
7 Appendix: quasi-Monte Carlo graph random features (q-GRFs)506

7.1 On the approximation of the d-regularised Laplacian using GRFs507

In this appendix, we demonstrate how to approximate the d-regularised Laplacian K
(d)
lap with GRFs.508

Recall that GRFs provide an estimator to the quantity (IN �U)�2 where U is a weighted adjacency509

matrix. Recall also that the matrix elements of the symmetrically normalised Laplacian eL are given510

by511

eLij =

(
1 if i = j,

�
Wijp

degW(i)degW(j)
if i ⇠ j.

(24)

where degW(i) =
P

j2V Wij is the weighted degree of the node i. We are typically interested in512

situations where W = A, an unweighted adjacency matrix. Now note that513

K
(2)
lap ij = (IN + �

2eL)�2
ij = (1 + �

2)�2 (IN �U)�2
ij (25)

where we defined the matrix U with matrix elements514

Uij =
�
2

1 + �2

Wijp
degW(i)degW(j)

. (26)

This is itself a weighted adjacency matrix, as required. It follows that, by estimating (IN �U)�2
515

with GRFs, we can trivially estimate K
(2)
lap . This was reported in [Choromanski, 2023].516

Supposing that we have constructed a low-rank GRF estimator517

K
(2)
lap = E

⇥
CC

>⇤ (27)

where the matrix C 2 RN⇥N has rows Ci := 1
1+�2�(i)>, we note that it is straightforward to518

construct the 1-regularised Laplacian kernel estimator519

K
(1)
lap = E

⇥
CD

>⇤ (28)

by taking D :=
⇣
IN + �

2eL
⌘>

C. It is then trivial to obtain the estimator K(d)
lap for arbitrary d 2 N.520

7.2 Derivation of Eq. 15521

In this appendix we derive Eq. 15, which gives the expected length of some walk !2 given that its522

antithetic partner !1 is of length m: that is, E (len(!2)|len(!1) = m).523

As a warm-up, consider the simpler marginal expected lengths. Note that524

p (len(!) = m) = (1� p)mp. (29)

It follows that525

E (len(!)) =
1X

m=0

m(1� p)mp =
1� p

p
(30)

where we computed the arithmetic-geometric series. We reported this result in Eq. 14. Meanwhile,526

the probability of a walk being of length i given that its antithetic partner is of length m is527

p(len(!2) = i|len(!1) = m) =

8
>><

>>:

⇣
1�2p
1�p

⌘i
p

1�p if i < m,

0 if i = m,⇣
1�2p
1�p

⌘m
(1� p)i�m�1

p if i > m.

(31)

The analagous sum then becomes528

E (len(!2)|len(!1) = m) =
mX

i=0

✓
1� 2p

1� p

◆i
p

1� p
i+

1X

i=m+1

✓
1� 2p

1� p

◆m

(1� p)i�m�1
pi. (32)
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After straightforward but tedious algebra, this evaluates to529

E (len(!2)|len(!1) = m) =
1� 2p

p
+ 2

✓
1� 2p

1� p

◆m

, (33)

as stated in Eq. 15. Note that this is greater than E(len(!)) when m is small and smaller than530

E(len(!)) when m is large; the two walk lengths are negatively correlated.531

7.3 On the superiority of q-GRFs (proof of Theorem 3.2)532

Here, we provide a proof of the central result of Theorem 3.2: that the introduction of antithetic533

termination reduces the variance of estimators of the matrix (IN �U)�2. From App. 7.1, all our534

results will trivially extend to the 2-regularised Laplacian kernel K(2)
lap .535

Notation: to reduce the burden of summation indices, we have used Dirac’s bra-ket notation from536

quantum mechanics. |yi can be interpreted as the vector y and hy| as y>.537

We will begin by assuming that the graph is d-regular, that all edges have equal weights denoted w,538

and that our sampling strategy involves the random walker choosing one of its neighbours with equal539

probability at each timestep. We will relax these assumptions in App. 7.4.540

We have seen that antithetic termination does not modify the walkers’ marginal termination be-541

haviour, so the variance of the estimator �(i)>�(j) is only affected via the second-order term542

E
⇥
(�(i)>�(j))2

⇤
. Writing out the sums,543

(�(i)>�(j))2 =
1
m4

X

x,y2V

mX

k1,l1,k2,l2=1

X

!12⌦ix

X

!22⌦jx

X

!32⌦iy

X

!42⌦jy

e!(!1)
p(!1)

e!(!2)
p(!2)

e!(!3)
p(!3)

e!(!4)
p(!4)

· I(!1 2 ⌦̄(k1, i))I(!2 2 ⌦̄(l1, j))I(!3 2 ⌦̄(k2, i))I(!4 2 ⌦̄(l2, j)).
(34)

To remind the reader: the variables x, y sum over the nodes of the graph V . k1 and l1 enumerate544

all the m walks sampled out of node i, whilst k2 and l2 enumerate walks from j. The sum over545

!1 2 ⌦ix is over all possible walks between nodes i and x. e!(!1) evaluates the product of edge546

weights traversed by the walk !1, which is wlen(!1) in the equal-weights case (with len(!1) denoting547

the number of edges in !1). p(!1) is the marginal probability of the subwalk !1, which is equal to548

((1� p)/d)len(!1) on a d-regular graph. Lastly, the indicator function I(!1 2 ⌦̄(k1, i)) evaluates to 1549

if the k1th walk out of node i (denoted ⌦̄(k1, i)) contains the walk !1 as a subwalk and 0 otherwise.550

We immediately note that our scheme only every correlates walks leaving the same node, so walks551

out of different nodes remain independent. Therefore,552

E
⇥
I(!1 2 ⌦̄(k1, i))I(!2 2 ⌦̄(l1, j))I(!3 2 ⌦̄(k2, i))I(!4 2 ⌦̄(l2, j))

⇤

= p(!1 2 ⌦̄(k1, i),!3 2 ⌦̄(k2, i))p(!2 2 ⌦̄(l1, j),!4 2 ⌦̄(l2, j)).
(35)

Consider the term in the sum corresponding to one particular set of walks (k1, l1, k2, l2),553

X

x,y2V

X

!12⌦ix

X

!22⌦jx

X

!32⌦iy

X

!42⌦jy

e!(!1)
p(!1)

e!(!2)
p(!2)

e!(!3)
p(!3)

e!(!4)
p(!4)

· p(!1 2 ⌦̄(k1, i),!3 2 ⌦̄(k2, i))p(!2 2 ⌦̄(l1, j),!4 2 ⌦̄(l2, j)).

(36)

This object will be of central importance and is referred to as the correlation term. In the sum over554

k1, k2, l1, l2, there are three possibilities to consider. We stress again that k1,2 refers to a pair of walks555

out of node i and l1,2 refers to a pair out of j.556

• Case 1, same-same, k1 = k2, l1 = l2: the pair of walks out of i are identical and the pair of557

walks out of j are identical. This term will not be modified by antithetic coupling since the marginal558

walk behaviour is unmodified and walks out of different nodes remain independent.559

• Case 2, different-different, k1 6= k2, l1 6= l2: the walks out of both i and j differ, and each pair560

may be antithetic or independent. This term will be modified by the coupling.561

• Case 3, same-different. k1 = k2, l1 6= l2: the walks out of i differ – and may exhibit antithetic562

or independent termination – but the walks out of j are the same. This term will be modified by the563

coupling. Note that the i and j labels are arbitrary so we have chosen one ordering for concreteness.564
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If we can reason that the contributions from each of these possibilities 1� 3 either remains the same565

or is reduced by the introduction of antithetic coupling, then from Eq. 34 we can conclude that the566

entire sum and therefore the Laplacian kernel estimator variance is suppressed. For completeness, we567

write out the entire sum from Eq. 34 with the degeneracy factors below:568

(�(i)>�(j))2 =
1
m4

X

x,y2V

n

m2 P
!12⌦ix

P
!22⌦jx

P
!32⌦iy

P
!42⌦jy

e!(!1)
p(!1)

e!(!2)
p(!2)

e!(!3)
p(!3)

e!(!4)
p(!4)

·I(!1 2 ⌦̄(k1, i))I(!2 2 ⌦̄(l1, j))I(!3 2 ⌦̄(k1, i))I(!4 2 ⌦̄(l1, j))

)
same-same (1)

+m2(m� 1)2
P

!12⌦ix

P
!22⌦jx

P
!32⌦iy

P
!42⌦jy

e!(!1)
p(!1)

e!(!2)
p(!2)

e!(!3)
p(!3)

e!(!4)
p(!4)

·I(!1 2 ⌦̄(k1, i))I(!2 2 ⌦̄(l1, j))I(!3 2 ⌦̄(k2, i))I(!4 2 ⌦̄(l2, j))

)
different-different (2)

+m2(m� 1)
P

!12⌦ix

P
!22⌦jx

P
!32⌦iy

P
!42⌦jy

e!(!1)
p(!1)

e!(!2)
p(!2)

e!(!3)
p(!3)

e!(!4)
p(!4)

·I(!1 2 ⌦̄(k1, i))I(!2 2 ⌦̄(l1, j))I(!3 2 ⌦̄(k2, i))I(!4 2 ⌦̄(l1, j))

+m2(m� 1)
P

!12⌦ix

P
!22⌦jx

P
!32⌦iy

P
!42⌦jy

e!(!1)
p(!1)

e!(!2)
p(!2)

e!(!3)
p(!3)

e!(!4)
p(!4)

·I(!1 2 ⌦̄(k1, i))I(!2 2 ⌦̄(l1, j))I(!3 2 ⌦̄(k1, i))I(!4 2 ⌦̄(l2, j)).
o

9
>>>>>>=

>>>>>>;

same-different (3)

(37)
We now address each case 1� 3 in turn.569

7.3.1 Case 1: k1 = k2, l1 = l2570

Case 1 is trivial. By design, antithetic termination does not affect the marginal walk behaviour (a571

sufficient condition for the estimator to remain unbiased). This means that it cannot affect terms that572

consider a single walk out of node i and a single walk out of j, and all terms of case 1 are unchanged573

by the introduction of antithetic termination.574

7.3.2 Case 2: k1 6= k2, l1 6= l2575

Now we consider terms where both the walks out of node i and the walks out of node j differ. To576

emphasise, we are considering 4 different random walks: 2 out of i and 2 out of j.577

Within this setting, we will need to consider the situations where either i) one or ii) both of the578

pairs exhibit antithetic termination rather than i.i.d.. Terms of both kind will appear when we use579

ensembles of antithetic pairs. We need to check that in both cases the result is smaller compared to580

when both pairs are i.i.d..581

To evaluate these terms, we first need to understand how inducing antithetic termination modifies582

the joint distribution p(!1 2 ⌦̄(k1, i),!3 2 ⌦̄(k2, i)): namely, the probability that two randomly583

sampled walks ⌦̄(k1, i) and ⌦̄(k2, i) contain the respective subwalks !1 and !3, given that their584

termination is either i.i.d. or antithetic. In the i.i.d. case, it is straightforward to convince oneself that585

p(!1 2 ⌦̄(1, i),!3 2 ⌦̄(3, i)) =

✓
1� p

d

◆m✓1� p

d

◆n

, (38)

where m and n denote the lengths of subwalks !1 and !3, respectively. With antithetic termination,586

from Eq. 13 it follows that the probability of sampling a walk ⌦̄3 of length j conditioned on sampling587

an antithetic partner ⌦̄1 of length i is588

p(len(⌦̄3) = j|len(⌦̄1) = i) =

8
>>><

>>>:

⇣
1�2p
1�p

⌘j
p

1�p if j < i,

0 if j = i,⇣
1�2p
1�p

⌘i
(1� p)j�i�1

p if j > i.

(39)

Using these probabilities, it is then straightforward but algebraically tedious to derive the joint589

probabilities over subwalks590

p(!1 2 ⌦̄(1, i),!3 2 ⌦̄(3, i)) =

8
>><

>>:

1
dm+n

⇣
1�2p
1�p

⌘n
(1� p)m if n < m,

1
d2m (1� 2p)m if n = m,

1
dm+n

⇣
1�2p
1�p

⌘m
(1� p)n if n > m,

(40)
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where m is the length of !1, n is the length of !3 and i is now the index of a particular node.591

To be explicit, we have integrated over the conditional probabilities of walks of particular lengths592

(i, j) to obtain the joint probabilities of sampled walks containing subwalks of particular lengths593

(m,n). Let us consider the case of n < m as an example. Using Eq. 39,594

p(!1 2 ⌦̄(1, i),!3 2 ⌦̄(3, i)) =
1

dm+n

1X

i=m

"
i�1X

j=n

✓
1� 2p
1� p

◆j p
1� p

(1� p)i p+

+
1X

j=i+1

✓
1� 2p
1� p

◆i

(1� p)j�i�1p (1� p)i p

#
,

(41)

where the branching factors of d appeared because at every timestep the subwalks have d possible595

edges to choose from. After we have completed the particular subwalks of lengths m and n we no596

longer care about where the walks go, just their lengths, so we stop accumulating these multiplicative597

factors. Computing the summations in Eq. 41 (which are all straightforward geometric series), we598

quickly arrive at the top line of Eq. 40.599

Returning to our main discussion, note that in the d-regular, equal-weights case,600

X

!12⌦ix

X

!32⌦iy

e!(!1)
p(!1)

e!(!3)
p(!3)

p(!1 2 ⌦̄(k1, i),!3 2 ⌦̄(k2, i))

=
X

!12⌦ix

X

!32⌦iy

✓
wd
1� p

◆m+n

p(!1 2 ⌦̄(k1, i),!3 2 ⌦̄(k2, i)).

(42)

The summand depends only on walk lengths m,n but not direction, which invites us to decompose601

the sum
P

!12⌦ix
(·) over paths between nodes i and x to a sum over path lengths, weighted by the602

number of paths at each length. Explicitly,603

X

!12⌦ix

(·) =
1X

n=1

(An)ix (·) , (43)

with A the (unweighted) adjacency matrix. We have used the fact that (An)ij counts the number of604

walks of length n between nodes i and x. A is symmetric so has a convenient decomposition into605

orthogonal eigenvectors and real eigenvalues:606

(An)ix =
NX

k=1

�
n
k hi|ki hk|xi (44)

where |ki enumerates the N eigenvectors of A with corresponding eigenvalues �k, and hi| and hx|607

are unit vectors in the i and x coordinate axes, respectively. We remind the reader that we have608

adopted Dirac’s bra-ket notation; |yi denotes the vector y and hy| denotes y>.609

Inserting Eqs 44 and 43 into Eq. 42 and using the probability distributions in Eq. 38 and 40, our610

all-important variance-determining correlation term from Eq.36 evaluates to611

X

x,y2V

NX

k1,k2,k3,k4=1

B
(i)
k1,k3

B
(j)
k2,k4

hi|k1i hk1|xi hj|k2i hk2|xi hi|k3i hk3|yi hj|k4i hk4|yi , (45)

where the matrix elements B(i)
k1,k3

and B
(j)
k2,k4

, corresponding to the pairs of walkers out of i and j612

respectively, are equal to one of the two following expressions:613

Bk1,k3 =

8
<

:
Ck1,k3

:=
w�k1

1�w�k1

w�k3
1�w�k3

if i.i.d.

Dk1,k3
:=

w�k1
1�w�k1

w�k3
1�w�k3

c(1�w2�k1�k3 )
1�cw2�k1�k3

if antithetic.
(46)

Here, c is a constant defined by c := 1�2p
(1�p)2 with p the termination probability. These forms are614

straightforward to compute with good algebraic bookkeeping; we omit details for economy of space.615

17



Eq. 45 can be simplified. Observe that
P

x2V |xi hx| = IN (‘resolution of the identity’), and that616

since the eigenvectors of A are orthogonal hk1|k2i = �k1,k2 . Applying this, we can write617

NX

k1,k3=1

B
(i)
k1,k3

B
(j)
k1,k3

hi|k1i hj|k1i hi|k3i hj|k3i . (47)

Our task is then to determine whether 47 is reduced by conditioning that either one or both of the618

pairs of walkers are antithetic rather than independent. That is,619

NX

k1=1

NX

k3=1

(Ck1,k3Dk1,k3 � Ck1,k3Ck1,k3) hi|k1i hj|k1i hi|k3i hj|k3i
?
 0, (48)

620
NX

k1=1

NX

k3=1

(Dk1,k3Dk1,k3 � Ck1,k3Ck1,k3) hi|k1i hj|k1i hi|k3i hj|k3i
?
 0. (49)

Define a vector y 2 RN with entries yp := hi|kpi hj|kpi, such that its pth element is the product of621

the i and jth coordinates of the pth eigenvector kp. In this notation, Eqs 48 and 49 can be written622

NX

p=1

NX

q=1

(CpqDpq � CpqCpq) ypyq
?
 0, (50)

623
NX

p=1

NX

q=1

(DpqDpq � CpqCpq) ypyq
?
 0. (51)

For Eqs 50 and 51 to be true for arbitrary graphs, it is sufficient that the matrices E and F with matrix624

elements Epq := CpqDpq � CpqCpq and Fpq := DpqDpq � CpqCpq are negative definite. Our next625

task is to prove that this is the case.626

First, consider E, where just one of the two pairs of walkers is antithetic. Putting in the explicit forms627

of Cpq and Dpq from Eq. 46,628

Epq = �

✓
�̄p�̄q

(1� �̄p)(1� �̄q)

◆2
p
2

(1� p)2
1

1� 1�2p
(1�p)2 �̄p�̄q

(52)

where for notational compactness we took �̄p := w�p (the eigenvalues of the weighted adjacency629

matrix U). Taylor expanding,630

Epq = �

✓
�̄p�̄q

(1� �̄p)(1� �̄q)

◆2
p
2

(1� p)2

1X

m=0

✓
1� 2p

(1� p)2
�̄p�̄q

◆m

. (53)

Inserting this into Eq. 50, we get631

NX

p=1

NX

q=1

Epqypyq = �
p
2

(1� p)2

1X

m=0

 
NX

p=1

�̄
2
p

(1� �̄p)2

✓p
1� 2p

1� p
�̄p

◆m

yp

!2

 0, (54)

which implies that E is indeed negative definite. Note that we have not made any additional632

assumptions about the values of p and w beyond those already stipulated: namely, 0 < p 
1
2 and633

�̄max < 1.634

Next, consider F, where both pairs of walkers are antithetic. Again inserting Eqs 46, we find that635

Fpq =

✓
�̄p�̄q

(1� �̄p)(1� �̄q)

◆2
"✓

c� c�̄p�̄q

1� c�̄p�̄q

◆2

� 1

#
(55)

where we remind the reader that c = 1�2p
(1�p)2 . The Taylor expansion in �̄p�̄q is636

Fpq =

✓
�̄p�̄q

(1� �̄p)(1� �̄q)

◆2
" 1X

i=0

(�̄p�̄q)
i(c� 1)ci(1 + c+ i(c� 1))

#

= w
4(�p�q)

2
1X

i,j,k=0

(�p�q)
i+j+k

w
2i+j+k(c� 1)ci(1 + c+ i(c� 1))(j + 1)(k + 1).

(56)

18



In fact, F is not generically negative definite, but will be at sufficiently small p or w. Write637

F = w
4(G+H), with638

Gpq := (�p�q)
2
�
c
2
� 1
�
, (57)

639

Hpq := (�p�q)
2

1X

i,j,k=0\{i=j=k=0}

(�p�q)
i+j+k

w
2i+j+k(c� 1)ci(1 + c+ i(c� 1))(j + 1)(k + 1).

(58)
G is manifestly negative definite because c < 1 but H may not be. Treat H as a perturbation to G.640

Recalling that the spectral radius of H is defined641

⇢(H) := max
kxk2=1

Hx, (59)

it is clear that the spectral radius of H approaches 0 smoothly as w ! 0 since all its matrix elements642

vanish. Recall also an important corollary of Weyl’s perturbation inequality: any perturbed eigenvalue643

of F+G will be within one spectral radius ⇢(G) of the original eigenvalue of F. This means that, by644

reducing w, we can shrink the spectral radius of G until ⇢(G) < (�p�q)2
�
1� c

2
�
, at which point645

we are guaranteed that F will be negative definite. Hence, at sufficiently small w, correlation terms646

with both pairs antithetic are suppressed as required.647

Taylor expanding in c ! 1 (which corresponds to p ! 0) instead of �p�q, we can make exactly648

analogous arguments to find that F is also guaranteed to be negative definite with when p is sufficiently649

small. Briefly: let c = 1� � with � =
⇣

p
1�p

⌘2
. Then we have that650

Fpq =

✓
�̄p�̄q

(1� �̄p)(1� �̄q)

◆2
 
(1� �)2

✓
1� �̄p�̄q

1� �̄p�̄q + ��̄p�̄q

◆2

� 1

!

=

✓
�̄p�̄q

(1� �̄p)(1� �̄q)

◆2✓
�2�

1� �̄p�̄q
+O(�2)

◆
.

(60)

Taylor expanding 1
1��̄p�̄q

, it is easy to see that the operator defined by the O(�) term of Eq. 60 is651

negative definite. This part will dominate over higher order terms (which are not in general negative652

definite) when � is sufficiently small, guaranteeing the effectiveness of our mechanism on these terms.653

As an aside, we also note that Taylor expanding about c = 0 (which corresponds to p !
1
2 ) yields654

Fpq =

✓
�̄p�̄q

(1� �̄p)(1� �̄q)

◆2 �
�1 +O(c2)

�
(61)

which is manifestly negative definite at small enough c. Hence, intriguingly, the k1 6= k2 variance655

contributions are also suppressed in the p !
1
2 limit.656

This concludes our study of variance contributions in Eq. 36 where k1 6= k2, l1 6= l2. We have found657

that these correlation terms are indeed suppressed by antithetic termination when p or ⇢(U) is small658

enough (or when p is sufficiently close to 1
2 ).659

7.3.3 Case 3: k1 = k2, l1 6= l2660

We now consider terms where k1 = k2 and l1 6= l2. We are considering a total of 3 walks: just 1 out661

of node i but a pair (which may be antithetic or i.i.d.) out of node j. We inspect the term662

X

!12⌦ix

X

!32⌦iy

✓
wd

1� p

◆m+n

p(!1 2 ⌦̄(k1, i),!3 2 ⌦̄(k1, i)), (62)

where m denotes the length of !1 and n denotes the length of !3. What is the form of p(!1 2663

⌦̄(k1, i),!3 2 ⌦̄(k1, i))? It is the probability that a single walk out of node i, ⌦̄(k1, i), contains664

walks !1 between nodes i and x and !3 between i and y as subwalks. Such a walk must pass through665

all three nodes i, x and y. After some thought,666

p(!1,!3 2 ⌦̄(k1, i)) =

8
>>><

>>>:

� 1�p
d

�m
if !1 = !3,� 1�p

d

�m
if !3 2 !1,� 1�p

d

�n
if !1 2 !3,

0 otherwise.

(63)
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Here, !1 2 !3 means !1 is a strict subwalk of !3, so the sequence of nodes traversed is i ! x ! y.667

Likewise, !3 2 !1 implies a path i ! y ! x. Summing these contributions,668

X

!12⌦ix

X

!32⌦iy

✓
wd
1� p

◆m+n

p(!1 2 ⌦̄(l1, i),!3 2 ⌦̄(l1, i))

=
X

!12⌦ix

✓
wd
1� p

◆2len(!1)

p(!1 2 ⌦̄(k1, i))�xy

| {z }
!1=!3,i!x=y

+
X

!12⌦ix

✓
wd
1� p

◆2len(!1)

p(!1 2 ⌦̄(k1, i))
X

!�2⌦xy

✓
wd
1� p

◆len(!�)

p(!� 2 ⌦̄(k1, x))

| {z }
!12!3,i!x!y

+
X

!32⌦iy

✓
wd
1� p

◆2len(!3)

p(!3 2 ⌦̄(k1, i))
X

!�2⌦yx

✓
wd
1� p

◆len(!�)

p(!� 2 ⌦̄(k1, y))

| {z }
!32!1,i!y!x

.

(64)

We introduced !� for the sum over paths between nodes x and y, and p(!� 2 ⌦̄(k1, x)) is the669

probability of some particular subwalk x ! y, equal to
� 1�p

d

�len(!�) in the d-regular case. !3 is a670

dummy variable so can be relabelled !1. The variance-determining correlation term from Eq. 36671

becomes672

X

x,y2V

2

4
X

!12⌦ix

✓
wd
1� p

◆2len(!1)

p(!1 2 ⌦̄(k1, i))�xy

+
X

!12⌦ix

✓
wd
1� p

◆2len(!1)

p(!1 2 ⌦̄(k1, i))
X

!�2⌦xy

✓
wd
1� p

◆len(!�)

p(!� 2 ⌦̄(k1, x))

+
X

!12⌦iy

✓
wd
1� p

◆2len(!1)

p(!1 2 ⌦̄(k1, i))
X

!�2⌦yx

✓
wd
1� p

◆len(!�)

p(!� 2 ⌦̄(k1, y))

3

5

·
NX

k2=1

NX

k4=1

B(j)
k2,k4

hj|k2i hk2|xi hj|k4i hk4|yi .

(65)

where B
(j)
k2,k4

depends on whether the coupling of the pair of walkers out of node j is i.i.d. or673

antithetic, as defined in Eq. 46. x and y are dummy variables so can also be swapped, and the sum674

over the paths !� is computed via the usual sum over path lengths and eigendecomposition of A.675

Using the resolution of the identity and working through the algebra, we obtain the correlation term676

X

x2V

"
X

!12⌦ix

✓
wd

1� p

◆2len(!1)

p(!1 2 ⌦̄(k1, i))

#

·

NX

k2,k4=1

✓
1� w

2
�k2�k4

(1� w�k2)(1� w�k4)

◆
B

(j)
k2,k4

hx|k2i hk2|ji hx|k4i hk4|ji .

(66)

Now observe that the prefactor in square brackets is positive for any node x since it is the expectation677

of a squared quantity. This means that, for the sum in Eq. 66 to be suppressed by antithetic coupling,678

it is sufficient for the summation in its lower line to be reduced. Defining a vector y 2 RN with679

elements yp := hx|kpi hkp|ji, it becomes clear that we require that the operator J with matrix680

elements681

Jpq :=

✓
1� w

2
�p�q

(1� w�p)(1� w�q)

◆
(Dpq � Cpq) (67)

is negative definite. Using the forms in Eq. 46,682

Jpq = �
w

2
�p�q

(1� w�p)2(1� w�q)2

p2

(1�p)2 (1� w
2
�p�q)

1� 1�2p
(1�p)2w

2�p�q

. (68)
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Making very similar arguments to in Sec. 7.3.2 (namely, Taylor expanding and appealing to Weyl’s683

perturbation inequality), we can show that, whilst this operator is not generically negative definite, it684

will be at sufficiently small p or w.685

A brief note: Taylor expanding in c,686

Jpq = �
w

2
�p�q

(1� w�p)2(1� w�q)2
(1� w

2
�p�q) +O(c), (69)

which is only negative definite when we also simultaneously take w ! 0. Interestingly, in contrast to687

case 2, these terms are not suppressed by p !
1
2 on its own; we need to control the spectral radius of688

U.689

This concludes the section of the proof addressing terms k1 = k2 and l1 6= l2 (case 3). Again, these690

variance contributions are always suppressed by antithetic termination at sufficiently small p or ⇢(U).691

Having now considered all the possible variance contributions enumerated by cases 1� 3 and shown692

that each is either reduced or unmodified by the imposition of antithetic termination, we can finally693

conclude that our novel mechanism does indeed suppress the 2-regularised Laplacian kernel estimator694

variance for a d-regular graph of equal weights at sufficiently small p or ⇢(U).695

As mentioned in the main body of the manuscript, these conditions tend not to be very restrictive in696

experiments. Intriguingly, small ⇢(U) with p = 1
2 actually works very well.697

Our next task is to generalise these results to broader classes of graphs.698

7.4 Extending the results to arbitrary graphs and sampling strategies (Theorem 3.2 cont.)699

Throughout Sec. 7.3, we considered the simplest setting of a d-regular graph where all edges have700

equal weight. We have also taken a basic sampling strategy, with the walker choosing one of its701

current node’s neighbours at random at every timestep. Here we relax these assumptions, showing702

that our results remain true in more general settings.703

7.4.1 Relaxing d-regularity704

First, we consider graphs whose vertex degrees differ. It is straightforward to see that the terms in case705

2 (Sec. 7.3.2) are unmodified because taking d
m

!
Qm

i=1 di in p(!1) and d
n
!
Qn

i=1 di in p(!3)706

is exactly compensated by the corresponding change in in joint probability p(!1 2 ⌦̄(k1, i),!3 2707

⌦̄(k2, i)). Our previous arguments all continue to hold.708

Case 3 (Sec. 7.3.3) is only a little harder. Now the prefactor in square parentheses in the top line of709

Eq. 66 evaluates to710
2

4
X

!12⌦ix

✓
w

1� p

◆2len(!1)
0

@
len(!1)Y

i=1

d
2
i

1

A p(!1 2 ⌦̄(k1, i))

3

5 (70)

which is still positive for any node x. The lower line of Eq. 66 is unmodified because once again the711

change dm !
Qm

i=1 di exactly cancels in the marginal and joint probabilities, so J is unchanged and712

our previous conclusions prevail.713

7.4.2 Weighted graphs714

Now we permit edge weights to differ across the graph. Once again, case 2 (Sec. 7.3.2) is straightfor-715

ward: instead of Eq. 43, we take716

X

!12⌦ix

e!(!1) (·) =
1X

n=1

(Un)ix (·) , (71)

where U is the weighted adjacency matrix. We incorporate the product of each walk’s edge weights717

into the combinatorial factor, then sum over path lengths as before. In downstream calculations we718

drop all instances of w and reinterpret � as the eigenvalues of the U instead of A, but our arguments719

are otherwise unmodified; these variance contributions will be suppressed if ⇢(U) or p is sufficiently720

small.721
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Case 3 (Sec. 7.3.3) is also easy enough; the bracketed prefactor of 66 becomes722

2

4
X

!12⌦ix

✓
1

1� p

◆2len(!1)
0

@
len(!1)Y

i=1

w
2
i⇠i+1d

2
i

1

A p(!1 2 ⌦̄(k1, i))

3

5 (72)

which is again positive. Here, wi⇠i+1 denotes the weight associated with the edge between the i and723

i+ 1th nodes of the walk. Therefore, it is sufficient that the matrix J with matrix elements724

Jpq = �
�p�q

(1� �p)2(1� �q)2

p2

(1�p)2 (1� �p�q)

1� 1�2p
(1�p)2�p�q

(73)

is negative definite, with �p now the pth eigenvalue of the weighted adjacency matrix U. Following725

the same arguments as in Sec. 7.3.3, this will be the case at small enough p or ⇢(U).726

7.4.3 Different sampling strategies727

Finally, we consider modifying the sampling strategy for random walks on the graph. We have728

previously assumed that the walker takes successive edges at random (i.e. with probability 1
di

), but729

the transition probability can also be a function of the edge weights. For example, if all the edge730

weights are positive, we might take731

p(i ! j|s̄) =
wijP
k⇠i wik

(74)

for the probability of transitioning from node i to j at a given timestep (with wij := Uij), given that732

the walker does not terminate. This strategy increases the probability of taking edges with bigger733

weights and which therefore contribute more to (IN �U)�2 – something that empirically suppresses734

the variance on the estimator of the 2-regularised Laplacian kernel. Does antithetic termination735

reduce it further?736

Case 2 (Sec. 7.3.2) is again easy; the w-dependent modifications to p(!1) and p(!3) are exactly737

compensated by adjustments to p(!1 2 ⌦̄(k1, i),!3 2 ⌦̄(k2, i)). To wit, Eq. 40 becomes738

p(!3 2 ⌦̄(3, i),!1 2 ⌦̄(1, i)) =

8
>>><

>>>:

e!(!1)e!(!3)
�(!1)�(!3)

⇣
1�2p
1�p

⌘n
(1� p)m if n < m

e!(!1)
2

�(!1)2
(1� 2p)m if n = m

e!(!1)e!(!3)
�(!1)�(!3)

⇣
1�2p
1�p

⌘m
(1� p)n if n > m.

(75)

where we defined a new function of a a walk,739

�(!) :=
Y

i2!

X

k⇠i

wik. (76)

� computes the sum of edge weights connected to each node in the walk ! (excluding the last), then740

takes the product of these quantities. It is straightforward to check that, when all the graph weights741

are equal, e!(!)
�(!) = 1

dm with m the length of !. Meanwhile, p(!1) becomes742

p(!1) =
(1� p)me!(!1)

�(!1)
(77)

such that these modifications cancel out when we evaluate Eq. 36.743

Case 3 (Sec. 49) is also straightforward. The prefactor in square brackets is equal to 72 and is again744

positive for any valid sampling strategy p(!1 2 ⌦̄(k1, i)) and J does not change, so our arguments745

still hold and these variance contributions are reduced by antithetic coupling.746

We note that these arguments will generalise straightforwardly to any weight-dependent sampling747

strategy and are not particular to the linear case. e!/� can be replaced by some more complicated748

variant that defines a valid probability distribution p(!1 2 ⌦̄(k1, i)) and antithetic termination will749

still prove effective.750
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7.4.4 Summary751

In Sec. 7.4, our theoretical results for antithetic termination have proved robust to generalisations752

such as relaxing d-regularity and changing the walk sampling strategy. A qualitative explanation for753

this is as follows: upon making the changes, the ratio of the joint to marginal probablities754

p(!1,!3)

p(!1)p(!3)
(78)

is unmodified. This is because we know how we are modifying the probability over walks and755

construct the estimator to compensate for it. Meanwhile, the correlations between walk lengths are756

insensitive to the walk directions, so in every case they continue to suppress the kernel estimator757

variance. The only kink is the terms described in Sec. 7.3.3 which require a little more work, but the758

mathematics conspires that our arguments are again essentially unmodified, though perhaps without759

such an intuitive explanation.760

7.5 Beyond antithetic coupling (proof of Theorem 3.4)761

Our final theoretical contribution is to consider random walk behaviour when TRVs are offset by less762

than p, � < p. Unlike antithetic coupling, it permits simultaneous termination. Eqs 13 become763

p(s1) = p(s2) = p, p(s̄1) = p(s̄2) = 1� p, p(s2|s1) =
p��

p
,

p(s̄2|s1) =
�

p
, p(s2|s̄1) =

�

1� p
, p(s̄2|s̄1) =

1� p��

1� p
.

(79)

The probability of two antithetic walks ⌦̄(1, i) and ⌦̄(3, i) containing subwalks !1 and !3 becomes764

p(!3 2 ⌦̄(3, i),!1 2 ⌦̄(1, i)) =

8
>><

>>:

1
dm+n

⇣
1�p��
1�p

⌘n
(1� p)m if n < m

1
d2m (1� p��)m if n = m

1
dm+n

⇣
1�p��
1�p

⌘m
(1� p)n if n > m,

(80)

which the reader might compare to Eq. 40. In analogy to Eq. 46, this induces the matrix765

D
�
k1,k3

:=
w

2
�k1�k3

1�p��
(1�p)2

1� w2�k1�k3

1�p��
(1�p)2

✓
1� w

2
�k1�k3

(1� w�k1)(1� w�k3)

◆
. (81)

We can immediately observe that this is exactly equal to Ck1,k3 when � = p(1� p), so for a pair766

of walkers with this TRV offset the variance will be identical to the i.i.d. result. Replacing D by767

D
� in Epq and Fpq and Jpq and reasoning about negative definiteness via their respective Taylor768

expansions (as well as the new possible cross-term Dk1,k3D
�
k1,k3

), it is straightforward conclude that769

variance is suppressed compared to the i.i.d. case provided � > p(1�p) and ⇢(U) or p is sufficiently770

small. The p ! 0 limit demands a slightly more careful treatment: in order to stay in the regime771

p(1� p) < � < p we need to simultaneously take � ! 0, e.g. by defining �(p) := p(1� p) + ap
2772

with the constant 0 < a < 1.773

This result was reported in Theorem 3.4 of the main text.774

7.6 What about diagonal terms?775

The alert reader might remark that all derivations in Sec. 7.3 have taken i 6= j, considering estimators776

of the off-diagonal elements of the matrix (IN �U)�2. In fact, estimators of the diagonal elements777

�(i)>�(i) will be biased for both GRFs and q-GRFs if �(i) is constructed using the same ensemble778

of walkers because each walker is manifestly correlated with, rather than independent of, itself. This779

is rectified by taking two ensembles of walkers out of each node, each of which may exhibit antithetic780

correlations among itself, then taking the estimator �1(i)>�2(i). It is straightforward to convince781

oneself that, in this setup, the estimator is unbiased and q-GRFs will outperform GRFs. In practice,782

this technicality has essentially no effect on (q-)GRF performance and doubles runtime so we omit783

further discussion.784
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7.7 Further experimental details: compute, datasets and uncertainties785

The experiments in Secs. 4.1, 4.2 and 4.4 were carried out on an Intel® Core™ i5-7640X CPU @786

4.00GHz × 4. Each required ⇠ 1 CPU hour. The experiments in Sec. 4.3 were carried out on a 2-core787

Xeon 2.2GHz with 13GB RAM and 33GB HDD. The computations for the largest considered graphs788

took ⇠ 1 CPU hour.789

The real-world graphs and meshes were accessed from the repositories [Ivashkin, 2023] and [Dawson-790

Haggerty, 2023], with further information about the datasets available therein. Where we were able791

to locate them, the original papers presenting the graphs are: [Zachary, 1977, Lusseau et al., 2003,792

Newman, 2006, Bollacker et al., 1998, Leskovec et al., 2007].793

All our experiments report standard deviations on the means, apart from the clustering task in Sec.794

4.3 because running kernelised k-means on large graphs is expensive.795
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