GNNs: (1) real-world graphs and features
are noisy (the graph has spurious and missing links), and (2) geometric properties of the graph
impede message passing. In this paper we focus on (1) and ask a natural question: can simple, joint
feature and graph denoising improve performance of a downstream GNN?

We propose a new rewiring scheme that also uses node features to produce an enhanced graph. We
leverage the fact that both the graph and the features are correlated with the labels. This is explicit
in high-quality stylized models of graphs with features, including community models such as the
contextual stochastic block model (cSBM) (Deshpande et al., 2018) and neighborhood graphs on

∗These authors contributed equally.

1

Published as a conference paper at ICLR 2025

/

UPDATE

UPDATE

DENOISE
REWIRE

Removed
AddedClass 1/2

Noisy Graph
Noisy Features

Rewired Graph
Denoised Features

Figure 1: Schematic overview of joint denoising and rewiring (JDR). In this example, we consider
a noisy graph as it occurs in many different real-world scenarios, in the sense that it contains edges
between and within classes and its node features are not fully aligned with the labels. The graph’s
adjacency matrix A and binary node features X are decomposed via spectral decomposition and
singular value decomposition (SVD). The rewiring of A is performed by combining the information
of its own eigenvectors V and the singular vectors U from X . The same applies vice versa for
denoising, and both are performed iteratively K times. We synthesize the rewired graph Ã and the
denoised features X̃ by multiplying back with the final V(K) and U(K). To get specific properties
like sparsity or binarity we can perform an UPDATE step, e.g. by thresholding (as done here). The
resulting denoised and rewired graph is displayed on the right. Its structure now better represents
the communities and the first entry of the features indicates the class assignment.

points from low-dimensional manifolds. This fact motivates various spectral clustering and non-
linear dimensionality reduction methods (Shi and Malik, 2000; Ng et al., 2001). In the cSBM,
seminal theoretical work shows that jointly leveraging the graph (stochastic block model (SBM))
and the features (a Gaussian mixture model (GMM)) improves over unsupervised clustering using
either piece of information alone. However, the associated efficient inference algorithms based
on belief propagation (Deshpande et al., 2018; Duranthon and Zdeborová, 2023) rely on perfect
knowledge of the distribution of the cSBM and cannot be applied to arbitrary real-world data.

Our contributions are as follows:

1. We take inspiration from work on the cSBM to design a practical algorithm for joint graph
rewiring and feature denoising, which can improve the node classification performance of
any downstream GNN on real-world data. We achieve this by adapting the graph and the
features so as to maximize alignment between their leading eigenspaces. If these spaces
are well-aligned we say that the graph and the features are in resonance.

2. We design an alternating optimization algorithm, joint denoising and rewiring (JDR), which
approximates alignment maximization on spectrally-complex real-world graph data with
multiple classes, possibly homophilic or heterophilic. We prove that JDR improves align-
ment between the graph and the features, but also with the labels, on a stylized generative
model with noise from the Gaussian orthogonal ensemble (GOE); a recent conjecture in
the literature suggests that this generalizes to cSBM.

3. We run extensive experiments to show that JDR outperforms existing preprocessing
rewiring strategies while being guided solely by denoising.

This last point suggests that although there exist graphs with topological and geometrical charac-
teristics which make existing rewiring schemes beneficial, a greater issue in real-world graphs is
noise in the sense of missing and spurious links. This is true even when the graphs correctly re-
flect the ground truth information. In a citation network, for example, citations that should exist
may be missing because of incomplete scholarship. Conversely, citations that should not exist may
be present because the authors engaged in bibliographic ornamentation. Our method is outlined in
Figure 1 and the code repository is available online1.

1https://github.com/jlinki/JDR

2

https://github.com/jlinki/JDR

Published as a conference paper at ICLR 2025

2 JOINT DENOISING AND REWIRING

2.1 PRELIMINARIES

We let G = (V, E) be an undirected graph with |V| = N nodes and an adjacency matrix A. To each
node we associate an F -dimensional feature vector and collect these vectors in the rows of matrix
X ∈ RN×F . We make extensive use of the graph and feature spectra, namely the eigendecomposi-
tion A = V ΛV T and the SVD X = UΣW T , with eigen- and singular values ordered from largest
to smallest. (As discussed below, in heterophilic graphs we order the eigenvalues of A according to
their absolute value.) The graph Laplacian is L = D −A, where D is the diagonal node degree
matrix. For k > 2 node classes, we use one-hot labels y ∈ {0, 1}N×k. We write [L] for the set
{1, 2, . . . , L}. In the balanced two-class case, we consider nodes to be ordered so that the first half
has label yi = −1 and the second half yi = 1. In semi-supervised node classification, the task is to
label the nodes based on the graph (A and X) and a subset of the labels y. Homophilic graphs are
those where nodes are more likely to connect with nodes with similar features or labels (e.g., friend-
ship networks (McPherson et al., 2001)); heterophilic graphs are those where nodes more likely to
connect with dissimilar nodes (e.g., protein interaction networks (Zhu et al., 2020)).

2.2 MOTIVATION VIA THE CONTEXTUAL STOCHASTIC BLOCK MODEL

For simplicity, we first explain our method for k = 2 classes and graphs generated from the cSBM.
We then extend it to real-world graphs with multiple classes and describe the full practical algorithm.

Contextual Stochastic Block Model. CSBMs (Deshpande et al., 2018) extend SBMs (Abbe, 2018),
a community graph model, by high-dimensional node features. They have become a key generative
model for studying GNNs (Baranwal et al., 2021; Wu et al., 2023; Kothapalli et al., 2023); for further
pointers see Appendix A.2. We use cSBMs to build intuition about the graph rewiring and denoising
problem. In a balanced 2-class SBM, the nodes are divided into two equal-sized communities with
node labels yi ∈ {±1}. Pairs of nodes connect independently at random, with probability cin/N
inside communities and cout/N across communities.

In the sparse regime (Abbe, 2018), with average node degree d = O(1), it is common to parameter-
ize probabilities as cin = d+ λ

√
d and cout = d− λ

√
d, where |λ| can be seen as the signal-to-noise

ratio (SNR) of the graph. The signal Xi ∈ RF at node i comes from a GMM,

Xi =

√
µ

N
yiξ +

zi√
F
, (1)

where ξ ∼ N (0, IF /F) is the randomly drawn mean and zi ∼ N (0, IF) is i.i.d. Gaussian standard
noise. We set γ = N

F and, following Chien et al. (2021), parameterize the graphs generated from
the cSBM using ϕ = 2

π arctan(λ
√
γ/µ). For ϕ → 1 we get homophilic behavior; for ϕ → −1 we

get heterophilic behavior. Close to either extreme the node features contain little information. For
ϕ→ 0 the graph is Erdős–Rényi and only the features contain information.

Denoising and Rewiring the cSBM. In the cSBM, A and X offer different noisy views on the
labels. One can show that up to a scaling and a shift, the adjacency matrix is approximately±yyT +
ZER, which means that it is approximately a rank-one matrix with labels in the range, corrupted
with “Erdős–Rényi-like noise” ZER (Erdös and Rényi, 1959). Another way to see this is to note
that EA = 1

2N (cin + cout)11
T + 1

2N (cin − cout)yy
T (from the definition of the SBM). Since A is

close to EA at high SNR, the eigenvectors contain information about the labels. It similarly follows
directly from the definition that the feature matrix X is (up to a scaling) yuT + ZG where ZG is
white Gaussian noise. It thus makes sense to use the information from X to enhance A and vice
versa. Deshpande et al. (2018) show that analyzing the following optimization problem:

maximize
v∈RN ,u∈RF

⟨v,Av⟩+ b⟨v,Xu⟩

subject to ∥v∥2 = ∥u∥2 = 1, ⟨v, 1⟩ ≤ δ
(2)

for some carefully chosen value of b allows one to characterize detection bounds in unsupervised
community detection with k = 2. It is clear from the above reasoning that in the high-SNR regime
(λ and µ far away from the detection threshold), the second leading eigenvector of A and the leading

3

Published as a conference paper at ICLR 2025

Grap
h N

ois
e

Feature Noise

A
m

pl
itu

de

Feature Noise

A
m

pl
itu

de

Graph Noise

Fe
at

ur
e

N
oi

se
G

ra
ph

N
oi

se

(a)

 Feature Noise

 G
ra

ph
 N

oi
se

A
m

pl
itu

de
-1

1

(b)

Figure 2: An illustration of spectral alignment and resonance. In (a) we plot r = xTAx for
different noise levels in A and x ∈ {−1, 1}N , illustrated in the rows below. Without noise, x is
exactly the label vector and A is block-diagonal. We apply multiplicative noise; namely, for each
noise level, we flip the sign of a proportion of values, resulting in a random signal for ±0.5. We see
that the value of r depends on the noise level. The maximum is achieved for zero noise when the
second leading eigenvector of A and the signal x are perfectly aligned. In (b), we consider a signal
x̂ = Ax for different noise levels in A and x on a graph with 20 nodes; only a quarter of edges are
shown to reduce clutter; the intra-class edges are grey; the inter-class edges are black. The largest
norm is obtained for noise-free A and x (upper-left corner). The norm of x̂ and the separation of
communities decrease along both noise axes. The inherent denoising capabilities of propagating x
on a high-SNR graph (Ma et al., 2021b) are also visible, particularly in the first two rows to the right.

left singular vector of X approximately coincide with the labels. The optimal v∗ is related to those
vectors and aligned with the labels, since the quadratic and the bilinear form in (2) are individu-
ally maximized by the mentioned vectors. The maximizer of the linear combination of both terms
therefore combines the spectral information from both matrices—the graph and the features. This
suggests the following rationale for denoising: (1) We can interpret the value of (2) as a measure
of alignment. Since v∗ corresponds to the labels, we can relate this measure to the quality of the
label estimation. (2) We may leverage this alignment to rewire the graph and denoise the features.
Namely, we could perturb A and X in a way that improves the alignment.

In real datasets, however, the optimal value of b is unknown, the scaling of X is arbitrary, and things
are further complicated by having (many) more than 2 classes. Moreover, (2) is computationally
hard. We thus define a simple related measure of alignment which alleviates these issues.

Definition 1. Recall the decompositions A = V ΛV T , X = UΣW T , and let VL, UL denote the
first L columns of V and U and ∥.∥sp the spectral norm. We define graph–feature alignment as

AlignmentL(A,X) = ∥V T
L UL∥sp. (3)

Remark: The logic of this definition is that for a cSBM with high SNR and k classes, the information
about labels is indeed contained in the leading L = k vectors of V and U . This follows directly by
generalizing the formulation in (2) to multiple classes and thus multiple eigenvectors (Decelle et al.,
2011; Lesieur et al., 2017). The quantity AlignmentL(A,X) is the cosine of the angle between the
subspaces spanned by the columns of VL and UL. To denoise the features and rewire the graph, we
seek to improve the alignment.

Given AlignmentL(A,X) and a graph with A0 and X0, the jointly denoised graph and features
are the solution to

maximize
A,X

AlignmentL(A,X)

subject to ∥A−A0∥ ≤ δA, ∥X −X0∥ ≤ δX .
(4)

The parameters δA, δX > 0 modulate the strength of alignment. We will show empirically that
a stronger alignment indicates a better representation of the labels by A and X and thus a better

4

Published as a conference paper at ICLR 2025

graph. Figure 2 visualizes this connection. It shows that the response of the graph to features is
maximized when the spectra of the graph and the features are aligned. We refer to the condition
where the alignment is high as spectral resonance; see Appendix A.1.1 for further discussion.

2.3 JOINT DENOISING AND REWIRING ALGORITHM

Maximizing the alignment (4) directly, e.g., using gradient descent, is computationally challenging.
Here we propose a heuristic which alternates between spectral interpolation and graph synthesis.
We later prove that the resulting algorithm indeed improves alignment, both with the labels and
between the graph and the features, under a stylized noise model. The algorithm, illustrated in
Figure 1, comprises three steps. In Step 1, we compute the spectral decompositions of A and X . To
improve the alignment, we interpolate between the L largest eigenvectors in Step 2. Based on the
new eigenvectors, we synthesize a new graph in Step 3. The three steps are iterated until a stopping
criterion is met. As is standard in the rewiring literature, the hyperparameters of the algorithm are
tuned on a validation set. Formalizing this results in the JDR algorithm:

Step 1: Decomposition

A = V ΛV T with V = (v1,v2, . . . ,vN) and X = UΣW T with U = (u1,u2, . . . ,uN)

Step 2: Interpolation: For every i ∈ [L],

ṽi = (1− ηA)vi + ηA sign(⟨vi,uj⟩)uj

ũi = (1− ηX)ui + ηX sign(⟨ui,vj⟩)vj

where j is chosen as argmaxj∈[L] |⟨vi,uj⟩| when updating vi and as
argmaxj∈[L] |⟨ui,vj⟩| when updating ui. ηA and ηX are hyperparameters that are
tuned with a downstream algorithm on a validation set. We use sign() to handle sign
ambiguities in decompositions.

Step 3: Graph Synthesis

Ã = Ṽ ΛṼ T and X̃ = ŨΣW T

Step 4: Iterate steps K times with

A← Ã and X ← X̃.

Following (3), we consider the L leading eigenvectors of A and X for interpolation. Since these
bases may be rotated with respect to each other (we note that (3) is insensitive to relative rotations,
see Appendix A.1.2), when updating an eigenvector of A, we interpolate it with the most similar
eigenvector of X . We show empirically that this heuristic yields strong results, but also prove that
it improves alignment with labels with a stylized noise model. We emphasize that the interpolation
rates ηA and ηX are the same across different eigenvectors and iterations K. After K steps, we
synthesize the final weighted dense graph Ã = V(K)ΛV T

(K). To efficiently apply GNNs, we can
enforce sparsity, e.g., via thresholding or selecting the top-k entries per node. A detailed pseudocode
is given in Appendix A.1.

An illustration. A simple edge case to illustrate how the algorithm works is when either only A
or X contains information. In a cSBM with ϕ = 0, X contains all the information, so the best
hyperparameter choice is ηX = 0 and (4) simplifies to a maximization over A. Since there are only
two classes, it is sufficient to consider L = 1. From (2) we know that the leading left singular vector
u1 of X is well-aligned with the labels. We thus replace the second leading eigenvector v2 in A
by u1 by choosing ηA = 1.0. After graph synthesis, the new v2 of Ã is not yet equal to u1, since
u1 was not orthogonal to the other vi. We thus repeat the three steps K times. For ϕ = ±1 all
information is contained in the graph; a similar argument can then be constructed mutatis mutandis.

JDR Improves Alignment. We now show that JDR improves alignment, as defined in (4), under a
stylized cSBM-like model. In fact, we show a stronger result: that the algorithm improves alignment
with the true labels. Appealing to universality arguments (Hu and Lu, 2023), we study a model with a
spiked Gaussian matrix Ac = λ

N yyT+ 1√
N
OA where OA is GOE noise instead of the binary matrix

5

Published as a conference paper at ICLR 2025

Table 1: Comparison of state-of-the-art preprocessing rewiring approaches. Note that we refer to
the computational complexity per iteration. N denotes the number of nodes, m the number of edges
and dmax is the maximum node degree. Additional details on the complexity of JDR are given in
Appendix A.1.3; detailed runtime comparisons are in Appendix A.1.4

.
Method Add edge Remove edge Use Features Heterophilic? Complexity

DIGL (Gasteiger et al., 2019) ✓ ✗ ✗ ✗ O(N)
FoSR (Karhadkar et al., 2023) ✓ ✗ ✗ ✓ O(N2)
BORF (Nguyen et al., 2023) ✓ ✓ ✗ ✓ O(md3max)
JDR (Ours) ✓ ✓ ✓ ✓ O(N)

A, and features X =
√

µ
N yξT + 1√

F
OX as defined in 1. In the cSBM context, a recent conjecture

with strong empirical support states that replacing the binary A by Ac leads to the same behavior
in downstream tasks such as community detection (Deshpande et al., 2018; Lu and Sen, 2023)
and node classification (Shi et al., 2024). An iteration of JDR with L = 1 applied to this model,
first interpolates between the leading eigenvector v1 (A

c) = vA and leading left singular vector
u1 (X) = uX . Graph and feature synthesis then yields Ac

ηA
= Ac + λ1 (A

c)
(
−vAv

T
A + ṽAṽ

T
A

)
and XηX

= X + σ1 (X)
(
−uXwT

X + ũXwT
X

)
. Here ṽA = (1− ηA)vA + sign(⟨vA,uX⟩)ηAvX

and ũX = (1−ηX)uX +sign(⟨vA,uX⟩)ηXvA, where w1 (X) = wX is the leading right singular
vector of X . Denoting ỹ = y/

√
N , we have

Proposition 1. Let λ > 1 and µ >
√
γ with γ = N/F . There exist η0A, η

0
X ∈ (0, 1) such that for

all ηA ∈ (0, η0A) and ηX ∈ (0, η0X), when N →∞, we have〈
v1(A

c
ηA

), ỹ
〉2 a.s

> ⟨v1(A
c), ỹ⟩2 and ⟨u1(XηX

), ỹ⟩2
a.s
> ⟨u1(X), ỹ⟩2 .

In words, interpolation improves alignment of the largest eigenvector with the labels y for suffi-
ciently large graphs. The proof, based on the BBP transition in the spiked covariance model (Baik
et al., 2005) and the fluctuation of the leading eigenvector, can be found in Appendix A.3. It seems
challenging but quite possible to extend this argument to a binary A. One would then interpolate
between ux and A’s second leading eigenvector v2(A), which has similar properties to v1(A

c),
especially in a dense graph regime (Nadakuditi and Newman, 2012).

3 EXPERIMENTS

We extensively evaluate JDR on both synthetic data generated from the cSBM and real-world bench-
mark datasets. We follow experimental setting from Chien et al. (2021) and evaluate JDR for semi-
supervised node classification with different downstream GNNs. We also adopt their data splits,
namely the sparse splitting 2.5%/2.5%/95% for training, validation and testing, respectively, or
the dense splitting 60%/20%/20%. For the general experiments, we perform 100 runs with dif-
ferent random splits. For the scalability experiments, we use the experimental settings of the re-
spective works (Lim et al., 2021; Platonov et al., 2023). We report the average accuracy and the
95%-confidence interval calculated via bootstrapping with 1000 samples. All experiments are re-
producible using the code provided.

Baselines. Following recent works on rewiring, we use graph convolution network (GCN) (Kipf
and Welling, 2017) as our downstream GNN. To obtain a more comprehensive picture, we addi-
tionally evaluate the performance on the more recent generalized PageRank graph neural network
(GPRGNN) (Chien et al., 2021). We compare our algorithm with the state-of-the-art rewiring meth-
ods first-order spectral rewiring (FoSR) (Karhadkar et al., 2023), batch Ollivier-Ricci flow (BORF)
(Nguyen et al., 2023) and diffusion improves graph learning (DIGL) (Gasteiger et al., 2019). FoSR
approximates which edges should be added to maximize the spectral gap to reduce oversquashing.
BORF adds edges in regions of negative curvature in the graph, which indicate bottlenecks that can
lead to an oversquashing of the messages passed along these edges. A positive curvature indicates
that there are so many edges in this area that messages could be oversmoothed, which is why edges
are removed here. We compare computational and implementation aspects of JDR and baselines
in Table 1. On the cSBM, we compare to an optimal algorithm, namely the approximate mes-
sage passing-belief propagation (AMP-BP) algorithm (Duranthon and Zdeborová, 2023). AMP-BP

6

Published as a conference paper at ICLR 2025

is asymptotically optimal (in the large dimension limit) for unsupervised or semi-supervised com-
munity detection in the cSBM. It relies on knowing the distribution of the cSBM and is thus not
applicable to real-world graphs with unknown characteristics and complex features.

Hyperparameters. Unless stated otherwise, we use the hyperparameters from Chien et al. (2021)
for the GNNs and optimize the hyperparameters of JDR using a mixture of grid and random search
on the validation set. We use the top-64 values of Ã to enforce sparsity and interpolation to update
the features. For DIGL, FoSR and BORF, we tune their hyperparameters using a grid search, closely
following the given parameter range from the original papers. For all hyperparameter searches we
use GCN and GPRGNN as the downstream models on 10 runs with different random splits. A
detailed list of all hyperparameters can be found in Appendix A.7 or in the code repository.

3.1 RESULTS ON SYNTHETIC DATA

We first test JDR on data generated from the cSBM, as we can easily vary the SNR of the graph and
the features to verify its denoising and rewiring capabilities. We focus on the sparse splitting, since
for the dense splitting GPRGNN already matches the performance of AMP-BP.

-1.0 -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Al
ig

nm
en

t L
(A

,X
)

JDR
None

Figure 3: Alignment of the leading
eigenspaces according to (3) for graphs
from the cSBM with different ϕ.

Does JDR Maximize Alignment? Before discussing
Figure 4, which shows the results of baselines and JDR
for different values of ϕ, we verify empirically that our
alternating optimization algorithm indeed approximates
solutions to (4). As shown in Figure 3, the quantity
AlignmentL(A,X) improves significantly after running
JDR, across all ϕ. As we show next, this happens simulta-
neously with improvements in downstream performance,
which lends credence to the intuitive reasoning that mo-
tivates our algorithm. For additional alignment results on
real-world data and baselines, refer to Appendix A.5.5.

Heterophilic Regime. For ϕ < −0.25, the predictions
of GCN are only slightly better than random. GPRGNN
performs much better, since it can learn higher order poly-
nomial filters to deal with heterophily. GCN+JDR outperforms the baseline by a very large margin;
it handles heterophilic data well. Using JDR for GPRGNN further improves its already strong
performance in this regime. Both GNNs benefit less from the denoising in the weakly heterophilic
setting where they exhibit the worst performance across all ϕ. The difference between ϕ = 0 and
the weakly heterophilic regime is that “optimal denoising” for ϕ = 0 is straightforward, since all
the information is contained in X . We show similar findings for spectral clustering on the cSBM in
Appendix A.5.6.

-1.0 -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75 1.0
40

50

60

70

80

90

100

Ac
cu

ra
cy

 in
 %

Heterophilic Weak Homophilic

AMP-BP
GPRGNN+JDR
GPRGNN
GCN+JDR
GCN
MLP

Figure 4: Test accuracy on graphs from the cSBM
across different ϕ. The error bars indicate the 95%
confidence interval. JDR improves the performance
for both GNNs across all ϕ.

Weak Graph Regime. For |ϕ| ≤ 0.25,
where the SNR of the graph is very low, both
GNNs perform poorly. Intuitively, when the
graph is very noisy, a GNN is a suboptimal
model, since it leverages the graph structure.
A simple MLP baseline, using only the node
features, outperforms GNNs in this setting,
with all three approaches lagging far behind
AMP-BP. Using JDR, we see significant im-
provements for both GNNs, which almost
catch up with AMP-BP for ϕ = 0. Although
all information was available in the node fea-
tures, the GNN with JDR now clearly out-
perform the MLP by a very large margin.
We argue that this is because in the semi-
supervised setting with few labels available,
the GNN generalizes much better.

Homophilic Regime. For ϕ > 0.25, GCN
and GPRGNN perform similarly well, with

7

Published as a conference paper at ICLR 2025

Table 2: Results on real-world homophilic datasets in the sparse splitting (2.5%/2.5%/95%): Mean
accuracy across runs (%) ± 95% confidence interval. Best average accuracy in bold.

Method Cora CiteSeer PubMed Computers Photo

GCN 77.26±0.35 67.16±0.37 84.22±0.09 84.42±0.31 91.33±0.29
GCN+DIGL 79.27±0.26 68.03±0.33 84.60±0.09 86.00±0.24 92.00±0.23
GCN+FoSR 77.23±0.34 67.03±0.34 84.21±0.09 84.34±0.27 91.36±0.28
GCN+BORF 77.23±0.35 66.96±0.38 84.22±0.09 84.46±0.30 91.26±0.30
GCN+JDR 79.96±0.26 69.35±0.28 84.79±0.08 85.66±0.36 92.52±0.23

GPRGNN 79.65±0.33 67.50±0.35 84.33±0.10 84.06±0.48 92.01±0.41
GPRGNN+DIGL 79.77±0.30 67.50±0.35 84.72±0.10 86.25±0.28 92.31±0.25
GPRGNN+FoSR 79.22±0.31 67.30±0.38 84.32±0.09 84.21±0.46 92.07±0.37
GPRGNN+BORF 79.43±0.30 67.48±0.36 84.36±0.10 84.08±0.43 92.11±0.38
GPRGNN+JDR 80.77±0.29 69.17±0.30 85.05±0.08 84.77±0.35 92.68±0.25

Table 3: Results on real-world heterophilic dataset in the dense splitting (60%/20%/20%): Mean
accuracy across runs (%) ± 95% confidence interval. Best average accuracy in bold.

Method Chameleon Squirrel Actor Texas Cornell

GCN 67.65±0.42 57.94±0.31 34.00±0.31 75.62±1.12 64.68±1.25
GCN+DIGL 58.04±0.48 39.64±0.34 39.57±0.29 91.05±0.73 88.49±0.74
GCN+FoSR 67.67±0.39 58.12±0.35 33.98±0.30 78.31±1.07 65.64±1.06
GCN+BORF 67.78±0.43 OOM 33.95±0.31 76.66±1.10 68.72±1.11
GCN+JDR 69.76±0.50 61.76±0.39 40.47±0.31 85.12±0.74 84.51±1.06

GPRGNN 69.15±0.51 53.44±0.37 39.52±0.22 92.82±0.67 87.79±0.89
GPRGNN+DIGL 66.57±0.46 42.98±0.37 39.61±0.21 91.11±0.72 88.06±0.81
GPRGNN+FoSR 68.96±0.45 52.34±0.37 39.47±0.21 93.16±0.66 87.51±1.04
GPRGNN+BORF 69.44±0.56 OOM 39.55±0.20 93.53±0.68 88.83±1.06
GPRGNN+JDR 71.00±0.50 60.62±0.38 41.89±0.24 93.85±0.54 89.45±0.84

GPRGNN achieving better results for ϕ→ 1.0. With JDR, they become much more comparable to
each other and closer to AMP-BP. Even though the hyperparameters of JDR were tuned using only
GCN as a downstream model, it also improves the performance of GPRGNN for all ϕ. The general
robustness to hyperparameter changes is also analyzed in detail in Appendix A.6.

3.2 RESULTS ON REAL-WORLD DATA

We evaluate JDR on five common homophilic benchmarks datasets, namely the citation graphs Cora,
CiteSeer, PubMed (Sen et al., 2008) and the Amazon co-purchase graphs Computers and Photo
(McAuley et al., 2015). For heterophilic datasets, we rely on the Wikipedia graphs Chameleon and
Squirrel (Rozemberczki et al., 2021), the WebKB datasets Texas and Cornell used in Pei et al. (2020)
and the actor co-occurence network Actor (Tang et al., 2009). To show the scalability of JDR on
larger heterophilic datasets, we further report the results for the Yandex Q user network Questions
(Platonov et al., 2023) and the social networks Penn94 and Twitch-Gamers (Lim et al., 2021). Fur-
ther details about all datasets are in Appendix A.4. Following Chien et al. (2021), we evaluate the
homophilic datasets in the sparse splitting, staying close to the original setting of Kipf and Welling
(2017) and the heterophilic datasets in dense splitting (Pei et al., 2020). The remaining larger graphs
are evaluated using their original splits. For further results and splits, see Appendix A.5.

Homophilic Datasets. Table 2 shows the results of JDR compared to the baselines. For both GNNs,
JDR achieves the best results on four out of five datasets. GCN and GPRGNN with JDR achieve
similar performance here, which is consistent with the findings for the homophilic cSBM. DIGL
also performs strongly on the datasets and ranks first on Computers. However, with GPRGNN as a
downstream model, the improvements are quite small. FoSR and BORF only marginally improve
the performance of the GNNs in this setting.

8

Published as a conference paper at ICLR 2025

Heterophilic Datasets. The results in Table 3 show that GCN+JDR can catch up significantly
compared to GPRGNN, but GPRGNN+JDR generally performs better. This is in line with the
findings for the heterophilic cSBM. DIGL performs well on Actor, Texas and Cornell despite its
inherent homophily assumption. The reason for this is the chosen smoothing kernel, which results
in a graph that is evenly connected everywhere with small weights. GCN then largely ignores the
graph and thus performs very similarly to an MLP, which performs already quite well on these
datasets (Chien et al., 2021). However, this fails for GPRGNN, which can make better use of the
weak, complex graph structures. FoSR and BORF also improve performance here in most cases,
but they are outperformed by JDR in all cases, often by a large margin. The out-of-memory error on
Squirrel for BORF results from its computational complexity of O(md3max), because the dataset has
a large number of edges m and a high maximum node degree dmax.

Table 4: Results on large datasets. Mean accuracy (ROC
AUC for imbalanced Questions) across runs (%)± 95%
confidence interval. Best results in bold.

Method Questions Penn94 Twitch-gamers

nodes 48, 921 41, 554 168, 114
edges 0.15M 1.36M 6.8M

GCN 75.31± 0.81 80.40± 0.18 64.56± 0.19
GCN+DIGL 73.35± 0.64 74.70± 0.32 61.64± 0.14
GCN+FoSR 75.51± 0.73 80.54± 0.31 64.65± 0.15
GCN+JDR 77.52± 0.63 82.30± 0.61 65.14± 0.19

Larger Graphs. Scalability is a prob-
lem for preprocessing rewiring methods
because applying them to large graphs
requires significant amounts of memory
and compute (see complexity in Table 1).
Since the decompositions needed for JDR
can be truncated to the largest L vec-
tors, it is still applicable to larger graphs.
The experimental results on larger het-
erophilic datasets in Table 4 verify this.
They show that JDR can significantly
improve performance for these larger
graphs, while FoSR only achieves marginal improvements. BORF ran out of memory on all of
these datasets and DIGL is unable to improve due to its inherent homophily assumption. While
scaling JDR to even larger graphs with millions of nodes is possible in principle, it requires more
optimized and efficient implementations and is therefore left for future work.

4 RELATION TO PRIOR WORK

JDR is most related to preprocessing rewiring methods which we thus use as baselines. To provide
a more thorough overview, we also place it within the extended literature.

Graph Rewiring. Recent work show that even when a graph correctly encodes interactions it may
not be an effective computational graph for a GNN due to conditions such as oversquashing (Alon
and Yahav, 2021; Di Giovanni et al., 2023) and oversmoothing (Chen et al., 2020a). Recently many
methods have been proposed to address this, notably graph rewiring methods. They can be divided
into preprocessing and end-to-end methods. Preprocessing methods rewire the graph using geomet-
ric and spectral properties, including curvature (Topping et al., 2022; Nguyen et al., 2023; Fesser and
Weber, 2024; Bober et al., 2024), expansion (Deac et al., 2022; Banerjee et al., 2022), effective resis-
tance (Black et al., 2023; Shen et al., 2024), and spectral gap (Karhadkar et al., 2023). Conceptually
related is diffusion-based rewiring (Gasteiger et al., 2019) that smooths the graph with a diffusion
kernel. This can be interpreted as graph denoising, but is only suitable for homophilic graphs. Our
approach is related to rewiring but with several key differences (see Table 1). Our rewiring strategy
aims to denoise the graph (rather than control some geometric property) with the goal to improve
downstream performance, while the classical rewiring literature focuses on optimizing the graph for
message passing computations.

Early end-to-end methods randomly drop edges during training to reduce oversmoothing (Rong
et al., 2020). Subsequent work (Gutteridge et al., 2023; Qian et al., 2024) incorporates latent features
to dynamically rewire the graph. Ji et al. (2023) use the estimated labels of a GNN to rewire the
graph during training of the same GNN. Giraldo et al. (2023) use curvature information for dynamic
rewiring. Graph Transformers (Dwivedi and Bresson, 2021; Rampasek et al., 2022) aim to overcome
oversquashing in GNNs via global attention. In order to handle large graphs, these works still need
to revert to sparse, non-global attention (Gabrielsson et al., 2023; Shirzad et al., 2023). Unlike
preprocessing methods, end-to-end methods cannot output an improved graph which restricts their
interpretability and reusability.

9

Published as a conference paper at ICLR 2025

Graph Denoising. There is extensive literature on denoising signals on graphs using graph filters
(Chen et al., 2014; Ma et al., 2021b; Liu et al., 2022). However, we are interested in modifying the
structure of the graph itself (rewiring), in a way that can benefit any downstream algorithm. Dong
and Kluger (2023) recently proposed a new metric to measure graph noise that correlates well with
GCN performance. Based on this, they develop a method for graph denoising via self-supervised
learning and link prediction. We discuss the relation to our work in detail in Appendix A.5.7 and also
evaluate our rewired graphs using their ESNR metric there. More broadly, link prediction (Zhang
and Chen, 2018; Pan et al., 2022) can be seen as a tool for graph denoising; this perspective has been
applied, for instance, to denoising neighborhood graphs arising in molecular imaging (Debarnot
et al., 2022).

Graph Structure Learning. The aim of graph structure learning (GSL) (Zhu et al., 2022) is to make
GNNs more robust against adversarial perturbations of the graph or to learn a graph for data where
there is no graph to start with (Jin et al., 2020; Chen et al., 2020b; Wang et al., 2024; Zhu et al.,
2024). Lv et al. (2023) build a neighborhood graph over features and interpolate between it and the
input graph, which is a form of alignment. Unlike our method, they do not use spectral information,
are unable to deal with noisy features and are only suitable for homophilic graphs where similarity-
based connection rules apply. Even though both our work and GSL consider noisy graph settings,
they are conceptually very different. We do not add noise to graph datasets which corresponds to a
perturbation rate of 0 (“clean data”) in GSL nomenclature. Instead, we acknowledge that in every
real world dataset, there is noise in the graph structure and the node features, and one manifestation
of this noise is a misalignment of their leading eigenspaces. We then use this to rewire the graph
(and denoise features) so as to improve the overall node classification performance of downstream
GNNs. Naturally, GSL methods have difficulties to improve over baselines in this setting (Jin et al.,
2020; Dong and Kluger, 2023). Our method, on the other hand, is not designed to handle strong per-
turbations and therefore cannot compete with GSL methods developed for specifically this purpose.

Graph Regularization. Laplacian regularization (Ando and Zhang, 2006), originally stemming
from semi-supervised representation learning, has been adapted by recent methods (Yang et al.,
2021; Ma et al., 2021a) to also improve the performance of GNNs. An extra loss term is added
during the GNNs training, which contains additional information about the graph structure to reduce
oversmoothing. Their main limiting factor is the underlying homophiliy assumption: It is assumed
that connected nodes are more likely to share the same label.

5 CONCLUSION AND LIMITATIONS

Our experimental results clearly show that spectral resonance is a powerful principle on which to
build graph rewiring (and feature denoising) algorithms. JDR consistently outperforms existing
rewiring methods DIGL, FoSR and BORF on both synthetic and real-world graph datasets. The
smaller performance gains of GPRGNN suggest that this more powerful GNN is already able to
leverage the complementary spectra of graphs and features to some extent.

The main limitation of JDR is that it cannot be used without node features. The preprocessing
rewiring methods that we compare with do not have this limitation as they only use the graph for
rewiring, but in turn, they cannot take advantage of features. Since JDR is the first method to
jointly denoise the graph and the features, there are no other methods to which it could be directly
compared. Our experiments thus highlight what advantage features bring to rewiring.

Furthermore, our results suggest that noise in real-world graphs is an important limiting factor for
the performance of GNNs. It would be interesting to see whether feature-agnostic rewiring from a
denoising perspective, for example using link prediction, could be used to improve the downstream
performance. A related idea that we tested but could not get to work well is to combine existing
geometric rewiring algorithms with JDR. Intuitively, there should be a way to benefit from both
removing noise and facilitating computation, but we have to leave that exploration for future work.

We also note that most current rewiring methods can be applied to graph level tasks, while JDR
is currently limited to node classification. It is an open question how to extend the cSBM idea to
graph-level problems.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

JL, CS and ID were supported by the European Research Council (ERC) Starting Grant 852821—
SWING.

REFERENCES

E. Abbe. Community detection and stochastic block models: Recent developments. Journal of
Machine Learning Research, 18(177):1–86, 2018. URL http://jmlr.org/papers/v18/
16-480.html.

U. Alon and E. Yahav. On the bottleneck of graph neural networks and its practical implications. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=i80OPhOCVH2.

R. Ando and T. Zhang. Learning on Graph with Laplacian Regularization. In B. Schölkopf,
J. Platt, and T. Hoffman, editors, Advances in Neural Information Processing Systems, volume 19.
MIT Press, 2006. URL https://proceedings.neurips.cc/paper_files/paper/
2006/file/d87c68a56bc8eb803b44f25abb627786-Paper.pdf.

J. Baik, G. B. Arous, and S. Péché. Phase transition of the largest eigenvalue for nonnull complex
sample covariance matrices. The Annals of Probability, 33(5):1643 – 1697, 2005. doi: 10.1214/
009117905000000233. URL https://doi.org/10.1214/009117905000000233.

P. K. Banerjee, K. Karhadkar, Y. G. Wang, U. Alon, and G. Montúfar. Oversquashing in gnns
through the lens of information contraction and graph expansion. In 2022 58th Annual Aller-
ton Conference on Communication, Control, and Computing (Allerton), page 1–8. IEEE Press,
2022. doi: 10.1109/Allerton49937.2022.9929363. URL https://doi.org/10.1109/
Allerton49937.2022.9929363.

A. Baranwal, K. Fountoulakis, and A. Jagannath. Graph convolution for semi-supervised classi-
fication: Improved linear separability and out-of-distribution generalization. In M. Meila and
T. Zhang, editors, Proceedings of the 38th International Conference on Machine Learning, vol-
ume 139 of Proceedings of Machine Learning Research, pages 684–693. PMLR, 07 2021. URL
https://proceedings.mlr.press/v139/baranwal21a.html.

P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski,
A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, C. Gulcehre, F. Song, A. Ballard, J. Gilmer,
G. Dahl, A. Vaswani, K. Allen, C. Nash, V. Langston, C. Dyer, N. Heess, D. Wierstra, P. Kohli,
M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu. Relational inductive biases, deep learning, and
graph networks, 2018.

F. Benaych-Georges and R. R. Nadakuditi. The singular values and vectors of low rank perturbations
of large rectangular random matrices. Journal of Multivariate Analysis, 111:120–135, 2012.

F. Benaych-Georges, A. Guionnet, and M. Maida. Fluctuations of the extreme eigenvalues of finite
rank deformations of random matrices. Electronic Journal of Probability, 16:1621–1662, 2011.

M. Black, Z. Wan, A. Nayyeri, and Y. Wang. Understanding oversquashing in GNNs through
the lens of effective resistance. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato,
and J. Scarlett, editors, Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pages 2528–2547. PMLR, 7 2023.
URL https://proceedings.mlr.press/v202/black23a.html.

J. Bober, A. Monod, E. Saucan, and K. N. Webster. Rewiring networks for graph neural network
training using discrete geometry. In H. Cherifi, L. M. Rocha, C. Cherifi, and M. Donduran, edi-
tors, Complex Networks & Their Applications XII, pages 225–236, Cham, 2024. Springer Nature
Switzerland. ISBN 978-3-031-53468-3.

S. Chanpuriya and C. Musco. Simplified graph convolution with heterophily. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neural
Information Processing Systems, volume 35, pages 27184–27197. Curran Associates, Inc.,

11

http://jmlr.org/papers/v18/16-480.html
http://jmlr.org/papers/v18/16-480.html
https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/forum?id=i80OPhOCVH2
https://proceedings.neurips.cc/paper_files/paper/2006/file/d87c68a56bc8eb803b44f25abb627786-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2006/file/d87c68a56bc8eb803b44f25abb627786-Paper.pdf
https://doi.org/10.1214/009117905000000233
https://doi.org/10.1109/Allerton49937.2022.9929363
https://doi.org/10.1109/Allerton49937.2022.9929363
https://proceedings.mlr.press/v139/baranwal21a.html
https://proceedings.mlr.press/v202/black23a.html

Published as a conference paper at ICLR 2025

2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/ae07d152c51ea2ddae65aa7192eb5ff7-Paper-Conference.pdf.

D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun. Measuring and relieving the over-smoothing
problem for graph neural networks from the topological view. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 34(04):3438–3445, 4 2020a. doi: 10.1609/aaai.v34i04.5747. URL
https://ojs.aaai.org/index.php/AAAI/article/view/5747.

S. Chen, A. Sandryhaila, J. M. F. Moura, and J. Kovacevic. Signal denoising on graphs via graph
filtering. In 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP),
pages 872–876, 2014. doi: 10.1109/GlobalSIP.2014.7032244.

Y. Chen, L. Wu, and M. Zaki. Iterative deep graph learning for graph neural networks: Better and ro-
bust node embeddings. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 19314–19326. Curran
Associates, Inc., 2020b. URL https://proceedings.neurips.cc/paper_files/
paper/2020/file/e05c7ba4e087beea9410929698dc41a6-Paper.pdf.

E. Chien, J. Peng, P. Li, and O. Milenkovic. Adaptive universal generalized pagerank graph neural
network. In International Conference on Learning Representations, 2021. URL https://
openreview.net/forum?id=n6jl7fLxrP.

E. Chien, W.-C. Chang, C.-J. Hsieh, H.-F. Yu, J. Zhang, O. Milenkovic, and I. S. Dhillon. Node
feature extraction by self-supervised multi-scale neighborhood prediction. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=KJggliHbs8.

A. Deac, M. Lackenby, and P. Veličković. Expander graph propagation. In NeurIPS 2022 Workshop
on Symmetry and Geometry in Neural Representations, 2022. URL https://openreview.
net/forum?id=6cthqh2qhCT.

V. Debarnot, V. Kishore, C. Shi, and I. Dokmanić. Manifold rewiring for unlabeled imaging. In
2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference
(APSIPA ASC), pages 1–8, 2022. doi: 10.23919/APSIPAASC55919.2022.9980168.

A. Decelle, F. Krzakala, C. Moore, and L. Zdeborová. Asymptotic analysis of the stochastic
block model for modular networks and its algorithmic applications. Phys. Rev. E, 84:066106,
Dec 2011. doi: 10.1103/PhysRevE.84.066106. URL https://link.aps.org/doi/10.
1103/PhysRevE.84.066106.

Y. Deshpande, S. Sen, A. Montanari, and E. Mossel. Contextual stochastic block models. Advances
in Neural Information Processing Systems, 31, 2018.

F. Di Giovanni, L. Giusti, F. Barbero, G. Luise, P. Lio, and M. M. Bronstein. On over-squashing
in message passing neural networks: The impact of width, depth, and topology. In A. Krause,
E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, editors, Proceedings of the 40th
International Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pages 7865–7885. PMLR, 07 2023. URL https://proceedings.mlr.press/
v202/di-giovanni23a.html.

M. Dong and Y. Kluger. Towards understanding and reducing graph structural noise for GNNs. In
A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, editors, Proceedings of
the 40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pages 8202–8226. PMLR, 07 2023. URL https://proceedings.
mlr.press/v202/dong23a.html.

O. Duranthon and L. Zdeborová. Optimal inference in contextual stochastic block models, 2023.

D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik,
and R. P. Adams. Convolutional networks on graphs for learning molecular finger-
prints. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, volume 28. Curran Associates, Inc.,
2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/
file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf.

12

https://proceedings.neurips.cc/paper_files/paper/2022/file/ae07d152c51ea2ddae65aa7192eb5ff7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/ae07d152c51ea2ddae65aa7192eb5ff7-Paper-Conference.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/5747
https://proceedings.neurips.cc/paper_files/paper/2020/file/e05c7ba4e087beea9410929698dc41a6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/e05c7ba4e087beea9410929698dc41a6-Paper.pdf
https://openreview.net/forum?id=n6jl7fLxrP
https://openreview.net/forum?id=n6jl7fLxrP
https://openreview.net/forum?id=KJggliHbs8
https://openreview.net/forum?id=KJggliHbs8
https://openreview.net/forum?id=6cthqh2qhCT
https://openreview.net/forum?id=6cthqh2qhCT
https://link.aps.org/doi/10.1103/PhysRevE.84.066106
https://link.aps.org/doi/10.1103/PhysRevE.84.066106
https://proceedings.mlr.press/v202/di-giovanni23a.html
https://proceedings.mlr.press/v202/di-giovanni23a.html
https://proceedings.mlr.press/v202/dong23a.html
https://proceedings.mlr.press/v202/dong23a.html
https://proceedings.neurips.cc/paper_files/paper/2015/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/f9be311e65d81a9ad8150a60844bb94c-Paper.pdf

Published as a conference paper at ICLR 2025

V. P. Dwivedi and X. Bresson. A generalization of transformer networks to graphs. AAAI Workshop
on Deep Learning on Graphs: Methods and Applications, 2021.

P. Erdös and A. Rényi. On random graphs i. Publicationes Mathematicae Debrecen, 6:290–297,
1959.

L. Fesser and M. Weber. Mitigating over-smoothing and over-squashing using augmentations of
forman-ricci curvature. In S. Villar and B. Chamberlain, editors, Proceedings of the Second
Learning on Graphs Conference, volume 231 of Proceedings of Machine Learning Research,
pages 19:1–19:28. PMLR, 11 2024. URL https://proceedings.mlr.press/v231/
fesser24a.html.

M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

R. B. Gabrielsson, M. Yurochkin, and J. Solomon. Rewiring with positional encodings for graph
neural networks. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=dn3ZkqG2YV.

J. Gasteiger, S. Weiß enberger, and S. Günnemann. Diffusion improves graph learning. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/23c894276a2c5a16470e6a31f4618d73-Paper.pdf.

J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing for
quantum chemistry. In Proceedings of the 34th International Conference on Machine Learning -
Volume 70, ICML’17, page 1263–1272. JMLR.org, 2017.

J. H. Giraldo, K. Skianis, T. Bouwmans, and F. D. Malliaros. On the trade-off between over-
smoothing and over-squashing in deep graph neural networks. CIKM ’23, page 566–576, New
York, NY, USA, 2023. Association for Computing Machinery. doi: 10.1145/3583780.3614997.
URL https://doi.org/10.1145/3583780.3614997.

V. Gligorijević, P. D. Renfrew, T. Kosciolek, J. K. Leman, D. Berenberg, T. Vatanen, C. Chandler,
B. C. Taylor, I. M. Fisk, H. Vlamakis, R. J. Xavier, R. Knight, K. Cho, and R. Bonneau. Structure-
based protein function prediction using graph convolutional networks. Nature Communications,
12(1):3168, 2021. ISSN 2041-1723. doi: 10.1038/s41467-021-23303-9. URL https://doi.
org/10.1038/s41467-021-23303-9.

B. Gutteridge, X. Dong, M. M. Bronstein, and F. Di Giovanni. DRew: Dynamically rewired message
passing with delay. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett,
editors, Proceedings of the 40th International Conference on Machine Learning, volume 202
of Proceedings of Machine Learning Research, pages 12252–12267. PMLR, 07 2023. URL
https://proceedings.mlr.press/v202/gutteridge23a.html.

H. Hu and Y. M. Lu. Universality laws for high-dimensional learning with random features. IEEE
Transactions on Information Theory, 69(3):1932–1964, 2023. doi: 10.1109/TIT.2022.3217698.

F. Ji, S. H. Lee, H. Meng, K. Zhao, J. Yang, and W. P. Tay. Leveraging label non-uniformity for node
classification in graph neural networks. In Proceedings of the 40th International Conference on
Machine Learning, ICML’23. JMLR.org, 2023.

W. Jin, Y. Ma, X. Liu, X. Tang, S. Wang, and J. Tang. Graph structure learning for robust graph
neural networks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, KDD ’20, page 66–74, New York, NY, USA, 2020. Associa-
tion for Computing Machinery. ISBN 9781450379984. doi: 10.1145/3394486.3403049. URL
https://doi.org/10.1145/3394486.3403049.

K. Karhadkar, P. K. Banerjee, and G. Montufar. FoSR: First-order spectral rewiring for addressing
oversquashing in GNNs. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=3YjQfCLdrzz.

13

https://proceedings.mlr.press/v231/fesser24a.html
https://proceedings.mlr.press/v231/fesser24a.html
https://openreview.net/forum?id=dn3ZkqG2YV
https://proceedings.neurips.cc/paper_files/paper/2019/file/23c894276a2c5a16470e6a31f4618d73-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/23c894276a2c5a16470e6a31f4618d73-Paper.pdf
https://doi.org/10.1145/3583780.3614997
https://doi.org/10.1038/s41467-021-23303-9
https://doi.org/10.1038/s41467-021-23303-9
https://proceedings.mlr.press/v202/gutteridge23a.html
https://doi.org/10.1145/3394486.3403049
https://openreview.net/forum?id=3YjQfCLdrzz

Published as a conference paper at ICLR 2025

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2017. URL https://openreview.
net/forum?id=SJU4ayYgl.

V. Kothapalli, T. Tirer, and J. Bruna. A neural collapse perspective on feature evolution in graph
neural networks. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.
URL https://openreview.net/forum?id=sxao2udWXi.

T. Lesieur, F. Krzakala, and L. Zdeborová. Constrained low-rank matrix estimation: phase transi-
tions, approximate message passing and applications. Journal of Statistical Mechanics: Theory
and Experiment, 2017(7):073403, jul 2017. doi: 10.1088/1742-5468/aa7284. URL https:
//dx.doi.org/10.1088/1742-5468/aa7284.

P. Li, I. Chien, and O. Milenkovic. Optimizing generalized pagerank methods for seed-expansion
community detection. In Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/9ac1382fd8fc4b631594aa135d16ad75-Paper.pdf.

D. Lim, F. M. Hohne, X. Li, S. L. Huang, V. Gupta, O. P. Bhalerao, and S.-N. Lim. Large scale learn-
ing on non-homophilous graphs: New benchmarks and strong simple methods. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in Neural Information Processing
Systems, 2021. URL https://openreview.net/forum?id=DfGu8WwT0d.

J. Linkerhägner, N. Freymuth, P. M. Scheikl, F. Mathis-Ullrich, and G. Neumann. Grounding graph
network simulators using physical sensor observations. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
jsZsEd8VEY.

S. Liu, R. Ying, H. Dong, L. Lin, J. Chen, and D. Wu. How powerful is implicit denoising in graph
neural networks, 2022.

C. Lu and S. Sen. Contextual stochastic block model: Sharp thresholds and contiguity. Journal of
Machine Learning Research, 24(54):1–34, 2023.

S. Luan, C. Hua, M. Xu, Q. Lu, J. Zhu, X.-W. Chang, J. Fu, J. Leskovec, and
D. Precup. When do graph neural networks help with node classification? inves-
tigating the homophily principle on node distinguishability. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural In-
formation Processing Systems, volume 36, pages 28748–28760. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/5ba11de4c74548071899cf41dec078bf-Paper-Conference.pdf.

S. Lv, G. Wen, S. Liu, L. Wei, and M. Li. Robust graph structure learning with the alignment of
features and adjacency matrix, 2023.

X. Ma, H. Chen, and G. Song. Lereg: Empower graph neural networks with local energy regular-
ization. In Proceedings of the 30th ACM International Conference on Information & Knowl-
edge Management, CIKM ’21, page 1191–1201, New York, NY, USA, 2021a. Association
for Computing Machinery. ISBN 9781450384469. doi: 10.1145/3459637.3482447. URL
https://doi.org/10.1145/3459637.3482447.

Y. Ma, X. Liu, T. Zhao, Y. Liu, J. Tang, and N. Shah. A unified view on graph neural networks as
graph signal denoising. In Proceedings of the 30th ACM International Conference on Information
& Knowledge Management, CIKM ’21, page 1202–1211, New York, NY, USA, 2021b. ISBN
9781450384469. doi: 10.1145/3459637.3482225.

Y. Ma, X. Liu, N. Shah, and J. Tang. Is homophily a necessity for graph neural networks? In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=ucASPPD9GKN.

R. Mandal, C. Casert, and P. Sollich. Robust prediction of force chains in jammed solids using graph
neural networks. Nature Communications, 13:4424, 07 2022. doi: 10.1038/s41467-022-31732-3.

14

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=sxao2udWXi
https://dx.doi.org/10.1088/1742-5468/aa7284
https://dx.doi.org/10.1088/1742-5468/aa7284
https://proceedings.neurips.cc/paper_files/paper/2019/file/9ac1382fd8fc4b631594aa135d16ad75-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/9ac1382fd8fc4b631594aa135d16ad75-Paper.pdf
https://openreview.net/forum?id=DfGu8WwT0d
https://openreview.net/forum?id=jsZsEd8VEY
https://openreview.net/forum?id=jsZsEd8VEY
https://proceedings.neurips.cc/paper_files/paper/2023/file/5ba11de4c74548071899cf41dec078bf-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/5ba11de4c74548071899cf41dec078bf-Paper-Conference.pdf
https://doi.org/10.1145/3459637.3482447
https://openreview.net/forum?id=ucASPPD9GKN
https://openreview.net/forum?id=ucASPPD9GKN

Published as a conference paper at ICLR 2025

J. McAuley, C. Targett, Q. Shi, and A. van den Hengel. Image-based recommendations on styles
and substitutes. In Proceedings of the 38th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’15, page 43–52, New York, NY, USA, 2015.
Association for Computing Machinery. ISBN 9781450336215. doi: 10.1145/2766462.2767755.
URL https://doi.org/10.1145/2766462.2767755.

M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of a feather: Homophily in social networks.
Annual Review of Sociology, 27:415–444, 2001. ISSN 03600572, 15452115. URL http://
www.jstor.org/stable/2678628.

R. R. Nadakuditi and M. E. Newman. Graph spectra and the detectability of community structure in
networks. Physical review letters, 108(18):188701, 2012.

A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In T. Dietterich,
S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems, vol-
ume 14. MIT Press, 2001. URL https://proceedings.neurips.cc/paper_files/
paper/2001/file/801272ee79cfde7fa5960571fee36b9b-Paper.pdf.

K. Nguyen, N. M. Hieu, V. D. Nguyen, N. Ho, S. Osher, and T. M. Nguyen. Revisiting over-
smoothing and over-squashing using ollivier-ricci curvature. In A. Krause, E. Brunskill, K. Cho,
B. Engelhardt, S. Sabato, and J. Scarlett, editors, Proceedings of the 40th International Con-
ference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pages 25956–25979. PMLR, 7 2023. URL https://proceedings.mlr.press/v202/
nguyen23c.html.

L. Pan, C. Shi, and I. Dokmanić. Neural link prediction with walk pooling. In International Confer-
ence on Learning Representations, 2022. URL https://openreview.net/forum?id=
CCu6RcUMwK0.

D. Paul. Asymptotics of sample eigenstructure for a large dimensional spiked covariance model.
Statistica Sinica, pages 1617–1642, 2007.

H. Pei, B. Wei, K. C.-C. Chang, Y. Lei, and B. Yang. Geom-gcn: Geometric graph convolutional
networks. In International Conference on Learning Representations, 2020. URL https://
openreview.net/forum?id=S1e2agrFvS.

O. Platonov, D. Kuznedelev, M. Diskin, A. Babenko, and L. Prokhorenkova. A critical look at
the evaluation of GNNs under heterophily: Are we really making progress? In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=tJbbQfw-5wv.

C. Qian, A. Manolache, K. Ahmed, Z. Zeng, G. V. den Broeck, M. Niepert, and C. Morris. Prob-
abilistically rewired message-passing neural networks. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
Tj6Wcx7gVk.

L. Rampasek, M. Galkin, V. P. Dwivedi, A. T. Luu, G. Wolf, and D. Beaini. Recipe for a general,
powerful, scalable graph transformer. In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors,
Advances in Neural Information Processing Systems, 2022. URL https://openreview.
net/forum?id=lMMaNf6oxKM.

Y. Rong, W. Huang, T. Xu, and J. Huang. Dropedge: Towards deep graph convolutional networks
on node classification. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=Hkx1qkrKPr.

B. Rozemberczki, C. Allen, and R. Sarkar. Multi-Scale attributed node embedding. Journal of
Complex Networks, 9(2):cnab014, 05 2021. ISSN 2051-1329. doi: 10.1093/comnet/cnab014.
URL https://doi.org/10.1093/comnet/cnab014.

P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad. Collective classification
in network data. AI Magazine, 29(3):93, 9 2008. doi: 10.1609/aimag.v29i3.2157. URL https:
//ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2157.

15

https://doi.org/10.1145/2766462.2767755
http://www.jstor.org/stable/2678628
http://www.jstor.org/stable/2678628
https://proceedings.neurips.cc/paper_files/paper/2001/file/801272ee79cfde7fa5960571fee36b9b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/801272ee79cfde7fa5960571fee36b9b-Paper.pdf
https://proceedings.mlr.press/v202/nguyen23c.html
https://proceedings.mlr.press/v202/nguyen23c.html
https://openreview.net/forum?id=CCu6RcUMwK0
https://openreview.net/forum?id=CCu6RcUMwK0
https://openreview.net/forum?id=S1e2agrFvS
https://openreview.net/forum?id=S1e2agrFvS
https://openreview.net/forum?id=tJbbQfw-5wv
https://openreview.net/forum?id=tJbbQfw-5wv
https://openreview.net/forum?id=Tj6Wcx7gVk
https://openreview.net/forum?id=Tj6Wcx7gVk
https://openreview.net/forum?id=lMMaNf6oxKM
https://openreview.net/forum?id=lMMaNf6oxKM
https://openreview.net/forum?id=Hkx1qkrKPr
https://doi.org/10.1093/comnet/cnab014
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2157
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2157

Published as a conference paper at ICLR 2025

X. Shen, P. Lio, L. Yang, R. Yuan, Y. Zhang, and C. Peng. Graph rewiring and preprocessing for
graph neural networks based on effective resistance. IEEE Transactions on Knowledge and Data
Engineering, pages 1–14, 2024. doi: 10.1109/TKDE.2024.3397692.

C. Shi, L. Pan, H. Hu, and I. Dokmanić. Homophily modulates double descent generalization
in graph convolution networks. Proceedings of the National Academy of Sciences, 121(8):
e2309504121, 2024. doi: 10.1073/pnas.2309504121. URL https://www.pnas.org/doi/
abs/10.1073/pnas.2309504121.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(8):888–905, 2000. doi: 10.1109/34.868688.

H. Shirzad, A. Velingker, B. Venkatachalam, D. J. Sutherland, and A. K. Sinop. Exphormer: Sparse
transformers for graphs. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and
J. Scarlett, editors, Proceedings of the 40th International Conference on Machine Learning, vol-
ume 202 of Proceedings of Machine Learning Research, pages 31613–31632. PMLR, 07 2023.
URL https://proceedings.mlr.press/v202/shirzad23a.html.

J. Tang, J. Sun, C. Wang, and Z. Yang. Social influence analysis in large-scale networks. In
Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’09, page 807–816, New York, NY, USA, 2009. Association for Com-
puting Machinery. ISBN 9781605584959. doi: 10.1145/1557019.1557108. URL https:
//doi.org/10.1145/1557019.1557108.

J. Topping, F. D. Giovanni, B. P. Chamberlain, X. Dong, and M. M. Bronstein. Understanding over-
squashing and bottlenecks on graphs via curvature. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=7UmjRGzp-A.

J. Wang, J. Guo, Y. Sun, J. Gao, S. Wang, Y. Yang, and B. Yin. DGNN: Decoupled Graph Neural
Networks with Structural Consistency between Attribute and Graph Embedding Representations,
2024.

X. Wu, Z. Chen, W. W. Wang, and A. Jadbabaie. A non-asymptotic analysis of oversmoothing in
graph neural networks. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=CJd-BtnwtXq.

K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In Interna-
tional Conference on Learning Representations, 2019. URL https://openreview.net/
forum?id=ryGs6iA5Km.

H. Yang, K. Ma, and J. Cheng. Rethinking graph regularization for graph neural networks. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 35(5):4573–4581, 05 2021. doi: 10.
1609/aaai.v35i5.16586. URL https://ojs.aaai.org/index.php/AAAI/article/
view/16586.

M. Zhang and Y. Chen. Link prediction based on graph neural networks. In S. Ben-
gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/
file/53f0d7c537d99b3824f0f99d62ea2428-Paper.pdf.

J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun. Graph neural
networks: A review of methods and applications. AI Open, 1:57–81, 2020. ISSN 2666-6510. doi:
https://doi.org/10.1016/j.aiopen.2021.01.001.

J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra. Beyond homophily
in graph neural networks: Current limitations and effective designs. In H. Larochelle,
M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, editors, Advances in Neural In-
formation Processing Systems, volume 33, pages 7793–7804. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/58ae23d878a47004366189884c2f8440-Paper.pdf.

16

https://www.pnas.org/doi/abs/10.1073/pnas.2309504121
https://www.pnas.org/doi/abs/10.1073/pnas.2309504121
https://proceedings.mlr.press/v202/shirzad23a.html
https://doi.org/10.1145/1557019.1557108
https://doi.org/10.1145/1557019.1557108
https://openreview.net/forum?id=7UmjRGzp-A
https://openreview.net/forum?id=CJd-BtnwtXq
https://openreview.net/forum?id=ryGs6iA5Km
https://openreview.net/forum?id=ryGs6iA5Km
https://ojs.aaai.org/index.php/AAAI/article/view/16586
https://ojs.aaai.org/index.php/AAAI/article/view/16586
https://proceedings.neurips.cc/paper_files/paper/2018/file/53f0d7c537d99b3824f0f99d62ea2428-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/53f0d7c537d99b3824f0f99d62ea2428-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/58ae23d878a47004366189884c2f8440-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/58ae23d878a47004366189884c2f8440-Paper.pdf

Published as a conference paper at ICLR 2025

Y. Zhu, W. Xu, J. Zhang, Y. Du, J. Zhang, Q. Liu, C. Yang, and S. Wu. A survey on graph structure
learning: Progress and opportunities, 2022.

Y. Zhu, R. Amor, Y. Chen, Z. Deng, L. Feng, and M. Witbrock. Robust node classification on graph
data with graph and label noise. Proceedings of the AAAI Conference on Artificial Intelligence,
2024.

17

Published as a conference paper at ICLR 2025

A APPENDIX

A.1 THE JDR ALGORITHM

Algorithm 1 Joint Denoising and Rewiring

1: procedure REWIRE(X,A) ▷ For DENOISE just exchange X and A
2: X = UΣW T

3: A = V ΛV T

4: for i in range(LA) do ▷ Loop over LA eigenvectors in A
5: va ← V [:, i]
6: for j in range(LA) do ▷ Loop over LA eigenvectors in X
7: ux ← U [:, j]
8: θ ← ⟨ux,va⟩ ▷ Find angle between eigenvectors
9: if |θ| > |θmax| then

10: θmax ← θ
11: umax

x ← ux

12: end if
13: end for
14: Ṽ [:, i]← (1− ηA)va + ηAsign(θmax)u

max
x ▷ Interpolation between eigenvectors

15: end for
16: Ã← Ṽ ΛṼ T

17: end procedure
18: X̃, Ã←X,A
19: for i in range(K) do ▷ Main loop
20: X ′ ← DENOISE(X̃, Ã)

21: A′ ← REWIRE(X̃, Ã)

22: X̃, Ã←X ′,A′

23: end for
24: X̃ = UPDATE_X(X, X̃) ▷ Sparsify and binarize if needed
25: Ã = UPDATE_A(A, Ã)

A.1.1 LOW-DIMENSIONAL GRAPHS AND RELATION TO RESONANCE

Figure 5: Visualization of the first six
eigenmodes of L of the 8×8 grid graph.

low-dimensional coordinates, We finally mention that al-
though our algorithm is motivated by the cSBM, it could
have equivalently been motivated by ubiquitous low-
dimensional graphs. In such graphs, node labels are re-
lated to the which are in turn given by the eigenvectors
of the graph Laplacian; this is illustrated in Figure 5. If,
for example, the labels are given by the sign of the first
non-constant eigenfunction (the slowest-changing normal
mode), our notion of alignment with L = 1 clearly re-
mains meaningful.

This also further motivates our terminology of resonance.
In a purist sense, resonance is a dynamical phenomenon
where driving a system with a frequency corresponding
to an eigenvalue of the Laplacian yields a diverging response. Importantly, the shape of the response
is then an eigenfunction. In a broad sense, resonance signifies alignment with Laplacian eigenfunc-
tions, which are the natural modes. For graphs, this is closely related to alignment with eigenvectors
of the adjacency matrix (it is equivalent for d-regular graphs). As Figure 2b shows, maximizing
alignment between feature and graph spectra indeed leads to the largest response of the graph to the
features.

18

Published as a conference paper at ICLR 2025

A.1.2 ROTATIONAL INVARIANCE OF ALIGNMENT

We show that the alignment measure (3) is invariant to rotations of the subspaces for non-unique
eigenvalues. Let A ∈ RN×N be the adjacency matrix and X ∈ RN×F the feature matrix. Let the
eigendecomposition of A be

A = λ1U1U
T
1 + · · ·+ λpUpU

T
p

where p ≤ N , Ui ∈ RN×si with si being the multiplicity of the eigenvalue λi,
∑

i si = N ,
UT
i Ui = I , and UT

j Ui = 0 for i ̸= j. Let similarly the SVD of X be

X = σ1V1W
T
1 .+ · · ·+ σqVqW

T
q ,

where Vi ∈ RN×ti , Wi ∈ RF×ti ,
∑

i ti = F , with analogous orthogonality conditions. As-
sume both (λi) and (σi) are sorted from largest to smallest. Assume also for simplicity that
L =

∑p′

i=1 si =
∑q′

i=1 ti so that the leading L-dimensional subspace of the graph A is spanned
by the columns of the block matrix UL = [U1 · · ·Up′]. Of course it is also spanned by the columns
of ŨL = [U1Q1 · · ·Up′Qp′] where invertible matrices Qi ∈ Rsi×si reflect the fact that the eigen-
solver may return any of the infinitely many (when si > 1) orthogonal bases for the subspaces
spanned by the columns of Ui. The Qi are orthogonal since UiQi are orthogonal. Similarly the
leading L-dimensional subspace of the features is spanned by the columns of VL = [V1 · · ·Vq′] but
also of ṼL = [V1R1 · · ·Vq′Rq′] for any orthogonal (Ri). Now

∥ŨT
L ṼL∥sp = ∥blockdiag(QT

1 , . . . , Q
T
p′) UT

L VL blockdiag(R1, · · · , Rq′)∥sp
= ∥UT

L VL∥sp
for any choice of Qs and Rs since both block-diagonal matrices are orthogonal and the spectral
norm is unitarily-invariant.

A.1.3 COMPUTATIONAL COMPLEXITY

The complexity of JDR results mainly from the SVD and eigendecomposition, which is of order
O(FNmin(F,N)) for SVD and O(N3) for the eigendecomposition (F = N). Since we only need
the leading k eigenvectors this reduces to O(FNk). If the matrix is additionally sparse as is often
the case for real-world graphs with binary node features this reduces further to O(nnz(A)k) where
nnz(A) is the number of non-zero elements in A. Since usually neither the average degree d nor k
is scaled by N , the complexity actually scales with O(N).

A.1.4 RUNTIME COMPARISON

In addition to computational complexity, we report measurements of running time of the different
algorithms. We run JDR and baseline methods on the real-world datasets, using GCN as downstream
model. All algorithms are run on Nvidia A100 with 80GB and we time their Python processes.
We emphasize that we did not explicitly optimize the timing code and we kept the outputs and
logging turned on. But this influences all methods in the same way so the relative comparisons are
meaningful. The results in Table 5 do not show a clear “winner”. The ambiguity is especially visible
on the large heterophilic graphs, where JDR is slower than DIGL, but significantly faster than FoSR
on two datasets. On the Twitch-gamers dataset, on the other hand, it is faster than DIGL but not
as fast as FoSR. The main reason for this is that different hyperparameters choices of the rewiring
methods lead to dramatically different run times (even when applying the same method on the same
dataset). For example on Computers, JDR is very fast since it only requires 3 denoising iterations,
compared to 15 on Citeseer. The same holds true for FoSR which only require 5 iterations on
Twitch-gamers, but 700 on Questions. So if one wants to optimize for speed, one should constrain
the hyperparameters of the methods that significantly impact execution speed. Of course, there is a
trade-off between any such constraint and accuracy, as our experiments on the denoising iterations
of JDR in Figure 16 (b) and Figure 17 (b) in Appendix A.6 show.

A.2 CONTEXTUAL STOCHASTIC BLOCK MODELS

SBMs and GMMs are landmark theoretical models for studying clustering, classification problems
and developing algorithmic tools. The cSBM (Deshpande et al., 2018), a combination of the two,

19

Published as a conference paper at ICLR 2025

Table 5: Timing experiments in seconds for different rewiring methods using GCN as downstream
GNN. Smaller is better. We record the time of the preprocessing and training and evaluating the
GNN on 100 random splits. The results do not show a clear winner; JDR generally requires a
comparable or less time compared to baselines. For more discussion see A.1.4.

Dataset Base DIGL FoSR BORF JDR

Cora 182 228 187 201 246
Citeseer 258 360 291 290 433
PubMed 291 692 416 897 858
Computers 274 444 516 718 465
Photo 213 299 220 801 330

Chameleon 372 239 396 483 545
Squirrel 1263 302 1282 - 1659
Actor 166 286 171 225 319
Texas 163 200 169 174 203
Cornell 167 202 164 240 208

Questions 93 804 11053 - 3707
Penn94 164 232 3198 - 1779
Twitch-gamers 1579 6729 1618 - 5165

has become a key model for studying node classification problems on graphs, inspiring numerous
designs of GNNs like GPRGNN (Chien et al., 2021), GIANT (Chien et al., 2022) or ASGC (Chan-
puriya and Musco, 2022). Many theoretical studies of node-level GNN problems are based on the
cSBM, e.g. on double descent (Shi et al., 2024), neural collapse (Kothapalli et al., 2023), OOD
generalization (Baranwal et al., 2021), or oversmoothing (Wu et al., 2023). Beyond being a standard
synthetic benchmark, the cSBM is also used to to verify hypotheses about GNNs (Ma et al., 2022;
Luan et al., 2023).

As for any model, the cSBM also comes with limitations. One possible limitation of our work is that
cSBM assumes that the features are linear as in a GMM, which makes a linear classifier optimal. If
the class boundaries are highly nonlinear, this is no longer true, and the spectrum of X may need
to be “linearized”, e.g. via Laplacian eigenmaps or diffusion maps. Still, the results on real-world
data show that the cSBM model is already highly transferable, suggesting that the high-dimensional
features in real-world graph datasets are often quite linear.

A.3 PROOF OF PROPOSITION 1

Notation. We order the eigenvalues and singular values from largest to smallest and denote the
eigenvector associated with the eigenvalue λj by vj (A

c). For the leading eigenvalue and eigenvec-
tors of Ac, we write λ1 = λA and v1 (A

c) = vA. We use analogous notation for the singular values
and corresponding singular vectors of X . For simplicity and without loss of generality we assume
that the angles between these vectors are accute, i.e., ⟨vA,uX⟩ , ⟨ỹ,vA⟩ , ⟨ỹ,uX⟩ ≥ 0.

Proof. When λ > 1, based on the Baik-Ben Arous-Péché (BBP) transition (Baik et al., 2005; Paul,
2007), the leading eigenvalue of A lies outside the spectral bulk,

λA = λ+
1

λ
+Op

(
1√
N

)
,

and the fluctuation of the leading eigenvector satisfies

qA := λ

(
vA −

√
1− 1

λ2
ỹ

)
d−→ Haar(SN−2

ỹ⊥) (5)

where Haar(SN−2
ỹ⊥) is the uniform distribution on the sphere orthogonal to ỹ, Sn−2

ỹ⊥ ={
v : v ∈ RN | vT ỹ = 0, ∥v∥ = 1

}
, and the convergence is in distribution as N → ∞. Similarly,

20

Published as a conference paper at ICLR 2025

for the rectangular matrix X we have (Benaych-Georges and Nadakuditi, 2012),

σX =

√
(γ + µ) (1 + µ)

µ
+Op

(
1√
N

)
and the fluctuation of the leading singular vector satisfies

qX :=

√
µ (µ+ γ)

γ (1 + µ)

(
uX −

√
1− γ (1 + µ)

µ (µ+ γ)
ỹ

)
d−→ Haar(SN−2

ỹ⊥).

To denoise Ac, we adjust the leading eigenvector towards the direction of uX as

ṽA = (1− ηA)vA + ηAuX

where ηA > 0 is a small constant. The corresponding perturbation in the matrix reads

Ac
ηA
−Ac = λA(ṽAṽ

T
A − vAv

T
A)

= λAηA
(
vAu

T
X + uXvT

A

)
+O

(
η2A
)
.

The first-order perturbation of the leading eigenvector yields

v1(A
c
ηA

)− v1(A
c) = λAηA

∑
j ̸=1

vj(A
c)T

(
vAu

T
X + uXvT

A

)
vA

λA − λj
vj(A

c) +O
(
η2A
)
.

Since vj(A
c)TvA = 0 for j > 1, we have〈

v1(A
c
ηA

)− v1(A
c), ỹ

〉
= λAηA

∑
j ̸=1

ỹTvj(A
c)vj(A

c)TuXvT
AvA

λA − λj
+O

(
η2A
)

= λAηAc1
∑
j ̸=1

(
ỹTvj(A

c)
)2

λA − λj
+ λAηAc2

∑
j ̸=1

ỹTvj(A
c)vj(A

c)TqX
λA − λj

+O
(
η2A
)

(6)

where c1 =
√
1− γ(1+µ)

µ(µ+γ) and c2 =
√

γ(1+µ)
µ(µ+γ) . From the BBP transition we know that when

λ > 1 we have ⟨ỹ,vA⟩2 = 1 − 1
λ2 + Op(1). Consequently, it follows that

∑
j ̸=1

(
ỹTvj(A

c)
)2

=
1
λ2 + Op(1). Since the edge of the bulk of spiked matrices still follows the Tracy–Widom distribu-

tion (Benaych-Georges et al., 2011), i.e., λ2 = 2 + Op

(
N− 2

3

)
and λN = −2 + Op

(
N− 2

3

)
, we

have
1

1
λ + λ+ 2

+Op

(
N− 2

3

)
<

1

λA − λj
<

1
1
λ + λ− 2

+Op

(
N− 2

3

)
for j > 1.

Therefore the first term in (6) can be bounded as
∑

j ̸=1
(ỹT vj(A

c))
2

λA−λj

a.s
> 1

λ2
A

1
1
λ+λ+2

when N → ∞.

For the second term, we note that the vector qX is independent of z :=
∑

j ̸=1
ỹT vj(A

c)
λA−λj

vj(A
c).

Each eigenvector vj(A
c) is uniformly distributed on SN−2

v⊥
A

and {vj(A
c)}Nj=2 is an orthogonal basis

of RN−1
v⊥
A

= {v : v ∈ RN | vTvA = 0}. Therefore, for large N , ỹTvj(A
c) is approximately inde-

pendent of each element in vj(A
c). More precisely, the entries of z are of the order of Op

(
1√
N

)
,

and thus
∑

j ̸=1
ỹT vj(A

c)vj(A
c)T qX

λA−λj
= ⟨qX , z⟩ = Op

(
1√
N

)
. Summarizing, we get

〈
v1(A

c
ηA

)− v1(A
c), ỹ

〉 a.s.
>

√
1− γ(1+µ)

µ(µ+γ)

(λ+ 1/λ) (λ+ 1/λ+ 2)
ηA +O

(
η2A
)

when N →∞.

A similar strategy can be used to show that ⟨u1(XηX
), ỹ⟩

a.s
> ⟨u1(X), ỹ⟩.

21

Published as a conference paper at ICLR 2025

Table 6: Properties of the real-world benchmark datasets. For directed graphs we transform the
graph to undirected in all experiments. H(G) indicates the homophily measure.

Dataset Classes Features Nodes Edges Directed H(G)
Cora 7 1, 433 2, 708 5, 278 False 0.810
Citeseer 6 3, 703 3, 327 4, 552 False 0.736
PubMed 3 500 19, 717 44, 324 False 0.802
Computers 10 767 13, 752 245, 861 False 0.777
Photo 8 745 7, 650 119, 081 False 0.827

Chameleon 6 2, 325 2, 277 31, 371 True 0.231
Squirrel 5 2, 089 5, 201 198, 353 True 0.222
Actor 5 932 7, 600 26, 659 True 0.219
Texas 5 1, 703 183 279 True 0.087
Cornell 5 1, 703 183 277 True 0.127

Roman-empire 18 300 22, 662 32, 927 False 0.047
Amazon-ratings 5 300 24, 492 93, 050 False 0.380
Minesweeper 2 7 10, 000 39, 402 False 0.683
Tolokers 2 10 11, 758 519, 000 False 0.595
Questions 2 301 48, 921 153, 540 False 0.840

Penn94 2 4, 814 41, 554 1, 362, 229 False 0.470
Twitch-gamers 2 7 168, 114 6, 797, 557 False 0.545

A.4 DATASETS

Table 6 shows the properties of the real-world datasets used. We also provide the homophily mea-
sure H(G) proposed in Pei et al. (2020), which we compute using the build-in function of Pytorch
Geometric (Fey and Lenssen, 2019). For the cSBM, following (Chien et al., 2021), we choose
N = 5000, F = 2000 and thus have γ = N

F = 2.5. Since the threshold to recover communities in
cSBM is λ2 + µ2/γ > 1 (Deshpande et al., 2018), we use a margin such that λ2 + µ2/γ = 1 + ϵ.
We choose the same ϵ = 3.25 as Chien et al. (2021) in all our experiments to be above the detection
threshold and d = 5 to obtain a sparse graph to be close to the properties of real-world graphs. From
the recovery threshold, we can parameterize the resulting arc of an ellipse with λ ≥ 0 and µ ≥ 0
using ϕ = arctan(λ

√
γ/µ). Table 7 shows the parameters µ2 and λ and the homophily measure

H(G)for the different values of ϕ.

A.5 ADDITIONAL RESULTS

We provide a number of additional experiments which did not fit in the main text. These include
more experiments on additional heterophilic datasets from Platonov et al. (2023), results for the
homophilic datasets in the dense splitting, more experiments with DIGL (Gasteiger et al., 2019),
more alignment results and results for synthetic and real-world data using spectral clustering with
and w/o JDR. The clustering experiments in particular allow an interpretation of how JDR works:
Applying it to a graph increases its “spectral clusterability”.

A.5.1 ADDITIONAL HETEROPHILIC DATASETS

In order to get a more comprehensive picture of the performance of JDR, we also test JDR on all
the datasets proposed there by Platonov et al. (2023). Table 8 shows the results on these datasets
using their original splits and comparing DIGL, FoSR, BORF and JDR. In general, the performance
increases are relatively small for all methods, but overall JDR still performs best. It achieves sig-
nificant performance increases on Tolokers and Questions. For Minesweeper none of the methods
is really able to improve performance. The reason for this is in the synthetic design of its graph
and the features: The graph does not contain any information about the labels, as it only connects
neighboring cells (it is solely a computational graph). The same is partially true for node features
which indeed contain information about neighboring mines, but only for 50% of the nodes. This
renders JDR unsuitable, which is also reflected in an interesting way in the experiments: We found

22

Published as a conference paper at ICLR 2025

Table 7: Properties of the synthetic datasets generated from the cSBM with ϵ = 3.25. H(G) indicates
the homophily measure.

ϕ µ2 λ H(G)
−1.0 0.0 −2.06 0.039
−0.875 0.40 −2.02 0.049
−0.75 1.56 −1.90 0.076
−0.625 3.28 −1.71 0.119
−0.5 5.31 −1.46 0.170
−0.375 7.35 −1.15 0.241
−0.25 9.07 −0.79 0.325
−0.125 10.22 −0.40 0.408
0.0 10.63 0.0 0.496
0.125 10.22 0.40 0.583
0.25 9.07 0.79 0.671
0.375 7.35 1.15 0.751
0.5 5.31 1.46 0.837
0.625 3.28 1.71 0.879
0.75 1.56 1.90 0.925
0.875 0.40 2.02 0.955
1.0 0.0 2.06 0.963

Table 8: Comparison of DIGL, FoSR, BORF and JDR on real-world heterophilic datasets from
Platonov et al. (2023): Mean accuracy (%) and ROC AUC for imbalanced Minesweeper, Tolokers
and Questions± 95% confidence interval. Best average accuracy in bold. OOM indicates an out-of-
memory error.

Method Roman-empire Amazon-ratings Minesweeper Tolokers Questions

GCN 78.64±0.42 46.19±0.58 90.08±0.31 84.61±0.59 75.31±0.81
GCN+DIGL 75.32±0.61 45.92±0.41 88.16±0.57 81.62±0.59 73.35±0.64
GCN+FoSR 78.58±0.43 46.30±0.44 90.07±0.51 84.50±0.47 75.51±0.73
GCN+BORF 78.66±0.42 46.44±0.54 90.06±0.38 OOM OOM
GCN+JDR 78.86±0.48 46.47±0.67 90.01±0.32 84.73±0.45 77.52±0.63

GPRGNN 71.46±0.29 45.84±0.21 87.80±0.51 72.01±0.65 65.30±1.01
GPRGNN+DIGL 71.59±0.37 46.43±0.34 87.96±0.50 73.09±1.16 69.98±0.49
GPRGNN+FoSR 71.44±0.30 45.94±0.36 87.83±0.58 72.72±0.69 65.45±0.68
GPRGNN+BORF 71.46±0.26 45.79±0.33 87.81±0.51 OOM OOM
GPRGNN+JDR 71.85±0.31 46.19±0.24 87.91±0.49 75.54±0.73 73.60±0.86

that the choice of hyperparameters has hardly any influence on performance. But also the results of
the other rewiring methods indicate that they cannot be applied here. The graph is a standard grid-
graph, which should not exhibit any interesting geometric properties and not contain any insights
about the labels. Overall, this is a typical error case for any rewiring method. But it could also
be discussed to what extent this dataset is an interesting graph dataset for node classification at all,
since the connectivity does not contain any information about the labels.

A.5.2 HOMOPHILIC DATASETS IN THE DENSE SPLITTING

Table 9 shows the results of DIGL, FoSR, BORF and JDR on real-world homophilic datasets in the
dense splitting. The improvements of rewiring are smaller overall compared to the sparse splitting,
but all four methods are able to improve it in most cases. With GCN as the downstream model, DIGL
now performs best. JDR can still achieve the best result on two out of five data sets. When using
GPRGNN as downstream model, JDR performs best on three out of five datasets. DIGL and FoSR
are still able to achieve small performance improvements on most datasets and both rank first place
on one dataset. BORF, on the other hand, is not able to improve the performance in most cases. This
suggests that a more powerful GNN architecture benefits less from DIGL, FoSR or BORF, while

23

Published as a conference paper at ICLR 2025

Table 9: Comparison of DIGL, BORF and JDR on real-world homophilic datasets using the dense
splitting: Mean accuracy (%) ± 95% confidence interval. Best average accuracy in bold.

Method Cora CiteSeer PubMed Computers Photo

GCN 88.14±0.27 79.02±0.25 86.14±0.10 89.03±0.12 94.07±0.10
GCN+DIGL 88.74±0.28 79.13±0.27 87.81±0.09 90.34±0.12 94.87±0.10
GCN+FoSR 88.09±0.28 79.23±0.25 86.14±0.10 88.98±0.12 94.04±0.09
GCN+BORF 88.18±0.24 79.17±0.24 86.14±0.10 89.14±0.11 94.00±0.10
GCN+JDR 88.76±0.25 80.25±0.27 86.20±0.10 88.93±0.13 94.20±0.08

GPRGNN 88.57±0.0.25 79.42±0.30 89.16±0.15 88.95±0.18 94.49±0.11
GPRGNN+DIGL 88.49±0.24 79.62±0.29 88.89±0.16 90.15±0.14 94.27±0.10
GPRGNN+FoSR 88.37±0.25 79.75±0.31 89.28±0.17 88.85±0.19 94.50±0.10
GPRGNN+BORF 88.56±0.27 79.39±0.31 89.04±0.18 88.90±0.19 94.52±0.10
GPRGNN+JDR 89.33±0.25 81.00±0.28 89.24±0.15 87.35±0.32 94.78±0.08

JDR can still improve it even further. The computer dataset is an exception for both downstream
GNNs, JDR is not really able to improve the performance at all, while DIGL can clearly improve it.

A.5.3 MLP WITH JDR

We design JDR with the aim to denoise the (possibly) complementary information in graph and
features. This is based on the claim that a GNN is the method of choice when both the graph and
the features contain valuable information, as it can utilize both. The experiments on cSBM in the
main text show the ability of JDR to transfer information between the two. This becomes visible
especially in the corner cases, were either the graph or the features do not contain any information
about the labels. In this case the only way to improve is by transferring label information from
one source to the other. To investigate this further, we test an MLP with JDR and compare the
results with only the MLP and the GNNs. Since JDR can transfer the information from the graph
to the features, an MLP should be able to perform similar to the GNNs. Therefore, we tune the
hyperparameters of JDR with the MLP downstream model on the synthetic cSBM datasets and the
real-world datasets from the main text.

The results on the cSBM data are shown in Figure 6. They show that combining an MLP with JDR
clearly outperforms GCN in the heterophilic regime and performs very similar to GPRGNN. If the
GNNs are also combined with JDR, they generally again provide superior performance compared
to MLP+JDR. In the weak graph regime they have a huge performance advantage of about 20%,
since JDR cannot improve the feature quality for the MLP in these cases. In the heterophilic regime,
MLP+JDR is still comparable to GCN+JDR, which is not the case for the homophilic regime. A
similar behavior (without JDR) has been observed in the literature before, e.g. by Ma et al. (2022)
and is related to the limited ability of GCN to deal with heterophilic graphs. GPRGNN, however,
does not show this limitation and provides superior performance across all datasets. Notably, all
these findings do directly translate to the real-world datasets. The results on the real-world data
can be found in Table 10 in the homophilic case and in Table 11 for the heterophilic case. For the
homophilic datasets, MLP+JDR shows clear performance increases but cannot beat any of the GNN
or GNN+JDR baselines. On the heterophilic graph, the MLP already outperforms GCN on three out
of five datasets and with JDR on all datasets. GCN+JDR regains superior performance on three of
the five datasets, but only GPRGNN+JDR outperforms the MLP+JDR on all datasets. Overall, this
supports the claim that a GNN like GPRGNN is the method of choice when both the graph and the
features contain valuable information.

24

Published as a conference paper at ICLR 2025

-1.0 -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75 1.0
40

50

60

70

80

90

100

Ac
cu

ra
cy

 in
 %

AMP-BP
GPRGNN
GCN
MLP+JDR
MLP

(a)

-1.0 -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75 1.0
40

50

60

70

80

90

100

Ac
cu

ra
cy

 in
 %

AMP-BP
GPRGNN+JDR
GCN+JDR
MLP+JDR
MLP

(b)

Figure 6: Comparison of MLP and the GNNs on the cSBM datasets in the sparse splitting. Compar-
isons of MLP and MLP+JDR with the GNNs (a) and GNN+JDR (b). The error bars indicate the 95%
confidence interval. The MLP outperforms the GNNs in the very weak graph regime. Combining
it with JDR clearly beats GCN (especially in the heterophilic regime) and performs very similar to
GPRGNN. If the GNNs are combined with JDR, they generally again provide superior performance
compared to MLP+JDR.

Table 10: Results of MLP and JDR on real-world homophilic dataset using the sparse splitting:
Mean accuracy (%) ± 95% confidence interval. Best average accuracy in bold.

Method Cora CiteSeer PubMed Computers Photo

MLP 50.79±0.73 50.29±0.48 79.73±0.13 73.17±0.31 80.88±0.33
MLP+JDR 62.66±0.61 61.55±0.32 80.86±0.12 80.65±0.24 88.34±0.45
GCN 77.26±0.35 67.16±0.37 84.22±0.09 84.42±0.31 91.33±0.29
GCN+JDR 79.96±0.26 69.35±0.28 84.79±0.08 85.66±0.36 92.52±0.23
GPRGNN 79.65±0.33 67.50±0.35 84.33±0.10 84.06±0.48 92.01±0.41
GPRGNN+JDR 80.77±0.29 69.17±0.30 85.05±0.08 84.77±0.35 92.68±0.25

Table 11: Results of MLP and JDR on real-world heterophilic dataset using the dense splitting:
Mean accuracy (%) ± 95% confidence interval. Best average accuracy in bold.

Method Chameleon Squirrel Actor Texas Cornell

MLP 49.07±0.57 28.19±0.40 38.54±0.30 91.16±0.79 88.19±0.74
MLP+JDR 70.48±0.46 59.18±0.31 39.50±0.26 91.16±0.77 88.47±0.77
GCN 67.65±0.42 57.94±0.31 34.00±0.31 75.62±1.12 64.68±1.25
GCN+JDR 69.76±0.50 61.76±0.39 40.47±0.31 85.12±0.74 84.51±1.06
GPRGNN 69.15±0.51 53.44±0.37 39.52±0.22 92.82±0.67 87.79±0.89
GPRGNN+JDR 71.00±0.50 60.62±0.38 41.89±0.24 93.85±0.54 89.45±0.84

25

Published as a conference paper at ICLR 2025

-1.0 -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75 1.0
40

50

60

70

80

90

100

Ac
cu

ra
cy

 in
 %

AMP-BP
GCN+JDR
GCN+DIGL
GCN
MLP

(a)

-1.0 -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75 1.0
40

50

60

70

80

90

100

Ac
cu

ra
cy

 in
 %

AMP-BP
GPRGNN+JDR
GPRGNN+DIGL
GPRGNN
MLP

(b)

Figure 7: Comparison of DIGL (Gasteiger et al., 2019) and JDR on the cSBM datasets in the sparse
splitting. Results for (a) GCN and (b) GPRGNN as downstream models. The error bars indicate the
95% confidence interval. As expected, DIGL is not really able to improve the performance of the
GNNs in the heterophilic regime. It achieves the greatest improvement in the weak-graph regime and
for strongly homophilic graphs, especially using GCN as downstream model. Another interesting
observation is that for GCN and ϕ < 0.25 the curve of MLP corresponds exactly to the one of
GCN+DIGL. The reason for this is that the hyperparameters found for DIGL ensure that the graph
is ignored (α = 1.0), which means that the GCN then collapses to a simple MLP. For the more
powerfull GPRGNN, on the other hand, DIGL is generally hardly able to improve performance,
while JDR clearly increases the performance across all ϕ.

A.5.4 COMBINING JDR AND DIGL

We compare our method to DIGL (Gasteiger et al., 2019) in the main text. We use the personalized
PageRank (PPR) diffusion kernel and the same top-64 values sparsening method as in JDR in all
experiments. Figure 7 shows the additional results for DIGL on the synthetic datasets from the
cSBM. Table 12 shows the results on the real-world homophilic datasets in the sparse splitting and
Table 13 on the heterophilic datasets in the dense splitting. Here, in addition to the individual results
for JDR and DIGL, the results for a combination of the two methods are also shown. For this
purpose, the graph was first denoised with JDR and then diffused with DIGL. To do this, we fixed
the hyperparameters of JDR and then tuned the parameter α of DIGL. We think this is interesting as
both methods enhance the graph in different ways and thus should be combinable. In principle, this
should also be possible for a combination of JDR with BORF or FoSR, but so far we have not been
able to get this to work.

Homophilic datasets. For the homophilic datasets, both DIGL and JDR can improve the results
when GCN is used as a downstream model. Still, DIGL is outperformed by JDR on four out the
five datasets. The two methods can be combined on three of the five data sets to achieve even
better results. This gives empirical support for the assumption that the two methods use a distinct
way of performing rewiring in this case and a combination therefore can further increase accuracy.
The picture is somewhat different for GPRGNN as a downstream model. The improvements for
DIGL are significantly smaller here, whereas JDR shows clear improvements across all datasets.
This suggests that a more powerful GNN architecture benefits less from DIGL, while JDR can
still improve it even further. A combination of the two methods does not lead to an increase in
performance here. Although the performance is still significantly better compared to no rewiring or
just DIGL, JDR alone usually performs better.

Heterophilic datasets. Since DIGL rewires the graph by adding edges between nodes with short
diffusion distance, it is expected to perform poorly on the heterophilic datasets. The results using
GCN show that this is only true for Chameleon and Squirrel, while for Actor, Texas and Cornell
there are still considerable improvements. For the datasets Texas and Cornell, DIGL even achieve
the best results. JDR, on the other hand, improves performance across datasets and GNNs. This is
also in line with the finding on the cSBM in Figure 7a. However, we can also see that DIGL can not
really improve performance of GPRGNN. JDR, on the other hand, can still achieve an improvement

26

Published as a conference paper at ICLR 2025

Table 12: Comparison of DIGL and JDR on real-world homophilic dataset using the sparse splitting:
Mean accuracy (%) ± 95% confidence interval. Best average accuracy in bold.

Method Cora CiteSeer PubMed Computers Photo

GCN 77.26±0.35 67.16±0.37 84.22±0.09 84.42±0.31 91.33±0.29
GCN+DIGL 79.27±0.26 68.03±0.33 84.60±0.09 86.00±0.24 92.00±0.23
GCN+JDR 79.96±0.26 69.35±0.28 84.79±0.08 85.66±0.36 92.52±0.23
GCN+JDR+DIGL 80.48±0.26 69.19±0.29 84.83±0.10 84.78±0.34 92.69±0.22

GPRGNN 79.65±0.33 67.50±0.35 84.33±0.10 84.06±0.48 92.01±0.41
GPRGNN+DIGL 79.77±0.30 67.50±0.35 84.72±0.10 86.25±0.28 92.31±0.25
GPRGNN+JDR 80.77±0.29 69.17±0.30 85.05±0.08 84.77±0.35 92.68±0.25
GPRGNN+JDR+DIGL 80.55±0.27 69.47±0.27 84.87±0.10 85.98±0.21 92.67±0.27

-1.0 -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Al

ig
nm

en
t L

(A
,X

)

JDR
DIGL
None

Figure 8: Alignment of the leading eigenspaces according to (3) for graphs from the cSBM with
different ϕ. We compare JDR to DIGL and no rewiring.

across all datasets. A combination of DIGL and JDR is generally not particularly useful in this
scenario, likely because DIGL has difficulties on the heterophilic datasets anyway.

Table 13: Comparison of DIGL and JDR on real-world heterophilic dataset using the dense splitting:
Mean accuracy (%) ± 95% confidence interval. Best average accuracy in bold.

Method Chameleon Squirrel Actor Texas Cornell

GCN 67.65±0.42 57.94±0.31 34.00±0.31 75.62±1.12 64.68±1.25
GCN+DIGL 58.04±0.48 39.64±0.34 39.57±0.29 91.05±0.73 88.49±0.74
GCN+JDR 69.76±0.50 61.76±0.39 40.47±0.31 85.12±0.74 84.51±1.06
GCN+JDR+DIGL 66.06±0.43 36.62±0.29 40.30±0.27 88.90±0.73 88.06±0.77

GPRGNN 69.15±0.51 53.44±0.37 39.52±0.22 92.82±0.67 87.79±0.89
GPRGNN+DIGL 66.57±0.46 42.98±0.37 39.61±0.21 91.11±0.72 88.06±0.81
GPRGNN+JDR 71.00±0.50 60.62±0.38 41.89±0.24 93.85±0.54 89.45±0.84
GPRGNN+JDR+DIGL 70.07±0.44 59.37±0.35 41.57±0.20 91.52±0.70 87.77±1.81

A.5.5 ALIGNMENT

Here, we give a more detailed view on how much JDR actually increases alignment on cSBM and
real-world datasets compared to the baseline methods. For cSBM, we can see in Figure 8 that
DIGL only increases alignment in the homophilic regime. In the heterophilic regime it clearly
decreases alignment. We expect this because it promotes connections among nodes at short diffusion
distance. Also the random teleport probability found on these datasets is 1.0, which results in a
random uniformly connected graph. Similar to the results on the real-world datasets Cornell and
Texas from the main text, we can see this in the classification performance in Figure 7. In the
heterophilic regime, the performance of DIGL matches exactly the MLP, while in the homophilic
regime, we can see some performance increases. With GPRGNN, DIGL is not really able to improve
performance at all (except for ϕ = 0). In Figure 9, we can see that JDR increases alignment across all
settings and more strongly than the baseline methods on the real-world graphs (except for Citeseer).

27

Published as a conference paper at ICLR 2025

Cora Citeseer PubMed Computers Photo0.0

0.2

0.4

0.6

0.8

1.0

Al
ig

nm
en

t L
(A

,X
)

None
FoSR
BORF
DIGL
JDR

(a) Homophilic Datasets

Chameleon Squirrel Actor Texas Cornell0.0

0.2

0.4

0.6

0.8

1.0

Al
ig

nm
en

t L
(A

,X
)

None
FoSR
BORF
DIGL
JDR

(b) Heterophilic Datasets

Figure 9: Alignment of the leading eigenspaces of graphs from homophilic (a) and heterophilic (b)
real-world datasets. We compare the original graph (None) to the output of DIGL, BORF and JDR
with the hyperparameters found on GCN. JDR increases the alignment in all settings and achieves
the maximum alignment among rewiring algorithms in all settings except on the Citeseer dataset.

DIGL also increases alignment on many homophilic graphs and on heteophilic Texas. We would like
to note that when only rewiring a graph, increasing the alignment might not always be the best thing
to do: If the graph is very good, it would be the features that should be made more aligned to the
graph. But only JDR is able to do this, as it also denoises the features as well. It is also interesting
that DIGL decreases the alignment for Cora and PubMed, but still achieves a good performance.
This indicates that DIGL in this case improves the graph in a different way than JDR. So here, it
should be possible to combine both methods to achieve even better performance. And indeed, A.5.4
shows that this is exactly the case for Cora, PubMed and Photo on GCN. FoSR and BORF do not
visibly change the alignment, since their modifications to the graph are usually too small.

A.5.6 SPECTRAL CLUSTERING

In addition to the GNNs as a downstream algorithm, we also experimente with spectral clustering
(SC). Spectral clustering either works with an existing graph, or a k-nearest neighbor graph is cre-
ated from given (high-dimensional) node features. Then the k largest eigenvectors of the graph are
calculated (the first one is usually omitted as it is a constant vector) and their entries are then used
as coordinates for a k-means clustering of the nodes into k classes. We show that JDR using the
hyperparameters found with GCN as a downstream model, improves the performance of a spectral
clustering algorithm acting directly on A or X . This indicates a close connection between GCNs
and spectral clustering such that a good denoised graph for GCN is also a good graph for spectral
clustering. Intuitively, since spectral clustering is related to the graph cut, this means that in this
case the classes are connected with fewer edges, making them easier to cluster based on the cut.

Table 14: Results on real homophilic datasets using spectral clustering: Mean accuracy (%) and
best result in bold. Here, all methods use the hyperparameters found using GCN as downstream
algorithm.

Method Cora CiteSeer Pubmed Computers Photo

SC(A) 33.83 24.16 58.94 37.35 30.58
SC(A)+DIGL 29.54 22.18 59.65 61.55 25.41
SC(A)+FoSR 33.83 24.61 58.72 36.97 30.54
SC(A)+BORF 35.01 25.22 58.90 37.35 33.37
SC(A)+JDR 67.76 63.36 72.90 62.29 65.67

SC(X) 29.76 45.57 60.45 28.53 48.46
SC(X)+JDR 34.68 45.90 60.47 28.55 48.58

28

Published as a conference paper at ICLR 2025

-1.0 -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75 1.0
40

50

60

70

80

90

100

Ac
cu

ra
cy

 in
 %

AMP-BP
SC(A)+JDR
SC(A)

(a)

-1.0 -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75 1.0
40

50

60

70

80

90

100

Ac
cu

ra
cy

 in
 %

AMP-BP
SC(X)+JDR
SC(X)

(b)

Figure 10: Separate results for using spectral clustering on a rewriting only A (a) and denoising only
X (b) compared to full JDR . Note that for ϕ ∈ {0.5, 0.625, 0.875} we had to use additional graphs
generated using cSBM with an average node degree of d = 10 for spectral clustering of A to work
in general and for ϕ = 0.875 also for JDR. The reason for this is that the graph is very sparse so it is
not necessarily connected such that there is no guarantee that spectral clustering works. However a
larger node degree does not improve the performance of spectral clustering in general, while it may
for GNNs.

Table 15: Results on real heterophilic datasets using spectral clustering: Mean accuracy (%) and
best result in bold. Here, all methods use the hyperparameters found using GCN as downstream
algorithm.

Chameleon Squirrel Actor Texas Cornell

SC(A) 31.71 22.40 25.92 48.09 39.89
SC(A)+DIGL 32.06 22.69 25.91 43.72 40.44
SC(A)+FoSR 31.44 24.46 25.93 55.19 38.80
SC(A)+BORF 31.97 OOM 25.97 56.83 43.17
SC(A)+JDR 31.36 22.15 28.63 52.46 44.26

SC(X) 23.54 20.17 31.01 49.18 45.36
SC(X)+JDR 24.59 21.03 23.99 55.74 49.73

cSBM. Figure 10 displays the results of spectral clustering with and w/o JDR. Figure 10a indicates
the expected behavior that spectral clustering using A performs particularly poorly in the weak graph
regime, since in this case there is hardly any information about the labels in A. By using JDR, this
limitation is completely removed and the performance is close to AMP-BP across all ϕ. The rewired
graph now contains more information about the labels, which was previously only available in X .
For spectral clustering of X in Figure 10b, the relation is exactly the other way around. In the strong
heterophilic or homophilic regime the performance is poor since most information is contained in
the graph structure. Using JDR this limitation is removed and the performance becomes closer to
AMP-BP across all ϕ. Although a slight denoising of X by A would be possible for ϕ = ±0.375,
there is no performance advantage here and these settings now show the weakest performance across
all ϕ.

Real-world Datasets. For the real world datasets, we compare the spectral clustering of A using
the different rewiring methods DIGL, FoSR , BORF and JDR. For the spectral clustering of X
we can only evaluate JDR. Again we use the hyperparameters found using GCN as downstream
model. The results in Table 14 on homophilic datasets show a significant benefit of using JDR
across all datasets. FoSR, BORF and DIGL are also able to improve the performance in some
settings but not very consistently. There are also performance improvements across all datasets for
the spectral clustering of X with JDR, but these are significantly smaller. This indicates that the
rewiring of the graph has a significantly greater influence on performance here than the denoising of
the features. It also gives an indication of how JDR works on real-world data: It increases “spectral

29

Published as a conference paper at ICLR 2025

-1.0 -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75 1.0
40

50

60

70

80

90

100

Ac
cu

ra
cy

 in
 %

AMP-BP
GCN+JDR
GCN+JDR(A)
GCN+JDR(X)
GCN

(a)

-1.0 -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75 1.0
40

50

60

70

80

90

100

Ac
cu

ra
cy

 in
 %

AMP-BP
GPRGNN+JDR
GPRGNN+JDR(A)
GPRGNN+JDR(X)
GPRGNN

(b)

Figure 11: Separate results for rewiring only A and denoising only X compared to full JDR. Results
for (a) GCN and (b) GPRGNN. The error bars indicate the 95% confidence interval.

-1.0 -0.75 -0.5 -0.25 0.0 0.25 0.5 0.75 1.0
0.0

0.1

0.2

0.3

0.4

0.5

E
SN

R

JDR
DIGL
None

Figure 12: ESNR for graphs from the cSBM with different ϕ. We compare JDR to DIGL and no
rewiring.

clusterability” of the graph. Table 15 shows the results for the heterophlic datasets. The results
here are much more inconsistent. It is striking that DIGL improves Chameleon and Squirrel, while
it has actually worsened performance for GCN. BORF can improve the performance on Texas and
Cornell by a large margin, although DIGL and JDR perform better with the GCN. FoSR improves
the performance of Squirrel. For the results of JDR, it is worth looking at them together with the
spectral clustering of X . On Chameleon and Squirrel the performance decreases for A but clearly
increases for X . On Texas and Cornell it is improved in all cases, but on A not as strongly as for
BORF. On Actor, the performance for X has dropped, while JDR is also the only method that really
improves the result for A. To summarize, the improvements for JDR can be assigned to one of the
two sources of information, either A or X , for each dataset.

A.5.7 EVALUATING GRAPH DENOISING VIA ESNR

As described in the main text, the Graph Propensity Score (GPS) algorithm (Dong and Kluger,
2023), together with the edge signal-to-noise ratio (ESNR) metric introduced in the same paper, are
related to our work. Similar to the GPS algorithm, which uses the ESNR to denoise the graph, JDR
denoises the graph but also the features. These two strategies are different, but they are both based
on the cSBM. The main drawback of GPS is that it does not consider the possibility to also denoise
the features using the graph and it is further limited to low-SNR graphs and to GCN as downstream
model. We are interested in the the ESNR metric as it quantifies the noise in the graph.

In Figure 12, Table 16 and Table 17 we compare the achieved ESNR values of JDR with the baselines
and the original graphs. The results for cSBM in Figure 12 show that JDR is able to denoise the
graph in all cases and DIGL in the strongly homophilic regime. However, comparing the ESNR
curve to the actual GCN performance in Figure 7, there is no clear connection apart from the general
trend. This was claimed to be more visible in the paper by Dong and Kluger (2023), especially for
cSBM on which it is based on. The results on homophilic real-world datasets in Table 16 follow

30

Published as a conference paper at ICLR 2025

Table 16: ESNR results of the original and rewired homophilic real-world graphs using JDR and the
baseline rewiring methods. Largest value in bold.

Method Cora CiteSeer PubMed Computers Photo

None 0.2964 0.1976 0.2701 0.6502 0.7145
DIGL 0.6888 0.5989 0.5490 0.7368 0.7407
FoSR 0.2965 0.1988 0.2700 0.6500 0.7145
BORF 0.2958 0.1948 0.2700 0.6502 0.7144
JDR 0.6160 0.5754 0.5291 0.7069 0.7155

Table 17: ESNR results of the original and rewired heterophilic real-world graphs using JDR and
the baseline rewiring methods. Largest value in bold.

Method Chameleon Squirrel Actor Texas Cornell

None 0.5199 0.4680 0.0546 0.0585 0.0388
DIGL 0.5082 0.3884 0.0244 0.1442 0.1195
FoSR 0.5199 0.4679 0.0546 0.0620 0.0389
BORF 0.5199 - 0.0545 0.0593 0.0423
JDR 0.4473 0.2156 0.1703 0.2729 0.2828

this trend. Indeed both JDR and DIGL are able to decrease the noise in the graph, but DIGL does
so best on all five datasets, while the GCN results show a benefit of JDR over DIGL on four out
of five datasets (see Table 2). For the heterophilic real-world datasets the results are even more
inconsistent. JDR is able to decrease the graph noise on three datasets, but two of them not being
the ones where GCN performs best (see Table 3). Also on Chameleon on Squirrel, no method is
able to improve the ESNR. We suspect that this behavior occurs due to the role of features which
is not captured by the ESNR. Checking the results in the paper by Dong and Kluger (2023), there
are cases where the ESNR is not sensitive, e.g. on the Chameleon dataset, which suggests that in
such cases, denoising the features is more beneficial than focusing only on the graph structure. In
fact, this is in line with our findings in the ablations in Figure 13 and Figure 14, where the denoising
of the features improves more than the denoising of the graph on the Chameleon dataset. Overall,
the ESNR is generally able to quantify the denoising of the graphs in most cases, but a more direct
connection to GCN performance requires further research.

Finally, there are significant differences between the GPS approach by Dong and Kluger (2023)
and our work, most importantly in that we consider both graph and feature information. Moreover,
JDR improves performance of GNNs on real-world graph datasets where GPS does not provide any
improvements (homophilic datasets). Ablations on these datasets (again Figure 13 and Figure 14)
indicate that JDR still achieves the most improvement by denoising the graph rather than the features
in a way that does not seem to be captured by the ESNR. We think that this is because ESNR does
not consider the SNR of the features. In the experiments of Dong and Kluger (2023) with edge
dropout on real-world data, the performance barely decreases for datasets like PubMed. The reason
for this is that the features already contain a lot of information and making the graph noisier via
edge dropout does not spoil this. This is also related to the discussion of GNN vs. MLP (see A.5.3),
where an MLP on PubMed already performs reasonably well (see e.g. Table 10.

A.6 ABLATIONS

We perform several ablations of our method to investigate what happens in different scenarios and
what effects changes in parameters have. First, we present our ablations of the JDR method. We
show separate results for denoising only the graph JDR(A) or the features JDR(X) using the GNNs
on the cSBM and real-world data. Also, we show several ablations of the hyperparameters of JDR.
We therefore use a dataset created from cSBM, the homophilic dataset Cora and the heterophilic
dataset Chameleon. Ablations on the real-world datasets are performed for all hyperparameters of
JDR and show its robustness to change in these parameters.

31

Published as a conference paper at ICLR 2025

70

75

80

85

90

Ac
cu

ar
ac

y
in

 %

Cora

60

62

64

66

68

70
Citeseer

80

82

84

86

88

90
PubMed

80

82

84

86

88

90
Computers

90

92

94

96

98

100
Photo

None
JDR(X)
JDR(A)
JDR

60

65

70

75

80

Ac
cu

ar
ac

y
in

 %

Chameleon

50

55

60

65

70
Squirrel

30

35

40

45

50
Film

70

75

80

85

90
Texas

60

70

80

90
Cornell

Figure 13: Average accuracy of GCN on all real-world datasets tested for denoising only the features
JDR(X), rewiring only the graph JDR(A) and joint denoising and rewiring JDR.

70

75

80

85

90

Ac
cu

ar
ac

y
in

 %

Cora

60

62

64

66

68

70
Citeseer

80

82

84

86

88

90
PubMed

80

82

84

86

88

90
Computers

90

92

94

96

98

100
Photo

None
JDR(X)
JDR(A)
JDR

60

65

70

75

80

Ac
cu

ar
ac

y
in

 %

Chameleon

50

55

60

65

70
Squirrel

30

35

40

45

50
Film

90

92

94

96

98

100
Texas

80

85

90

95

100
Cornell

Figure 14: Average accuracy of GPRGNN on all real-world datasets tested for denoising only the
features JDR(X), rewiring only the graph JDR(A) and joint denoising and rewiring JDR. It can be
observed that for most datasets, the major improvement is achieved by JDR(A). Only for Squir-
rel and Chameleon it is JDR(X). In most cases using JDR on both X and A achieves the best
performance.

JDR. The main motivation for these ablations is to show how much impact the denoising of A
and X respectively have on the results for a dataset and how big the additional benefit is to do this
jointly. Therefore we look at the results if we denoise only the graph JDR(A) or the features JDR(X).
Doing this for the cSBM in Figure 11, we can observe the expected behavior, which is particularly
pronounced for GCN in Figure 11a. In the weak graph regime, the performance increase results
purely from denoising A, so JDR(A) achieves the same performance as JDR. The same holds for
JDR(X) in the strong homophilic regime and for ϕ = −1.0. In the remaining intermediate regimes,
we can often observe a performance benefit of both JDR(A) and JDR(X), which becomes much
stronger when we combine both. This benefit of combining both is particularly pronounced for ϕ =
−0.375, where JDR(X) alone even reduces performance, while JDR clearly improves performance.
In Figure 11b, we can basically observe the same behavior, but less strongly pronounced. Moreover,
it happens in several cases here, again especially in the intermediate regime, that the performance is
reduced by JDR(X), but improved for the joint denoising.

Figure 13 and Figure 14 show the same investigation for the real-world datasets using GCN and
GPRGNN, respectively. In most cases, the greater performance gain results from JDR(A) and the
joint denoising performs best. Only for the datasets Chameleon for both GNNs and Squirrel for
GPRGNN, the denoising of X has the greater influence. Also the case where the denoising of
X reduces the performance, but a joint denoising performs best, occurs here, e.g. for Citeseer or

32

Published as a conference paper at ICLR 2025

Table 18: Comparison for JDR using hyperparameters tuned on different downstream models. The
"*" indicates that the hyperparameters of JDR where tuned using the same GNN as downstream
model, no symbol mean that the respective other GNN model was used. Results on real-world
homophilic datasets using sparse splitting (2.5%/2.5%/95%): Mean accuracy (%)± 95% confidence
interval. Best average accuracy in bold.

Method Cora CiteSeer PubMed Computers Photo ↑Gain

GCN 77.26±0.35 67.16±0.37 84.22±0.09 84.42±0.31 91.33±0.29 -
GCN+JDR* 79.96±0.26 69.35±0.28 84.79±0.08 85.66±0.36 92.52±0.23 1.59
GCN+JDR 78.85±0.29 69.11±0.28 84.20±0.09 85.61±0.21 92.25±0.25 1.13

GPRGNN 79.65±0.33 67.50±0.35 84.33±0.10 84.06±0.48 92.01±0.41 -
GPRGNN+JDR 80.47±0.33 68.94±0.29 85.17±0.09 84.64±0.25 92.64±0.21 0.86
GPRGNN+JDR* 80.77 ±0.29 69.17±0.30 85.05±0.08 84.77±0.35 92.68±0.25 0.98

Cornell. Overall, this confirms that our method indeed performs joint denoising, especially when
both graph and node contain relevant information both benefit from denoising.

Hyperparameters. In Table 18 we show how the downstream GNN performs if JDR was tuned
on a different downstream GNN. We use GCN and GPRGNN for this. The results show that the
hyperparameters of JDR are quite robust to different GNN downstream models as it achieves similar
gains using the respective other hyperparameters. Another way to show the robustness of JDR is
to perform ablations of the actual hyperparameters. To do this, we first look at a data set generated
from the cSBM and examine the influence of the number of denoising iterations K and the number
of entries of the adjacency matrix to be retained Ak. Figure 15 show the results of this study.
As expected increase both results in better performance but will also increase the computational
complexity. Based on this, we choose Ak = 64 for all experiments as a good trade-off between
computational and memory cost and accuracy over different numbers of denoising iterations. We
also investigate this effect together with the rest of the hyperparameters for the real-world datasets
Cora in Figure 16 and Chameleon in Figure 17. We again examine the number of denoising iterations
K and the number of entries of the adjacency matrix to be retained Ak. Additionally, we study the
interpolation ratios ηX and ηA and the number of eigenvectors for the denoising LX and LA. Both
are analyzed relative to the value found by random search and for both A and X at the same time.
For the interpolation ratios ηX and ηA, we show the influence of using only a reduced number of
digits of the best found value (0 corresponds to no denoising) and for the number of eigenvectors
LX and LA we test different offsets (0 corresponding to the best value found using random search).
Overall, we con observe a strong robustness to changes in the hyperparameters. Only the number of
denoising iterations K should not be too high for the heterophilic data set Chameleon.

A.7 HYPERPARAMETERS

In this section we list all the hyperparameters used for the experiments to ensure the reproducibility
of the results. They are also included in the code. In all experiments we use the Adam optimizer and
the standard early stopping after 200 epochs from (Chien et al., 2021). Whenever we use a GCN, it
uses two layers, a hidden dimension of 64 and dropout with 0.5. Whenever we use GPRGNN, we
use a polynomial filter of order 10 (corresponding to 10 hops) and a hidden dimension of 64. For
JDR, we always keep the 64 largest entries of the rewired adjacency matrix Ã per node. We justify
this choice by the ablation in Figure 15.

cSBM. For synthetic data from the cSBM, we generally follow the hyperparameters from (Chien
et al., 2021). GCN uses a learning rate of 0.01 and weight decay with λ = 0.0005. GPRGNN also
uses a λ = 0.0005 and both use ReLU non-linearity. On homophilic graphs (ϕ ≥ 0), GPRGNN
uses a learning rate of 0.01, a weight initialization α = 0.1 and dropout with 0.5. For heterophilic
graphs, it uses a learning rate of 0.05, α = 1.0 and dropout 0.7. The hyperparameters for JDR on
the cSBM are shown in Table 22. We only tuned them using GCN as a downstream model, so for
GPRGNN+JDR we use the same ones.

Real-world Datasets. For the real-world datasets, the remaining hyperparameters for GCN are
displayed in Table 19 and for GPRGNN in Table 21. The hyperparameters for JDR can be found

33

Published as a conference paper at ICLR 2025

0 20 40 60 80 100
Denoise iterations

50

55

60

65

70

75

80

85

Ac
cu

ra
cy

 in
 %

Ak=2
Ak=4
Ak=8
Ak=16
Ak=32
Ak=64
Ak=128
Ak=256
Ak=512

Figure 15: Average accuracy of GCN on cSBM with ϕ = 0.0 for different numbers of denoise
iterations and different numbers of entries Ak to keep for each node in the rewired adjacency matrix.
Error bars indicating the 95% confidence interval over 100 runs.

0 25 50 75 100
Ak

74

76

78

80

82

Ac
cu

ra
cy

 in
 %

GCN+JDR
GCN

(a)

0 10 20 30
Denoise Iterations K

74

76

78

80

82

(b)

0 2 4 6 8 10 12 14 16
Digits in X and A

74

76

78

80

82

(c)

30 20 10 0 10 20 30
Change in LX and LA

74

76

78

80

82

(d)

Figure 16: Ablations of GCN+JDR on the homophilic dataset Cora compared to the result for GCN.
The light shaded ares indicate the 95% confidence interval. Ablations on the number number of
entries chosen per node for the adjacency Ak, the number of denoise iterations K, the number of
interpolations digits for the η values and the number of eigenvectors L□ used. All other parameters
are kept constant. In all cases we can see that JDR is quite robust to changes in all of its hyperpa-
rameters.

0 25 50 75 100
Ak

64

66

68

70

72

Ac
cu

ra
cy

 in
 %

GCN+JDR
GCN

(a)

0 10 20 30
Denoise Iterations K

64

66

68

70

72

(b)

0 2 4 6 8 10 12 14 16
Digits in X and A

64

66

68

70

72

(c)

30 20 10 0 10 20 30
Change in Lx and LA

64

66

68

70

72

(d)

Figure 17: Ablations of GCN+JDR on the heterophilic dataset Chameleon compared to the result for
GCN. The light shaded ares indicate the 95% confidence interval. We perfrom the same ablations as
for Cora. In all cases except the number of denoising iterations, we can see that JDR is quite robust
to changes in all of its hyperparameters.

34

Published as a conference paper at ICLR 2025

in Table 23 and Table 24. For the rewiring method BORF, we list its hyperparameters in Table 25
and Table 26. For DIGL, we always use the PPR kernel and sparsify the result by keeping the top-
64 values for a weighted adjacency matrix. The values for the random-teleport probabililty α and
number of iterations for FoSR are listed in Table 27 and Table 28.

Table 19: Hyperparameters of GCN. All models use 2 layers, a hidden dimension of 64 and dropout
with 0.5. Different type of weight decay and early stopping from (Gasteiger et al., 2019) was used, if
these provided a better performance then using the standard setting in Chien et al. (2021). The same
holds for feature normalization, which was used by default in Chien et al. (2021) for GPRGNN.

Dataset Lr Normalize X λ1 λ1 layer Early stopping

Cora 0.01 False 0.05 First GPRGNN
Citeseer 0.01 True 0.0005 All GPRGNN
PubMed 0.01 True 0.0005 All GPRGNN
Computers 0.01 False 0.0005 All GPRGNN
Photo 0.01 False 0.0005 All GPRGNN

Chameleon 0.05 True 0.0 All DIGL
Squirrel 0.05 True 0.0 All DIGL
Actor 0.01 False 0.0005 All DIGL
Texas 0.05 True 0.0005 All GPRGNN
Cornell 0.05 True 0.0005 All GPRGNN

Table 20: Hyperparameters of GCN for the larger heterophilic datasets. All models use a hidden
dimension of 64, batch norm, no weight decay and the early stopping from Chien et al. (2021).

Dataset Lr # layers Dropout Residuals

Questions 0.005 5 0.2 True
Penn94 0.001 2 0.5 False
Twitch-gamers 0.01 4 0.5 False

Table 21: Hyperparameters of GPRGNN. All models use 10 hops and a hidden dimension of 64.

Dataset Lr Normalize X α λ1 Dropout Early stopping

Cora 0.01 True 0.1 0.0005 0.5 GPRGNN
Citeseer 0.01 True 0.1 0.0005 0.5 GPRGNN
PubMed 0.05 True 0.2 0.0005 0.5 GPRGNN
Computers 0.01 False 0.1 0.0005 0.5 GPRGNN
Photo 0.01 False 0.5 0.0 0.5 GPRGNN

Chameleon 0.05 False 1.0 0.0 0.7 DIGL
Squirrel 0.05 True 0.0 0.0 0.7 GPRGNN
Actor 0.01 True 0.9 0.0 0.5 GPRGNN
Texas 0.05 True 1.0 0.0005 0.5 GPRGNN
Cornell 0.05 True 0.9 0.0005 0.5 GPRGNN

Questions 0.005 False 1.0 0.0 0.2 GPRGNN
Penn94 0.01 False 0.1 0.0001 0.2 GPRGNN
Twitch-gamers 0.001 False 0.5 0.0001 0.2 GPRGNN

35

Published as a conference paper at ICLR 2025

Table 22: Hyperparameters for GCN on the cSBM in the sparse splitting. For all homophilic datasets
the eigenvalues are ordered by value and for all heterophilic datasets they are ordered by absolute
value. In all setting we keep the 64 largest entries of the rewired adjacency matrix Ã per node.
Interpolation ratios η are rounded to three digits from the best values found by the random search.

ϕ
JDR DIGL

K LA LX ηA ηX1 ηX2 α

−1.0 28 − 10 − 0.482 0.916 1.0
−0.875 41 5 8 0.101 0.479 0.858 1.0
−0.75 40 6 9 0.042 0.498 0.846 1.0
−0.625 48 6 8 0.036 0.453 0.862 1.0
−0.5 50 9 10 0.189 0.412 0.991 1.0
−0.375 48 8 10 0.879 0.973 0.773 1.0
−0.25 80 1 1 1.000 − − 1.0
−0.125 80 1 1 1.000 − − 1.0
0.0 80 1 1 1.000 − − 0.95
0.125 76 1 − 0.650 − − 1.0
0.25 33 1 − 0.951 − − 0.5
0.375 18 10 10 0.856 0.023 0.228 0.05
0.5 18 10 9 0.415 0.263 0.880 0.05
0.625 22 8 7 0.264 0.340 0.807 0.05
0.75 15 7 9 0.056 0.474 0.778 0.05
0.875 16 10 8 0.035 0.228 0.981 0.05
1.0 80 − 1 − 1.000 1.000 0.05

Table 23: Hyperparameters of JDR for all real-world datasets in the dense splitting. Following the
findings from cSBM for all homophilic datasets the eigenvalues are ordered by value and for all
heterophilic datasets they are ordered by absolute value. In all setting we keep the 64 largest entries
of the rewired adjacency matrix Ã per node. Interpolation ratios η are rounded to three digits from
the best values found by the random search.

Dataset GNN GPRGNN

K LA LX ηA ηX1 ηX2 K LA LX ηA ηX1 ηX2

Cora 10 1853 38 0.066 0.173 0.071 10 772 76 0.027 0.434 0.005
Citeseer 15 578 1330 0.460 0.173 0.049 4 1390 1169 0.345 0.099 0.585
PubMed 12 8 53 0.316 0.004 0.187 1 1772 919 0.197 0.893 0.034
Computers 3 718 975 0.398 0.021 0.068 7 583 1533 0.468 0.062 0.127
Photo 6 467 1867 0.479 0.071 0.344 4 433 1719 0.413 0.115 0.231

Chameleon 7 41 1099 0.066 0.375 0.975 3 31 1331 0.063 0.486 0.755
Squirrel 2 4 1941 0.404 0.011 0.022 2 53 1210 0.234 0.495 0.964
Actor 29 896 14 0.298 0.235 0.219 11 1171 791 0.476 0.028 0.251
Texas 20 21 183 0.514 0.028 0.836 1 109 36 0.182 0.004 0.214
Cornell 17 10 125 0.794 0.298 0.113 1 39 67 0.482 0.424 0.068

Questions 8 248 284 0.218 0.199 0.841 2 89 2 0.974 0.106 0.311
Penn94 20 60 71 0.445 0.005 0.902 5 172 1851 0.422 0.094 0.138
Twitch-gamers 5 7 5 0.235 0.286 0.806 5 2 2 0.165 0.329 0.003

36

Published as a conference paper at ICLR 2025

Table 24: Hyperparameters of JDR for all the homophilic datasets in the sparse splitting. Following
the findings from cSBM for all homophilic datasets the eigenvalues are ordered by value and for all
heterophilic datasets they are ordered by absolute value. In all setting we keep the 64 largest entries
of the rewired adjacency matrix Ã per node. Interpolation ratios η are rounded to three digits from
the best values found by the random search.

Dataset GNN GPRGNN

K LA LX ηA ηX1 ηX2 K LA LX ηA ηX1 ηX2

Cora 10 1853 38 0.066 0.173 0.071 10 772 76 0.027 0.434 0.005
Citeseer 15 578 1330 0.460 0.173 0.049 4 1390 1169 0.345 0.099 0.585
PubMed 12 8 53 0.316 0.004 0.187 1 1772 919 0.197 0.893 0.034
Computers 3 718 975 0.398 0.021 0.068 7 583 1533 0.468 0.062 0.127
Photo 6 467 1867 0.479 0.071 0.344 4 433 1719 0.413 0.115 0.231

Table 25: Hyperparameters for BORF for all real-world datasets in the dense splitting. OOM indi-
cates an out-of-memory error.

Dataset GNN GPRGNN
iterations # added # removed # iterations # added # removed

Cora 2 30 10 1 10 40
Citeseer 3 30 40 3 10 50
PubMed 2 0 30 3 20 40
Computers 1 20 40 3 20 30
Photo 2 40 20 3 50 50

Chameleon 2 50 30 1 10 30
Squirrel OOM OOM
Actor 2 40 50 2 10 50
Texas 1 40 10 2 40 50
Cornell 1 20 50 1 20 50

Table 26: Hyperparameters for BORF for the homophilic real-world datasets in the sparse splitting.

Dataset GNN GPRGNN
iterations # added # removed # iterations # added # removed

Cora 2 10 40 2 30 50
Citeseer 3 50 40 1 20 50
PubMed 2 0 30 3 20 40
Computers 1 20 40 3 20 30
Photo 3 0 50 3 10 20

37

Published as a conference paper at ICLR 2025

Table 28: Values of the hyperparameter α of DIGL and the number of iterations (# iter) of FoSR for
the homophilic real-world datasets in the sparse splitting.

Dataset α DIGL α DIGL+JDR #iter FoSR

GCN GPRGNN GCN GPRGNN GCN GPRGNN

Cora 0.10 0.30 0.10 0.30 5 75
Citeseer 0.30 0.45 0.20 0.45 500 600
PubMed 0.35 0.60 0.40 0.60 50 75
Computers 0.05 0.65 0.15 0.30 250 800
Photo 0.20 0.50 0.10 0.50 5 500

Table 27: Values of the hyperparameter α of DIGL and the number of iterations (# iter) of FoSR for
the real-world datasets in the dense splitting.

Dataset α DIGL α DIGL+JDR #iter FoSR

GCN GPRGNN GCN GPRGNN GCN GPRGNN

Cora 0.25 0.60 0.20 0.60 150 5
Citeseer 0.60 0.50 0.25 0.25 1000 1000
PubMed 0.60 0.50 0.60 0.65 10 5
Computers 0.05 0.60 0.10 0.65 500 600
Photo 0.30 0.70 0.20 0.75 25 250

Chameleon 0.15 0.50 0.55 0.40 10 5
Squirrel 0.05 0.15 0.10 0.20 5 10
Actor 1.00 0.60 0.20 0.05 10 150
Texas 1.00 0.00 0.20 0.20 50 75
Cornell 1.00 1.00 0.95 0.00 25 5

Questions 0.05 1.0 − − 700 700
Penn94 0.2 0.1 − − 200 150
Twitch-gamers 0.15 0.25 − − 5 100

A.8 HARDWARE SPECIFICATIONS

Experiments on cSBM, Cora, Citeseer and Photo were conducted on an internal cluster with Nvidia
Tesla V100 GPUs with 32GB of VRAM. The experiments on the remaining datasets (PubMed,
Computers, Chameleon, Squirrel, Actor, Cornell and Texas) were performed using Nvidia A100
GPUs with 40GB or 80GB of VRAM. The larger VRAM is only necessary for GNN+JDR on
PubMed and the larger heterophilic datasets from Lim et al. (2021); Platonov et al. (2023), be-
cause they have larger numbers of nodes in the graph (and we choose the top-64 edges per node
after rewiring). Note that this could be reduced by sacrificing only a little bit of performance as
shown in A.6. One experiment of training and testing on 100 random splits typically takes about
5min. For the standard benchmark graphs, the longest experiments with GPRGNN+JDR and a
different early stopping condition take about 40min. The experiments on the large Twitch-gamers
dataset take around 60min (for 10 splits), but similar to DIGL they require a lot of standard memory
(around 500GB) while performing the decompositions.

A.9 INSIGHTS FROM RANDOM MATRIX THEORY FOR ONE-LAYER GCNS

Following the derivation from Shi et al. (2024), we show empirically how denoising can reduce
the empirical risk for a one-layer GCN without non-linearity. When the number of nodes N goes
to infinity and the average node degree satisfies some assumptions, we can apply the Gaussian
adjacency equivalence conjecture. This allows us to replace the binary adjacency in the cSBM with
a spiked non-symmetric Gaussian random matrix without changing the training and test loss in the

38

Published as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
A

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
SE

2 = 0.0
2 = 1.0
2 = 2.0
2 = 3.0

(a) λ = 0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
A

0.15

0.20

0.25

0.30

0.35

0.40

M
SE

2 = 0.0
2 = 1.0
2 = 2.0
2 = 3.0

(b) λ = 1.0

Figure 18: Experimental results on a non-symmetric gaussian cSBM with N = 1000 and γ = 2
with denoising of A. We plot the MSE for different µ2 and λ = 0.0 in 18a and λ = 1.0 in 18b.
Each data point is averaged over 10 independent trials and the standard deviation is indicated by the
light shaded area.

limit. The equivalent adjacency reads

A =
λ

N
yyT +Ξgn (7)

where with Ξgn has i.i.d. centered normal entries with variance 1/N . Similarly, we build the
features matrix as

X =
µ

N
yuT +Ξx. (8)

Compared to the standard cSBM formulation we rescale the variables
√
µγ → µ and

√
Fu → u.

Additionally, we define α = 1/γ = F/N and for simplicity, we consider the case Itrain = I . The
mean squared error (MSE) loss reads

L(ω) =
1

N
∥AXω − y∥2F +

r

N
∥ω∥2, (9)

where r is the parameter for the ridge part, ω are the weights of the GCN and ∥∥F indicates the
Frobenius norm. For N →∞, the MSE concentrates, which means it is only a function of µ, λ and
α. For denoising A we do

Aden = A+ ηAXXT . (10)
The idea is that although this leads to more noise terms, the signal strength of yyT is increased more.
Instead of a weighting of λ

N yyT , we now have (λ
N +ηA

µ2F
N)yyT . The new MSE also concentrates

on a value determined by ηA. So, numerically, as shown in Figure 18, for any µ, |λ| > 0 we can
always find values of ηA such that the MSE is decreased. For denoising X we do

Xden = X + ηXAX (11)

and show in Figure 19 with the same argumentation as for A that an ηX exists so that the MSE is
reduced. Proof of both cases has yet to be provided and will be the subject of future work.

39

Published as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
X

0.1

0.2

0.3

0.4

0.5

M
SE

= 0.0
= 1.0
= 2.0
= 3.0

(a) µ = 0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
X

0.1

0.2

0.3

0.4

0.5
M

SE
= 0.0
= 1.0
= 2.0
= 3.0

(b) µ = 1.0

Figure 19: Experimental results on a non-symmetric gaussian cSBM with N = 1000 and γ = 2
with denoising of X . We plot the MSE for different λ and µ = 0.0 in 19a and µ = 1.0 in 19b. Each
data point is averaged over 10 independent trials and the standard deviation is indicated by the light
shaded area.

40

	Introduction
	Joint Denoising and Rewiring
	Preliminaries
	Motivation via the contextual stochastic block model
	Joint Denoising and Rewiring Algorithm

	Experiments
	Results on Synthetic Data
	Results on Real-World Data

	Relation to Prior Work
	Conclusion and Limitations
	Appendix
	The JDR algorithm
	Low-dimensional Graphs and Relation to Resonance
	Rotational invariance of Alignment
	Computational Complexity
	Runtime Comparison

	Contextual Stochastic Block Models
	Proof of Proposition 1
	Datasets
	Additional Results
	Additional Heterophilic Datasets
	Homophilic Datasets in the Dense Splitting
	MLP with JDR
	Combining JDR and DIGL
	Alignment
	Spectral Clustering
	Evaluating graph denoising via ESNR

	Ablations
	Hyperparameters
	Hardware Specifications
	Insights from Random Matrix Theory for one-layer GCNs

