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ORGANIZATION

We discuss some additional background material in Appendix A, and then formulate the proofs omitted from the body of the
paper for Proposition 2 and Proposition 3 in Appendix B. In Appendix C, we provide Hoeffding and empirical-Bernstein
style CSs that are an alternative to the betting CSs we provide in the paper. We then use the Hoeffding CS constructed in
the aforementioned to section as an example of the fact that previous CSs for unweighted mean estimation with uniform
sampling from Waudby-Smith and Ramdas [17, 18] can be recovered by our method for a specific choice of (λt) in
Appendix D. Empirical results from simulations are shown for these CSs in Appendix E, in which we compare the Hoeffding
and empirical-Bernstein CSs to the betting CS discussed in the main body of the paper. Finally, we end by presenting the
results of applying our methods on a real-world housing dataset in Appendix F.

The code for reproducing the results of this paper is available here: https://github.com/sshekhar17/
WeightedWoRConfSeq.

A ADDITIONAL BACKGROUND

A.1 RELATED WORK ON CONFIDENCE SEQUENCES (CS)

Confidence sequences (CSs) are a fundamental tool in sequential analysis, and were introduced into this literature by Robbins
and coauthors in a series of papers starting with [2]. Some other important early works in this area include [10] and [7].
More recently, there has been a resurgence of interest in confidence sequences, particularly motivated by its applications
in anytime valid inference. In anytime valid inference, data samples are received sequentially, and the goal is to derive
statistical guarantees that are valid even if one stops sampling and performs inference at a data-dependent time [8, 9, 5, 4].
Thus, confidence sequences can also be employed in the multi-armed bandit setting (where one can sample adaptively from
multiple streams of data) to enable best arm identification [6]. Most of the papers mentioned above rely on making certain
moment assumptions on the data-generating distributions. An important line of recent work aims to relax these assumptions,
by constructing confidence sequences for heavy-tailed data or contaminated data [15, 1, 11, 16].

A.2 BETTING-BASED CS CONSTRUCTION

The betting-based approach for constructing confidence sequences builds upon the idea of testing-by-betting, popularized
recently by Shafer [12]. This principle states that we can refute a claim (equivalently, a null hypothesis H0) about the
probability distribution generating some data stream, if we can increase our wealth by repeatedly betting on the observations
with the restriction that the betting payoffs are fair under H0. The restriction of fair payoff implies that that bettor is not
expected to make large gains under H0, irrespective of the betting strategy employed (formally, the wealth process is a
non-negative supermartingale). Consequently, if the bettor ends up making a large profit by betting on the observations, this
can be considered as evidence against H0; with the relative growth in wealth provide a precise measure of the strength of
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evidence.

To use the above principle for constructing CSs, we simultaneously play a continuum of betting games, indexed bym ∈ [0, 1],
each with an initial wealth of $1. For every m ∈ [0, 1], we bet against the claim H0,m that the true misspecified fraction m∗

is equal to m. We design the payoff functions of this betting game, such that the resulting wealth process, {Wt(m) : t ≥ 1},
is a non-negative martingale if H0,m were true, but grows at an exponential rate otherwise. Due to this property, the process
at m∗, denoted by {Wt(m

∗) : t ≥ 1}, is actually a test martingale; that is, a nonnegative martingale with an initial value 1.
Hence, Ville’s inequality (recalled below in Fact 1) implies that with probability at least 1− α, the process (Wt(m

∗)) never
exceeds the value 1/α. This fact, suggests a natural definition of a CS for m∗, consisting of sets Ct = {m :Wt(m) < 1/α},
since these sets contain m∗ for all t ≥ 1, with probability at least 1− α. To conclude, the betting-based approach breaks the
task of constructing confidence sequences into two smaller tasks:

1. Choosing a sequence of payoff functions that are fair under H0,m: we achieve this by using the idea of importance
weighting.

2. Developing a betting strategy that ensures fast growth of the wealth process for allm ̸= m∗: we use the ApproxKelly
strategy for this in our construction.

An additional design choice that is unique to the problem studied in this paper, is that of the sampling strategy to select the
transaction indices. We discuss several strategies in Section 3, whose performance is determined by the availability and
accuracy of side-information.

We end this discussion by recalling a statement of Ville’s inequality [14].

Fact 1 (Ville’s Inequality). Suppose {Mt : t ≥ 0} denotes a nonnegative supermartingale adapted to a filtration
{Ft : t ≥ 0}. Then, for any α > 0, we have

P (∃t ≥ 0 :Mt ≥ 1/α) ≤ E[M0]

α
.

A.3 WORKING WITH MINIBATCHES

In this paper, we have developed our methodology under the assumption that the transactions are sampled and sent to the
human auditor, one at a time. In practical scenarios, it may be preferable for the human auditor to evaluate a minibatch of
transactions a time, rather than querying the transactions one-by-one. This generalization can be easily handled by updating
the wealth process with the averaged payoff (over the minibatch in each round). More specifically, we can proceed as
follows, for any m ∈ [0, 1], and for t = 1, 2, . . .:

• Calculate the next sampling distribution, qt.

• Sample the next batch of transactions, Bt := {I(1)t , . . . , I
(B)
t }, with I

(j)
t is drawn according to qt restricted on

Nt \ {I(1)t , . . . , I
(j−1)
t }. Recall that, we now have Nt = [N ] \

(
∪t−1
s=1Bs

)
.

• Obtain the true f values, {f(I(i)t : 1 ≤ i ≤ B} from the oracle (i.e., the human auditor).

• Update the wealth process:

Wt(m) =Wt−1(m)×

(
1 +

1

B

B∑
i=1

λ
(i)
t

(
Z

(i)
t − µ

(i)
t (m)

))
, for m ∈ [0, 1].

Here λ(i)t denotes the bet based on ∪t−1
s=1Bt ∪ {X(1)

t , . . . , X
(i−1)
t }, and Z(i)

t − µ
(i)
t denotes the analogous payoff

function, as defined in Section 2.

• Update the CS, as Ct = {m ∈ [0, 1] :Wt(m) < 1/α}.



B PROOFS

B.1 PROOF OF PROPOSITION 2

Recall that EIn∼q[Zn] = µn(m
∗) for any sampling distribution q ∈ ∆Nn . Now, we note the following equivalencies

EIn∼q[Bn(λ,m)]

= EIn∼q[λ(Zn − µn(m))− λ2(Zn − µn(m))2]

= EIn∼q[λ(Zn − µn(m))]− EIn∼q[λ
2(Zn − µn(m))2]

= λ(m∗ −m)− λ2EIn∼q[(Zn − µ∗
n(m)− µn(m) + µ∗

n(m))2]

= λ(m∗ −m)− λ2(m∗ −m)2 + 2λ2EIn∼q[Zn − µn(m
∗)](m∗ −m)− λ2EIn∼q[(Zn − µ∗

n(m))2]

= λ(m∗ −m)− λ2(m∗ −m)2 − VIn∼q[Zn].

The above equivalencies show that q∗n = argminq∈∆Nn VIn∼q[Zn] by definition of q∗n in (??), and since λ,m∗,m are fixed
in the optimization problem. Consequently, the minimizer of VIn∼q[Zn] is when the distribution of Zn has support on only
a single value and the variance is 0. This is achieved when qn(i) ∝ π(i)f(i) for each i ∈ Nn. Hence, we have shown our
desired result.

B.2 PROOF OF PROPOSITION 3

For any t ≥ 1, introduce the random variable Dt = t×
(
Ãt −At

)
=
∑t

i=1 βiUi. By construction of the term Ui, we know
that for any t ≥ 1, we have

E[Dt|Ft−1] =

t−1∑
i=1

βiUi + βtE[Dt|Ft−1] = Dt−1.

Thus, {Dt : t ≥ 1} is a martingale process. Furthermore, since both βt and Ut lie in the set [−1, 1], the martingale process
{Dt : t ≥ 1} has bounded differences. Hence, by using the time-uniform deviation inequality for martingales with bounded
differences [5, Eq. (11)], we have

P
(
∃t ≤ n : |Dt| > 1.7

√
t (log log(2t) + 0.72 log(10.4/δ))

)
< δ.

Since |Ãt −At|/t = |Dt|/t, the result follows.

C HOEFFDING AND EMPIRICAL-BERNSTEIN CONFIDENCE SEQUENCES

In this section, we present a different approach for constructing confidence sequences, that are based on nonnegative
supermartingales (NSMs), instead of nonnegative martingales used by the betting based CS (Section 2). While these CSs are
typically looser than the betting CS defined in (4), they are computationally inexpensive and can be derived analytically.
We will introduce two such CSs, the Hoeffding CS and empirical-Bernstein CS, and each will have boundaries that take
on an explicit form. Thus, only constant time is needed to compute the boundaries for each new sample. In contrast, the
betting CS computes its boundaries through a root finding procedure which requires O(t) computations to derive updated
boundaries after receiving the tth sample. We provide simulations comparing the Hoeffding and empirical-Bernstein CSs
with the betting CS in Appendix E. Before defining our CSs, we first introduce the following quantities:

m̂t :=
π(It)

qt(It)
f(It) +

t−1∑
i=1

π(Ii)f(Ii), µ̂t :=

t∑
i=1

m̂i

t
, µ̂t(λ

t
1) :=

t∑
i=1

λim̂i

t∑
i=1

λi

.

Note that µ̂t(λ
t
1) where λ1 = . . . = λt = 1 is equivalent to µ̂t.



C.1 HOEFFDING CS

To define the Hoeffding CS, we first define the nonnegative supermartingale (NSM) associated with it. As noted in prior
work [5, 18], let the following be a CGF-like function for Hoeffding:

ψc
H(λ) :=

λ2c2

8
,

for any fixed c > 0. Now we define the following Hoeffding NSM as follows:

MH
t (m) := exp

(
t∑

i=1

λi(Zi − µi(m))− ψci
H (λi)

)
= exp

(
t∑

i=1

λi(m̂i −m)− ψci
H (λi)

)
,

where ct ≥ maxi∈Ut
π(i)/qt(i), and both (λt) and (ct) are predictable w.r.t. (Ft).

Proposition 1. (MH
t (m∗))t∈[N ] is an NSM.

Proof. First, note that E[Zt | Ft−1] = µt(m) since we are assuming the null H0,m is true. Second, note that Zt ∈
[0,maxi∈Ut π(i)/qt(i)] is bounded. Thus, the desired statement follows directly from the MGF bound on bounded random
variables i.e. if X ∈ [ℓ, u] is a random variable, then E[exp(λ(X − E[X]))] ≤ exp(λ2(u− ℓ)2/8) for any λ ∈ R.

Consequently, we can derive the following Hoeffding CS:

CH
t :=

µ̂t(λ
t
1)±

log(2/α) +
t∑

i=1

ψci
H (λi)

t∑
i=1

λi

 ∩ [0, 1],

where ct ≥ maxi∈Ut
π(i)/qt(i), and both (λt) and (ct) are predictable w.r.t. (Ft).

C.2 EMPIRICAL-BERNSTEIN CS

Define the following CGF-like function for empirical-Bernstein:

ψc
E :=

− log(1− cλ)− cλ

c2
,

for any c > 0. Now we define the following empirical-Bernstein NSM:

MEB
t (m) := exp

(
t∑

i=1

λi(Zi − µi(m))− (Zi − µ̂i−1)
2ψci

E (λi)

)

= exp

(
t∑

i=1

λi(m̂t −m)− (Zi − µ̂i−1)
2ψci

E (λi)

)
,

where λt ∈ [0, 1/ct), ct ≥ µ̂t−1, and both (λt) and (ct) are predictable w.r.t. (Ft).

Constructing the upper CS through mirroring. MEB
t can be used to construct a CS that lower bounds m∗, but naively

constructing an analog NSM (i.e., by negating Zt − µt(m) into µt(m) − Zt) results in a loose construction for the
upper CS, since ct would need to lower bound µ̂t−1 − Zt. Zt (and hence ct) be quite large depending on the sampling
probabilities qt. Thus, we use the fact that m∗ ∈ [0, 1] and hence 1−m∗ ∈ [0, 1] to construct a “mirroring” lower CS for
1−m∗ =

∑N
i=1 π(i)(1− f(i)). The lower CS for 1−m∗ is based upon the following NSM:

M ′EB
t (m) := exp

 t∑
i=1

λi

Z̃i −

1−m+

i−1∑
j=1

π(Ij)(1− f(Ij))

− (Z̃i − µ̃i−1)
2ψci

E (λi)


= exp

(
t∑

i=1

λi(m̃t − (1−m))− (Z̃i − µ̃i−1)
2ψci

E (λi)

)
.



Here, define Z̃t :=
π(It)
qt(It)

(1− f(It)), and let m̃t, and µ̃t be counterparts of m̂t and µ̂t where f(i) is replaced with 1− f(i)

in the respective definitions for each i ∈ [N ].

Proposition 2. (MEB
t (m∗))t∈[N ] and (M ′

t
EB

(m∗))t∈[N ] are both NSMs.

To prove Proposition 2, we introduce the following key lemma from Fan et al. [3].

Lemma 1 (Fan et al. [3, Lemma 4.1]). Let ξ be a number bounded from below i.e. satisfies ξ ≥ −c, where c ∈ R+ is a fixed
constant. Let the following be true: λ ∈ [0, 1/c). Then,

1 + λξ ≥ exp(λξ + ξ2(log(1− cλ) + cλ)).

Proof. The proof revolves around the following function h:

h(x) :=
log(1 + x)− x

x2/2
, x > −1.

Note that f is increasing in its domain. Then, λξ ≥ −cλ > −1 by definition of λ and ξ. Thus,

h(λξ) ≥ h(−cλ) ⇔ log(1 + λξ)− λξ

ξ2
≥ log(1− cλ) + cλ

c2
.

The desired statement follows from expanding this inequality and rearranging terms.

Proof of Proposition 2. We will only show the proof that (MEB
t (m∗)) is an NSM, since the proof that (M ′EB

t (m∗)) is an
NSM will follow a similar derivation. Let Yt = Zi − µi(m) and δt = µ̂t−1 − µi(m). Note that Yt − δt = Zt − µ̂t−1. To
prove our desired statement, it suffices to show the following is true:

E
[
exp(λtYt − (Yt − µ̂t−1)

2ψ
µ̂t−1

E ) | Ft−1

]
≤ 1. (1)

We will now show that (1) is indeed true:

E
[
exp(λtYt − (Yt − δt)

2ψ
µ̂t−1

E ) | Ft−1

]
= E

[
exp(λt(Yt − δt)− (Yt − δt)

2ψ
µ̂t−1

E ) | Ft−1

]
exp(λtδt)

≤ E [1 + λt(Yt − δt) | Ft−1] exp(λtδt)

= E [1− λtδt | Ft−1] exp(λtδt) ≤ 1.

The 1st inequality is by application of Lemma 1 with ξt = Yt− δt and c = µ̂t−1 (Zt ≥ 0, so ξt ≥ −µ̂t−1). The 2nd equality
is the result of E[Yt | Ft−1] = (m∗ −m∗

t )− (m∗ −m∗
t ) = 0. The last inequality is by 1− x ≤ exp(−x) for all x ∈ R.

Thus, we have proved (1) and our desired statement as a result.

As a result, we can construct the following empirical-Bernstein CS:

CEB
t :=

µ̂(λ′t1)− log(2/α) +
t∑

i=1

(Zi − µ̂i−1)
2ψc

E(λ
′
i)

t∑
i=1

λ′i

, 1− µ̃t(λ
t
1) +

log(2/α) +
t∑

i=1

(Z̃t − µ̃t−1)
2ψc

E(λi)

t∑
i=1

λi

 ∩ [0, 1].

The mirroring trick of constructing a lower CS for 1 −m∗ was originally employed to construct confidence bounds for
off policy evaluation in contextual bandits [13, 19]. To the best of our knowledge, this is the first use of the mirroring trick
simply for mean estimation.

For both the Hoeffding and empirical-Bernstein CSs, we show in Appendix D that we are able to recover the unweighted,
uniform sampling versions introduced by Waudby-Smith and Ramdas [17] as a special case, i.e., when qt is the uniform
distribution over the remaining items and π is uniform over all items. Thus, our formulations of the Hoeffding and
empirical-Bernstein CSs generalize the CSs for sampling without replacement in [17] to weighted sampling and estimation.



D CONNECTIONS WITH WAUDBY-SMITH AND RAMDAS [17, 18]

CSs for estimation of the unweighted mean through uniform sampling without replacement are shown in Waudby-Smith and
Ramdas [17] for Hoeffding and empirical-Bernstein style CSs, and Waudby-Smith and Ramdas [18] for betting style CSs.
In this section, we show these results are a special case of our results that also account for non-uniform sampling strategies
and weighted means. For simplicity, we will show the Hoeffding case, and the results for the other CSs follow a similar
argument. Following the notation of Waudby-Smith and Ramdas [17], let (X(i))i∈[N ] be a finite population of values in
[0, 1] (without loss of generality to arbitrary bounds on the X(i)). Let X1, . . . , XN be random variables that are the the
result of from sampling uniformly w/o replacement from this population. Waudby-Smith and Ramdas [17] construct the

following NSM for µ := 1
N

N∑
i=1

X(i):

MWS-R
t (m) := exp

 t∑
i=1

λi

Xi −m+
1

N − i+ 1

i−1∑
j=1

(Xj −m)

− ψH(λi)

 ,

and derive the CS

CWS-R
t :=

µ̂WS-R
t (λt1)±

log(2/α) +
t∑

i=1

ψH(λi)

t∑
i=1

λi

(
1 + i−1

N−i+1

)
 .

The center of this CS is defined as

µ̂WS-R
t (λt1) :=

t∑
i=1

λi

(
Xi +

1
N−i+1

i−1∑
j=1

Xj

)
t∑

i=1

λi(1 +
i−1

N−i+1 )

=

t∑
i=1

λi

(
Xi +

1
N−i+1

i−1∑
j=1

Xj

)
t∑

i=1

λi · N
N−i+1

.

In the weighted setting, π(i) = 1/N and f(i) = X(i) for each i ∈ [N ] implies that we are estimating the uniformly
weighted average m∗ = µ. For each t ∈ [N ] and i ∈ Nt, set qt(i) = 1/(N − t+ 1) to be the uniform distribution over the
remaining items. This gets us the following estimate of the mean from our Hoeffding CS:

µ̂t(λ
′
1
t
) =

t∑
i=1

λ′i

(
N−i+1

N Xi +
1
N

i−1∑
j=1

Xj

)
t∑

i=1

λ′i

.

By setting λ′i = λiN/(N − i+ 1), for each i ∈ [t], we get that µ̂t(λ
′t
1) = µ̂WS-R

t (λt1). To see that CH
t = CWS-R

t , we set
ct = (N − t+ 1)/N for each t ∈ [N ]. Note that that is minimum possible value that ct can be since π(i) = 1/N for each
i ∈ [N ], and qt(i) = 1/(N − t+ 1) for each i ∈ Nt. As a result, we are able to recover the Hoeffding CS from [17] as a
special case of our Hoeffding CS.

E EXPERIMENTS COMPARING DIFFERENT CS CONSTRUCTIONS

In Figure 1, we compare the width of the Hoeffding, empirical-Bernstein, and betting CSs under the prop-M sampling
strategy, i.e., under a weighted sampling strategy. We follow the same setup as Experiment 1 in Section 5. We see that the
empirical-Bernstein CS is tighter in cases where Nlg is larger. In these cases, the support size, ct, is large for Nlg transactions,
with makes the Hoeffding CS looser as a result. On the other hand, empirical-Bernstein is able to take advantage of the
low-variance from a large number of transactions having similar misstated fractions f(It). However, when Nlg is small,
most transactions will have a small support size, ct, and the Hoeffding CS will be tighter than empirical-Bernstein as a result.
The betting CS is tighter than both Hoeffding and empirical-Bernstein CSs in all our simulated setups. This trend is reflected
in Figure 2 where we plot the histogram of the first time the CS reaches ε = 0.2 width, i.e., the empirical-Bernstein CS
reaches ε width faster than the Hoeffding CS when Nlg is larger, and the betting CS is the faster than both Hoeffding and
empirical-Bernstein CSs.
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Figure 1: Plots showing the variation of the width of the betting, Hoeffding, and empirical-Bernstein CSs using prop-M
sampling strategies in different data regimes with N = 200; all CSs here also are intersected with the logical CS
of Section 2.2. We can see that empirical-Bernstein is tighter than Hoeffding in cases where the proportion of transactions
with large weights is high (i.e., Nlg/N is large), and vice versa. Across the board, the betting CS is tighter than both
Hoeffding and empirical-Bernstein CSs.
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Figure 2: Histograms of the first time for each CS to reach a width of ε = 0.2 with N = 200. We choose a larger ε than in
Experiment 1 for purposes of demonstrating the difference between the CSs, as all CSs converge to the logical CS and have
nearly identical stopping time distribution for small values of ε. We can see that the empirical-Bernstein CS is reaches ε
width earlier than Hoeffding CS when Nlg is large and the reverse is true when Nlg is small, and the betting CS reaches ε
uniformly the fastest.

F EXPERIMENTS WITH HOUSING SALES DATA

We now apply our auditing scheme to the transactions in the ‘House Sales in King County’ dataset from Kaggle. The dataset
consists of 21, 616 datapoints, each consisting of 21 features describing the house (such as the number of bedrooms, the
number of bathrooms, square footage, floors, condition, etc), and one target variable price. We treat the price values as
the ‘reported monetary values’ for our framework.

Creating the ground truth. To adapt the dataset to our problem, we first need to generate the ‘ground truth’, that is, the
true f -values. To do this, we proceed in the following steps:

• We first select 10% of the dataset, and assign them some arbitrary f values in the range (0, 0.7).

• Using this ‘labelled’ dataset, we train a random forest regressor with 200 trees, and mean-absolute error criterion.

• Finally, this trained regressor is then used to generate the ground truth for the remaining 90% of the dataset.

The reason for using this approach for generating the ground truth, is that we want it to be dependent on the additional
features associated with each transaction.

Generating the side-information. Having obtained the M and f -values, we obtain the side-information (i.e., S-values)
by using 10% of the remaining labelled data to train another predictor for generating side-information on the rest of the data.
In our experiments, we either used a single decision-tree regressor, or a random forest with a small number of trees (fewer

https://www.kaggle.com/datasets/harlfoxem/housesalesprediction


than 50). Informally, we expect that increasing the capacity of the regressor should lead to increased correlation between the
ground truth and the side-information.
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Figure 3: Histograms of the first time for each CS to reach a width of ε = 0.05 with N = 250. As expected, the
prop-M strategy (both with and without control variates) is significantly more sample-efficient than the uniform baseline,
and furthermore, the improvement by using control variates increases with increasing informativeness (i.e., ρ) of the
side-information.

Experimental Results. In Figure 3, we consider two instances of this problem: (i) side-information generated by a
decision-tree regressor, and (ii) side-information generated by a random-forest regressor, consisting of 10 trees. In the former
case, the correlation between the side information and the ground-truth is approximately 0.71, while in the latter it is around
0.82. As shown in the plots, the prop-M based strategies (both with and without control variates) significantly outperform
the uniform baseline strategy. Furthermore, the improvement by incorporating control variates increases with increasing
correlation.
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