
Appendix

Organization. The supplementary material is organized as follows. In section A, we provide a
proof that there is no polynomial-time algorithm for the problem of computing minimum δ-sufficient
reasons (unless PTIME = NP), even when δ is a fixed value. In section B, we provide a proof that
there is no polynomial-time algorithm for the problem of computing minimal δ-sufficient reasons
(unless PTIME = NP). In particular, we define in this section a decision problem that we prove to be
NP-hard in Section B.1, and then we show in Section B.2 that this decision problem can be solved in
polynomial-time if there exists a polynomial-time algorithm for the problem of computing minimal
δ-sufficient reasons. In Section C, we provide a proof that minimum and minimal δ-sufficient reasons
can be computed in polynomial-time when the split number (defined in Section 5.1) is bounded.
Finally, we provide in Section D a proof of Lemma 1, which completes the proof of tractability of the
problem of computing minimal δ-sufficient reasons for each class of monotone Boolean models for
which the problem of counting positive completions can be solved in polynomial time. Finally, we
describe in Section E our experimental evaluation of the encodings given in Section 6.

A Proof of Theorem 2

Theorem 2. Fix δ ∈ (0, 1]. Then assuming that PTIME ̸= NP, there is no polynomial-time algorithm
for δ-Compute-Minimum-SR.

Before we can prove this theorem, we will require some auxiliary lemmas. Given rational numbers
a, b with a ≤ b, recall that notation [a, b] refers to the set of rational numbers x such that a ≤ x ≤ b
(and likewise for [a, b)).

Lemma 2. Fix δ ∈ (0, 1). Given as input an integer n one can build in nO(1) time a decision tree Tδ

of dimension n, such that ∣∣∣Pr
z
[Tδ(z) = 1 | z ∈ COMP(⊥n)]− δ

∣∣∣ ≤ 1

2n
,

and moreover, there exists an instance x† for Tδ such that every partial instance y ⊆ x† holds

Pr
z
[Tδ(z) = 1 | z ∈ COMP(y)] ≤ Pr

z
[Tδ(z) = 1 | z ∈ COMP(⊥n)].

Proof. Let c = ⌊δ2n⌋, and note that δ− 1
2n ≤

c
2n ≤ δ, and thus |δ− c

2n | ≤
1
2n . This implies that we

can prove the first part of the lemma by building in polynomial time a tree Tc over n variables, that
has exactly c different positive instances, as then its probability of accepting a random completion of
⊥n will be exactly c

2n . Note as well that c < 2n as δ < 1.

As a first step, let us write c in binary, obtaining

c = α02
0 + α12

1 + · · ·+ αn−12
n−1,

with αi ∈ {0, 1} for each i. Then to build Tc start by creating n vertices, labeled 0 through n− 1.
These n labels are the variables of Tc. For each i ∈ {1, . . . , n− 1}, connect vertex labeled i to vertex
labeled i− 1 with a 0-edge, making vertex labeled n− 1 the root of Tc. Then, for each vertex with
label i ∈ {0, . . . , n− 1}, set its 1-edge towards a leaf with label true if αi = 1, and towards a leaf
with label false if αi = 0. The 0-edge of vertex labeled 0 goes towards a leaf with label false. Now
let us count how many different positive instances does Tc have. We can do this by summing over
all true leaves of Tc. Each true leaf comes from a 1-edge from a vertex labeled i ∈ {0, . . . , n− 1}.
For every i ∈ {0, . . . , n− 1}, if the vertex labeled i has a true leaf when following its 1-edge, then
the number of instances reaching that true leaf is exactly 2i, as the variables whose value is not
determined by the path to that leaf are those with labels less than i, which are exactly i variables.
Therefore, the number of different positive instances of Tc along a 1-edge is the sum of 2i for every i
such that αi = 1, which is exactly c. An example is given in Figure 3. This concludes the proof of the
first part of the lemma as the construction is clearly polynomial in n. For the second part, let us build
x† by setting x†[i] = 1− αi for every i ∈ {0, . . . , n− 1}. In the example presented in Figure 3, we
would build

x† = (1, 1, 0, 0, 1).

14



We will now prove that for any y ⊆ x†, it holds that

Pr
z
[Tc(z) = 1 | z ∈ COMP(y)] ≤ Pr

z
[Tc(z) = 1 | z ∈ COMP(⊥n)].

We do this via a finite induction argument by strengthening our induction hypothesis; for i ∈
{0, . . . , n− 1}, let T i

c be the sub-tree of Tc rooted at the vertex labeled i, and let us claim that for
every i ∈ {0, . . . , n− 1} we have that

Pr
z

[
T i
c(z) = 1 | z ∈ COMP(y)

]
≤ Pr

z

[
T i
c(z) = 1 | z ∈ COMP(⊥n)

]
,

which implies what we want to show when taking i = n− 1. The base case of the induction is when
i = 0, in which case the claim trivially holds as if y[0] = ⊥ we have equality, and if y[0] ̸= ⊥ then
by construction

Pr
z

[
T i
c(z) = 1 | z ∈ COMP(y)

]
= 0.

For the inductive case, let i > 0, and proceed by cases; if y[i] = ⊥, then by letting ti ∈ {0, 1} be an
indicator variable for whether the leaf across the 1-edge from vertex i is labeled true we have that

Pr
z

[
T i
c(z) = 1 | z ∈ COMP(y)

]
=

1

2
ti +

1

2
Pr
z

[
T i−1
c (z) = 1 | z ∈ COMP(y)

]
≤ 1

2
ti +

1

2
Pr
z

[
T i−1
c (z) = 1 | z ∈ COMP(⊥n)

]
= Pr

z

[
T i
c(z) = 1 | z ∈ COMP(⊥n)

]
,

where the inequality has used the inductive hypothesis. On the other hand, if y[i] = 1, that implies
x†[i] = 1 and thus αi = 0, which means the leaf across the 1-edge from vertex i is labeled with
false, and thus

Prz
[
T i
c(z) = 1 | z ∈ COMP(y)

]
= 0,

which trivially satisfies the claim. For the last case, if y[i] = 0, then x†[i] = 0 and thus αi = 1,
which means the leaf across the 1-edge from vertex i is labeled with true. Therefore we have

Pr
z

[
T i
c(z) = 1 | z ∈ COMP(y)

]
= Pr

z

[
T i−1
c (z) = 1 | z ∈ COMP(y)

]
≤ Pr

z

[
T i−1
c (z′) = 1 | z ∈ COMP(⊥n)

]
≤ 1

2
+

1

2
Pr
z

[
T i−1
c (z) = 1 | z ∈ COMP(⊥n)

]
(as Pr[·] ≤ 1)

= Pr
z

[
T i
c(z) = 1 | z ∈ COMP(⊥n)

]
.

This completes the induction argument, and thus we conclude the proof of the lemma.

We are now ready to prove Proposition 2. We will use notation log(x) to refer to the logarithm in
base 2 of x.

Proof of Theorem 2. We will prove that deciding whether a δ-SR of size k exists is NP-hard. We
will reduce from the case δ = 1, proved NP-hard by Barceló et al. (2020). We assume of course that
δ < 1, as otherwise the result is already known.

Let (T,x, k) be an input of the Minimum Sufficient Reason problem (i.e., δ = 1), and let n be
the dimension of T and x. Assume without loss of generality that T (x) = 1. If the given input of
Minimum Sufficient Reason is positive, then there is a partial instance y ⊆ x with |y|⊥ ≥ n− k
such that Prz[T (z) = 1 | z ∈ COMP(y)] = 1, and otherwise for every partial instance y ⊆ x with
|y|⊥ ≥ n− k it holds that

Pr
z
[T (z) = 0 | z ∈ COMP(y)] ≥ 1

2n
.

Let us build a tree Fδ with 3n + 3 + ⌈log(1/δ)⌉ variables as follows. First build Tδ of dimension
2n + 3 + ⌈log(1/δ)⌉ by using Lemma 2, and then replace every true leaf of Tδ by a copy of T .

15



4

3

2

1

0

false false

false

true

true

false

0

0

0

0

0 1

1

1

1

1

Figure 3: Example of Tc, the tree constructed in the proof of Lemma 2, for n = 5 and δ = 2
5 .

In this case c = 12 = 22 + 23. Note that Prz[Tc(z) = 1 | z ∈ COMP(⊥n)] = c
2n = 12

32 , and∣∣ 2
5 −

12
32

∣∣ = 1
40 < 1

32 .

Assume the 2n+ 3 + ⌈log(1/δ)⌉ variables of Tδ are disjoint from the n variables that appear in T ,
and thus Fδ has the proposed number of variables. An example of the construction of Fδ is illustrated
in Figure 4.

Define
δ′ := Pr

z

[
Tδ(z) = 1 | z ∈ COMP

(
⊥2n+2+⌈log(1/δ)⌉

)]
,

and recall that |δ′ − δ| ≤ 1
22n+3+⌈log(1/δ)⌉ . Now, let us build a final decision tree T ⋆

δ with 4n+ k +
4 + ⌈log(1/δ′)⌉ + ⌈log(1/δ)⌉ variables as follows. Create ℓ := n + k + 1 + ⌈log(1/δ′)⌉ vertices,
labeled ri for i ∈ {1, . . . , ℓ}, and assume these labels are disjoint from the ones used in Fδ. Let r1
be the root of T ⋆

δ , and for each i ∈ {1, . . . , ℓ− 1}, connect vertex labeled with ri to vertex labeled
with ri+1 using a 0-edge. The 0-edge from vertex labeled rℓ goes towards a leaf labeled with true.
The 1-edge from every vertex ri goes towards the root of a different copy of Fδ. Note that this
construction, illustrated in Figure 5, takes polynomial time. Now, consider the instance x⋆ that is
defined (i) exactly as x for the variables of T , (ii) exactly as in the instance x† coming from Lemma 2
for the variables of Tδ in Fδ, and (iii) with all variables ri set to 0. Note that T ⋆

δ (x
⋆) = 1. Now we

prove both directions of the reduction separately. Assume fir that the instance (T,x, k) is a positive
instance for Minimum Sufficient Reason. Then we claim that there is a δ-SR for T ⋆

δ of size at most
k. Indeed, let y ⊆ x be a sufficient reason for x under T with at most k defined components. Then
consider the partial instance y⋆ ⊆ x⋆, that is only defined in the components where y is defined.
Now let us study Prz[T

⋆
δ (z

′) = 1 | z ∈ COMP(y⋆)]. The probability that z ends up in the true leaf
on the 0-edge from vertex rℓ is 1

2ℓ
. In any other case, z takes a path that goes into a copy of Fδ,

where its probability of acceptance is δ′ ≥ δ − 1
22n+3+⌈log(1/δ)⌉ because of Lemma 2 and using that

y⋆ is undefined for all the variables of Tc. These two facts imply that

Pr
z
[T ⋆

δ (z) = 1 | z ∈ COMP(y⋆)] ≥ 1

2ℓ
+ δ − 1

22n+3+⌈log(1/δ)⌉ .

Now consider that

δ ≤ δ′ +
1

22n+3+⌈log(1/δ)⌉

≤ δ′ +
1

22n+3
· 1

2⌈log(1/δ)⌉

≤ δ′ +
1

22n+3
· 1

2log(1/δ)

= δ′ +
δ

22n+3
,

from where

δ ≤ δ′
(
1− 1

22n+3

)
,

16



and thus

log(1/δ) ≥ log(1/δ′) + log

(
1− 1

22n+3

)
= log(1/δ′)− log

(
22n+3

22n+3 − 1

)
= log(1/δ′)− 2n− 3 + log(22n+3 − 1)

≥ log(1/δ′)− 2n− 3 + 2n+ 2 (using 22n+3 − 1 ≥ 22n+2)

= log(1/δ′)− 1.

From this we obtain that

ℓ = n+ k + 1 + ⌈log(1/δ′)⌉
≤ 2n+ 1 + ⌈log(1/δ′)⌉
≤ 2n+ 1 + log(1/δ′) + 1

≤ 2n+ 3 + log(1/δ)

≤ 2n+ 3 + ⌈log(1/δ)⌉,

which allows us to conclude that

Pr
z
[T ⋆

δ (z) = 1 | z ∈ COMP(y⋆)] ≥ 1

2ℓ
+ δ − 1

22n+3+⌈log(1/δ)⌉ ≥ δ.

On the other hand, if (T,x, k) is a negative instance for Minimum Sufficient Reason, consider any
partial y⋆ with at most k defined components, and note that by hypothesis we have that Prz[T (z) =
1 | z ∈ COMP(y⋆)] ≤ 1− 1

2n . This implies, together with the second part of Lemma 2, that

Pr
z
[Fδ(z) = 1 | z ∈ COMP(y⋆)] ≤ δ

(
1− 1

2n

)
,

and thus subsequently

Pr
z
[T ⋆

δ (z) = 1 | z ∈ COMP(y⋆)] ≤ δ

(
1− 1

2n

)
+

1

2ℓ−k
,

by using that with at most k defined components in T ⋆
δ , the probability of reaching the true leaf across

the 0-edge from rℓ is at most 1
2ℓ−k . To conclude, note that

Pr
vz
[T ⋆

δ (z) = 1 | z ∈ COMP(y⋆)] ≤ δ

(
1− 1

2n

)
+

1

2ℓ−k

= δ − δ

2n
+

1

2n+1+⌈log(1/δ′)⌉

≤ δ − δ

2n
+

1

2n+1+log(1/δ′)

= δ +
(δ′ − δ)− δ

2n+1

≤ δ +
1

22n+3+⌈log(1/δ)⌉ − δ

2n+1

≤ δ +
δ

22n+3 − δ

2n+1

= δ + δ

(−1 + 1
22n+3

2n+1

)
< δ.

We have thus concluded that y⋆ is a δ-SR for x⋆ over T ⋆
δ if and only if (T,x, k) is a positive instance

of Minimum Sufficient Reason, which completes our reduction.

17



7

6

5

4

3

2

1

0

T

false

T

false

T

false

T

falsefalse

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

Figure 4: Illustration of the construction of Fδ for δ = 2
3 and n = 2. Thus 2n+ 3 + ⌈log(1/δ)⌉ = 8

and c =
⌊
2
3 · 2

8
⌋
= 170 = 27 + 25 + 23 + 21.

r1

r2

. .
.

rℓ−1

rℓ

true

Fδ

Fδ

. . . Fδ

Fδ

0

0

0

0

0

1

1

1

1

Figure 5: Illustration of the construction of T ⋆
δ . Recall that ℓ = n+ k + 1 + ⌈log(1/δ′)⌉.

18



B Proof of Theorem 3

Theorem 3. Assuming that PTIME ̸= NP, there is no polynomial-time algorithm for
Compute-Minimal-SR.

We start by explaining the high-level idea of the proof. First, we will show that the following decision
problem, called Check-Sub-SR, is NP-hard.

PROBLEM : Check-Sub-SR
INPUT : (T,y), for a decision tree T of dimension n, and partial instance y ∈ {0, 1,⊥}n
OUTPUT : Yes, if there is a partial instance y′ ⊊ y such that

Prz[T (z) = 1 | z ∈ COMP(y′)] ≥ Prz[T (z) = 1 | z ∈ COMP(y)],
and No otherwise

We then show that if Compute-Minimal-SR admits a polynomial time algorithm, then
Check-Sub-SR is in PTIME, which contradicts the assumption that PTIME ̸= NP. The latter
reduction requires an involved construction exploiting certain properties of the hard instances for
Check-Sub-SR.

To show that Check-Sub-SR is NP-hard, we use a polynomial time reduction from a decision
problem over formulas in CNF, called Minimal-Expected-Clauses, and which we also show to be
NP-hard. Both the NP-hardness of Minimal-Expected-Clauses and the reduction from Minimal-
Expected-Clauses to Check-Sub-SR may be of independent interest.

We now define the problem Minimal-Expected-Clauses. Let φ be a CNF formula over variables
X = {x1, . . . , xn}. Assignments and partial assignments of the variables in X , as well as the
notions of subsumption and completions over them, are defined in exactly the same way as for partial
instances over features. For a partial assignment µ over X , we denote by E(φ, µ) the expected
number of clauses of φ satisfied by a random completion of µ. We then consider the following
problem for fixed k ≥ 2 (recall that a k-CNF formula is a CNF formula where each clause has at
most k literals):

PROBLEM : k-Minimal-Expected-Clauses
INPUT : (φ, σ), for φ a k-CNF formula and σ a partial assignment
OUTPUT : Yes, if there is a partial assignment µ ⊊ σ such that E(φ, µ) ≥ E(φ, σ)

and No otherwise

We show that k-Minimal-Expected-Clauses is NP-hard even for k = 2, via a reduction from
the well-known clique problem. Finally, the reduction from k-Minimal-Expected-Clauses to
Check-Sub-SR builds an instance (T,y) from (φ, σ) in a way that there is a direct correspondence
between partial assignments µ ⊆ σ and partial instances y′ ⊆ y, satisfying that

Prz[T (z) = 1 | z ∈ COMP(y′)] =
E(φ, µ)

m
,

where m is the number of clauses of φ. This implies that (φ, σ) is a Yes-instance for k-Minimal-
Expected-Clauses if and only if (T,y) is a Yes-instance for Check-Sub-SR.

Below in Section B.1, we show the NP-hardness of k-Minimal-Expected-Clauses and the
reduction from k-Minimal-Expected-Clauses to Check-Sub-SR, obtaining the NP-hardness
of Check-Sub-SR. We conclude in Section B.2 with the reduction from Check-Sub-SR to
Compute-Minimal-SR, obtaining Theorem 3.

B.1 Hardness of the decision problem

We start with some simple observations regarding the number E(φ, µ) for a CNF formula φ and a
partial assignment µ. By linearity of expectation, we can write E(φ, µ) as the sum

E(φ, µ) =
∑

C clause of φ

ProbC,µ, (1)

19



where ProbC,µ is the probability that a random completion of µ satisfies the clause C.

In turn, the probabilities ProbC,µ can be easily computed as:

• ProbC,µ = 1, if there is a positive literal x in C with µ(x) = 1; or there is a negative literal
¬x in C with µ(x) = 0.

• ProbC,µ = 1− 1
2η , where η is the number of literals in C of the form x or¬x with µ(x) = ⊥.

Finally, note that for an assignment σ, E(φ, σ) is simply the number of clauses of φ satisfied by σ.

Now we are ready to show our first hardness result:
Proposition 1. k-Minimal-Expected-Clauses is NP-hard even for k = 2.

Proof. We reduce from the clique problem. Recall this problem asks, given a graph G and an integer
k ≥ 3, whether there is a clique of size k, that is, a set K of k vertices such that there is an edge
between any pair of distinct vertices from K. Let G be a graph and k ≥ 3. We can assume without
loss of generality that k is odd and the degree of every vertex x of G, denoted by deg(x), is at least
k − 1; if k is even we can consider the equivalent instance given by the graph G′ that extends G with
a fresh node connected via an edge with all the other nodes and k′ = k + 1. On the other hand, we
can iteratively remove vertices of degree less than k − 1 as those cannot be part of any clique of size
k. We define an instance (φ, σ) for 2-Minimal-Expected-Clauses as follows. The variables of φ
are the nodes of G. For each variable x we have the following clauses in φ:

• A clause Ax = (¬x). This clause Ax is repeated k−1
2 + deg(x)− (k − 1) times in φ. Note

this quantity is always a positive integer.

• A set of clauses Bx = {(x ∨ ¬y1), . . . , (x ∨ ¬ydeg(x))}, where y1, . . . , ydeg(x) are the
neighbors of x in G. Each clause in Bx appears only once in φ.

Additionally, for each set {x, y} where x ̸= y and {x, y} is not an edge in G, we have a clause
Zx,y = (x ∨ y) repeated 4e times in φ, where e is the number of edges in G.

We define the assignment σ such that σ(x) = 1, for all variables x of φ.

For an arbitrary partial assignment µ to the variables of φ, with µ ⊆ σ, we define

utilityφ,σ(µ) := E(φ, µ)− E(φ, σ).

In particular, the instance (φ, σ) is a Yes-instance for 2-Minimal-Expected-Clauses if and only if
there is µ ⊊ σ with utilityφ,σ(µ) ≥ 0. By equation (1), we can write

utilityφ,σ(µ) =
∑

C clause of φ

utilityφ,σ(µ,C),

where utilityφ,σ(µ,C) is defined as:

utilityφ,σ(µ,C) := ProbC,µ − ProbC,σ.

We have that:

ProbC,σ =

{
0 if C = Ax for some variable x

1 if C ∈ Bx for some variable x or C = Zx,y for some set {x, y}

On the other hand, for the probability ProbC,µ we have the following:

1. Assume C = Ax = (¬x) for some variable x. Then ProbC,µ is

(a) 1
2 , if µ(x) = ⊥ (and hence utilityφ,σ(µ,C) = 1

2 ), and
(b) 0 otherwise (then utilityφ,σ(µ,C) = 0).

2. Suppose C = (x ∨ ¬y) ∈ Bx for some variable x. Then ProbC,µ is

(a) 3
4 if µ(x) = ⊥ and µ(y) = ⊥ (and hence utilityφ,σ(µ,C) = − 1

4 ),

20



(b) 1
2 if µ(x) = ⊥ and µ(y) = 1 (and then utilityφ,σ(µ,C) = − 1

2 ), and
(c) 1 otherwise (then utilityφ,σ(µ,C) = 0).

3. Suppose C = Zx,y = (x ∨ y) for some set {x, y}. Then ProbC,µ is

(a) 3
4 if µ(x) = ⊥ and µ(y) = ⊥ (and hence utilityφ,σ(µ,C) = − 1

4 ), and
(b) 1 otherwise (then utilityφ,σ(µ,C) = 0).

We now show the correctness of our construction. Suppose G has a clique K of size k ≥ 3. Let µ be
the partial assignment that sets µ(x) = ⊥ if x ∈ K and µ(x) = 1 if x /∈ K. Note that µ ⊊ σ. We
claim that utilityφ,σ(µ) = 0 and hence (φ, σ) is a Yes-instance. Let C be a clause in φ. If C is of
the form Zx,y, then utilityφ,σ(µ,C) = 0. Indeed, by construction, {x, y} is not an edge, and since
K is a clique, then µ(x) = 1 or µ(y) = 1. This means we are always in case 3(b) above. If x /∈ K
and C is of the form Ax or belongs to Bx, then utilityφ,σ(µ,C) = 0, since µ(x) = 1 and hence we
fall either in case 1(b) or 2(c) above. It follows that utilityφ,σ(µ) is the sum of the utilities of all the
clauses involved with variables x ∈ K. That is:

utilityφ,σ(µ) =
∑
x∈K

[(
k − 1

2
+ deg(x)− (k − 1)

)
utilityφ,σ(µ,Ax) +

∑
C∈Bx

utilityφ,σ(µ,C)

]
.

(2)
Take x ∈ K. Then utilityφ,σ(µ,Ax) =

1
2 as µ(x) = ⊥, and then case 1(a) applies. On the other

hand, for a clause C ∈ Bx we have two cases:

• C = (x ∨ ¬y) for y ∈ K. In this case, utilityφ,σ(µ,C) = − 1
4 as we are in case 2(a) above.

• C = (x ∨ ¬y) for y /∈ K. In this case, utilityφ,σ(µ,C) = − 1
2 as we are in case 2(b) above.

Moreover, note that the first case occurs exactly for k − 1 clauses in Bx, as x has precisely k − 1
neighbors in the clique K. The second case occurs exactly for deg(x)− (k − 1) ≥ 0 clauses in Bx.
Replacing in equation (2), we obtain:

utilityφ,σ(µ) =
∑
x∈K

(
k − 1

4
+

deg(x)

2
− k − 1

2

)
+

(
−k − 1

4
− deg(x)

2
+

k − 1

2

)
= 0.

We conclude that (φ, σ) is a Yes-instance.

Suppose now that there is a partial assignment µ, with µ ⊊ σ and utilityφ,σ(µ) ≥ 0. Let K be the set
of variables x such that µ(x) = ⊥. For x /∈ K and C = Ax or C ∈ Bx, we have utilityφ,σ(µ,C) = 0,
as we are in cases 1(b) or 2(c) above. Then we can write:

utilityφ,σ(µ) =
∑
x∈K

[(
k − 1

2
+ deg(x)− (k − 1)

)
utilityφ,σ(µ,Ax) +

∑
C∈Bx

utilityφ,σ(µ,C)

]
+

∑
{x, y} non-edge

4e (utilityφ,σ(µ,Zx,y)). (3)

We claim that |K| ≥ k. Towards a contradiction, suppose |K| = ℓ < k. As utilityφ,σ(µ,Zx,y) ≤ 0
for every pair {x, y}, the last term in equation (3) is ≤ 0, and then:

utilityφ,σ(µ) ≤
∑
x∈K

[(
k − 1

2
+ deg(x)− (k − 1)

)
utilityφ,σ(µ,Ax) +

∑
C∈Bx

utilityφ,σ(µ,C)

]
.

(4)
Take x ∈ K. Following the same argument as before, we have that utilityφ,σ(µ,Ax) =

1
2 and for a

clause C ∈ Bx we have the two cases:

• C = (x ∨ ¬y) for y ∈ K, and utilityφ,σ(µ,C) = − 1
4 .

21



• C = (x ∨ ¬y) for y /∈ K, and utilityφ,σ(µ,C) = − 1
2 .

Let say the first case occurs precisely for r clauses from Bx. Then:∑
C∈Bx

utilityφ,σ(µ,C) = −r

4
− deg(x)− r

2
=

r

4
− deg(x)

2
. (5)

Note that r ≤ ℓ− 1 and from equation (5) we obtain (recall ℓ < k):∑
C∈Bx

utilityφ,σ(µ,C) ≤ ℓ− 1

4
− deg(x)

2
<

k − 1

4
− deg(x)

2
.

Replacing in equation (4), we obtain:

utilityφ,σ(µ) <
∑
x∈K

[(
k − 1

4
+

deg(x)

2
− k − 1

2

)
+

k − 1

4
− deg(x)

2

]
=
∑
x∈K

[
deg(x)

2
− k − 1

4
+

k − 1

4
− deg(x)

2

]
= 0.

We conclude that utilityφ,σ(µ) < 0 which is a contradiction. Hence |K| ≥ k.

Finally, we show that K is a clique. By contradiction, assume there is a pair {x̃, ỹ} such that x̃ ̸= ỹ,
x̃, ỹ ∈ K and {x̃, ỹ} is not an edge in G. Then there is a clause Zx̃,ỹ which is repeated M times in φ.
Since µ(x̃) = ⊥ and µ(ỹ) = ⊥, we have utilityφ,σ(µ,Zx̃,ỹ) = − 1

4 , as we are in case 3(a) above. As
utilityφ,σ(µ,Zx,y) ≤ 0 for all pairs {x, y}, we obtain:∑

{x, y} non-edge

4e (utilityφ,σ(µ,Zx,y)) ≤ 4e (utilityφ,σ(µ,Zx̃,ỹ)) ≤ −e

For x ∈ K, since utilityφ,σ(µ,C) ≤ 0, for all C ∈ Bx, we have
∑

C∈Bx
utilityφ,σ(µ,C) ≤ 0 and

hence: ∑
x∈K

∑
C∈Bx

utilityφ,σ(µ,C) ≤ 0

On the other hand, for x ∈ K, we have utilityφ,σ(µ,Ax) =
1
2 . Combining all this with equation (3)

we obtain:

utilityφ,σ(µ) ≤
∑
x∈K

(
deg(x)

2
− k − 1

4

)
− e

<
∑
x∈K

deg(x)

2
− e (since k ≥ 3)

≤
∑
x in G

deg(x)

2
− e

= 0.

We conclude that utilityφ,σ(µ) < 0, and thus obtain a contradiction. Hence G contains a clique of
size k.

We now provide the reduction from 2-Minimal-Expected-Clauses to Check-Sub-SR, showing the
hardness of the latter problem.
Proposition 2. Check-Sub-SR is NP-hard.

Proof. We reduce from 2-Minimal-Expected-Clauses. Let (φ, σ) be an instance of 2-Minimal-
Expected-Clauses. Let m be the number of clauses of φ and assume that φ has n variables
x1, . . . , xn. Without loss of generality we assume that m is a power of 2. Define a decision tree
T of dimension n +m − 1 as follows. Start with a perfect binary tree S of depth log2 m, that is,

22



each internal node has two children, and each leaf is at depth log2 m. In particular, S has m leaves
and m− 1 internal nodes. All the internal nodes of S are labeled with a different fresh feature from
{n+ 1, . . . , n+m− 1}. For each clause C in φ, pick a different leaf ℓC of S. It is easy to see that
for each clause C we can define a decision tree SC over the features {1, . . . , n} such that for every
assignment µ : {x1, . . . , xn} → {0, 1} to the variables of φ, the corresponding instance x ∈ {0, 1}n
where x[i] = µ(xi) satisfies that SC(x) = 1 if and only if µ satisfies C. The decision tree T is
obtained from S by identifying for each clause C, the leaf ℓC with the root of the decision tree SC .

For any partial assignment µ : {x1, . . . , xn} → {0, 1,⊥} for φ, we denote by yµ the partial instance
of dimension n+m− 1 such that yµ[i] = µ(xi) for every i ∈ {1, . . . , n} and yµ[i] = ⊥ for every
i ∈ {n+ 1, . . . , n+m− 1}. The output of the reduction is (T,yσ). Observe that the transformation
from µ to yµ is a bijection between the sets {µ | µ ⊆ σ} and {yµ | yµ ⊆ yσ}. By construction, for
any partial assignment µ ⊆ σ, we have:

Prz[T (z) = 1 | z ∈ COMP(yµ)] =
E(φ, µ)

m
.

Hence (φ, σ) is a Yes-instance of 2-Minimal-Expected-Clauses if and only if (T,yσ) is a Yes-
instance of Check-Sub-SR.

Remark 1. We can assume that the instance (T,yσ) constructed in the proof of Proposition 2,
satisfies that

Prz[T (z) = 1 | z ∈ COMP(yσ)] >
1

2
.

Indeed, the above probability is simply E(φ,σ)
m , where m is the number of clauses of φ. On the

other hand, from the proof of Proposition 1, we can choose σ such that σ(xi) = 1 for every variable
xi ∈ {x1, . . . , xn} of φ. It follows that E(φ, σ) is simply the number of clauses satisfied by σ, which
are all the clauses in Bx for some variable x, and all the clauses of the form Zx,y . Note that the total
number of clauses from the sets Bx is greater that the total number clauses of the form Ax, and hence
E(φ,σ)

m > 1
2 . Indeed, there are deg(x) clauses in Bx, and summing over all the variables x, we obtain

2e, where e are the number of edges in the graph G. On the other hand, each clause Ax is repeated
k−1
2 + deg(x)− (k − 1) = deg(x)− k−1

2 times. Taking the sum over all the variables x, we obtain
2e− n

(
k−1
2

)
< 2e. This property will be useful in the Section B.2.

B.2 From hardness of decision to hardness of computation

We will show a Turing-reduction from a variant of Check-Sub-SR to Compute-Minimal-SR, thus
establishing that the latter cannot be solved in polynomial time unless P = NP.

For the sake of readability, given a partial instance y, in this proof we use notation z ∼ U(y) to
indicate that z is generated uniformly at random from the set COMP(y). For instance, we obtain the
following simplification by using this terminology:

Pr
z
[T (z) = 1 | z ∈ COMP(y)] = Pr

z∼U(y)
[T (z) = 1]

We will require a particular kind of hard instances for the Check-Sub-SR in order to make our
reduction work. In particular, we now define the notion of strongly-balanced inputs, which intuitively
captures the idea that defined features in a partial instance y appear at the same depth in different
branches of a the decision tree T . In order to make this definition precise, consider that every path π
from the root to a leaf in a decision tree can be identified with a sequence of labels sπ corresponding
to the labels of the nodes of π, where the last label of π is either true or false. We use notation sπ[i]
for the i-th label in the sequence sπ . With this notation, we can introduce the following definition.
Definition 2. Given a decision tree T of dimension d and y ∈ {0, 1,⊥}n a partial instance, we say
that the pair (T,y) is strongly-balanced if

Pr
z∼U(y)

[T (z) = 1] >
1

2
,

and there exists k ∈ N such that for every root-to-leaf path π in T , the sequence sπ satisfies

y[sπ[i]] = ⊥ ⇐⇒ i ≤ k.

23



If (T,y) is strongly-balanced, then there exists a unique value k ∈ N that satisfies the second
condition of the definition. We denote this value by u(T,y). In particular, if y ∈ {0, 1}n, then (T,y)
is strongly-balanced and u(T,y) = 0.

Now let us define the following problem.

PROBLEM : SB-Check-SUB-SR
INPUT : (T,y), for T a decision tree of dimension n and y ∈ {0, 1,⊥}n a partial

instance, where (T,y) is strongly-balanced.
OUTPUT : Yes, if there is a partial instance y′ ⊊ y such that

Prz∼U(y′)[T (z) = 1] ≥ Prz∼U(y)[T (z) = 1], and No otherwise.

One can now check that the proof of Proposition 2 directly proves NP-hardness for this problem, and
thus we can reduce from it to prove hardness for the computation variant. Indeed, the first part of the
definition of strongly-balanced follows from Remark 1. The second part follows from the fact that
the construction in the proof of Proposition 2 starts with a perfect binary tree S.
Lemma 3. If there is a polynomial time algorithm for Compute-Minimal-SR, then there is a
polynomial time algorithm for SB-Check-SUB-SR.

Proof. Let us enumerate the features in T as 1, . . . , n. Also, let S be the set of features defined in y,
that is, y[i] ̸= ⊥ ⇐⇒ i ∈ S. We will first build a decision tree T ′ of dimension 2n− |S|, with the
following features:

1. Create a feature i for i ∈ S.

2. For every i ∈ {1, . . . , n} \ S create features i and i′.

Note that this amounts to the promised number of features. We will build T ′ through a recursive
process R defined next. First, note that any decision tree can be described inductively as either a
true/false leaf, or a tuple (r, L,R), where r is the root node, L is a decision tree whose root is the
left child of r, and R is a decision tree whose root is the right child of r. We can now defineR as a
recursive procedure that when called with argument τ proceed as follows:

1. If τ is a leaf then simply return τ .

2. If τ = (r, L,R), and node r is labeled with feature i ∈ S, then simply return

(r, R(L), R(R)).

3. If τ = (r, L,R), and node r is labeled with feature i ∈ {1, . . . , n} \ S, then return the
following decision tree:

(r, (u,R(L), false), (v, true,R(R))),

where nodes u and v are new nodes, both labeled with feature i′.

As anticipated, T ′ = R(T ). An example illustrating the process is depicted in Figure 6. Now we will
create a tree T ′′ of dimension 2n− |S|+m that on top of the previous features incorporates features
bj for each j ∈ {1, . . . ,m}, where m is an integer we will specify later on. In order to construct T ′′,
we start by defining y0 as the partial instance of dimension 2n− |S|+m such that y0[i] = y[i] for
every i ∈ S and

y0[bj ] = 0, ∀j ∈ {1, . . . ,m},
with the remaining components of y0 being left undefined. Let Ty0

be a tree of dimension 2n−|S|+m
that accepts exactly the completions of y0; this can be trivially done by creating a tree that accepts
exactly the features that are defined in y0, and then observing that when running an instance whose
feature space is a superset of this, then the instance will be accepted if and only if it is a completion of
y0. Now let T1 be a tree of dimension 2n+ |S|+m that implements the following Boolean formula:

ϕ =

m∑
j=1

bj ≥ 2.

24



2

3 3

1 4 4 1

truefalse falsetrue truefalse falsetrue

0 1

0 1 0 1

0
1

0 1 0 1
0

1

(a) Original decision tree T .

2

2′ 2′

3 false true 3

3′ 3′3′ 3′

4 false true 11 false true 4

true false false true false true false true

0 1

0 1 10

0 1 0 1

0 1 0 10 1 0 1

0 1 0 1 0 1 0 1

(b) Resulting decision tree T ′ = R(T ).

Figure 6: Illustration of the recursive processR over an example where y = (0, ⊥, ⊥, 0). Note that
the pair (T,y) is strongly-balanced.

Claim 1. Decision tree T1, implementing the function ϕ, can be constructed in polynomial time.

Proof of Claim 1. This proof can be easily done by a direct construction. Indeed, consider the
following Boolean formulas:

f(x1, . . . , xn) :=

n∑
i=1

xi ≥ 2,

g(x1, . . . , xn) :=

n∑
i=1

xi ≥ 1 =

n∨
i=1

xi.

We then note that

f(x1, . . . , xn) = [¬xn ∧ f(x1, . . . , xn−1)] ∨ [xn ∧ g(x1, . . . , xn−1)],

and thus we can build a decision tree for f recursively as illustrated in Figure 7. Note that
g(x1, . . . , xk) can be trivially implemented by a decision tree of size O(k). Thus the recursive
equation characterizing the size α(n) of a decision tree for f(x1, . . . , xn), is simply

α(n) = 1 + α(n− 1) +O(n),

from where we get α(n) ∈ O(n2), thus concluding the proof of the claim.

Now, let us build an instance x of dimension 2n− |S|+m as follows. For each i ∈ S let x[i] = y[i],
thus ensuring x will be a completion of y. Then for each j ∈ {1, . . . ,m} let x[bj ] = 0, and finally
for each i ∈ {1, . . . , n} \ S, let x[i] = 0 and x[i′] = 1.

25



f(x1, . . . , xn)

xn

f(x1, . . . , xn−1) g(x1, . . . , xn−1)

0 1

Figure 7: Illustation of the construction for Claim 1.

For example, if y = (0, ⊥, ⊥, 1), and m = 3 then

x = (0, 0, 1, 0, 1, 1, 0, 0, 0),

where the features bj have been placed at the end of the vector.

Let y⋆ be the partial instance of dimension 2n− |S|+m such that y⋆[i] = y[i] for every i ∈ S, and
undefined otherwise. Let us abuse notation and assume now that T ′ has dimension 2n− |S|+m,
even though it only explicitly uses the first 2n− |S| features, as this would make it compatible with
other decision trees and instance we have constructed. Finally, let T ⋆ be the decision tree defined as

T ⋆ = Ty0
∪ (T ′ ∩ T1),

and note that the union and intersection of decision trees can be computed in polynomial time through
a standard algorithm (see e.g., Wegener (2000)).

Let us now define
δ := Pr

z∼U(y⋆)
[(T ′ ∩ T1)(z) = 1].

We now claim that the result of Compute-Minimal-SR(T ⋆,x, δ) is different from y⋆ if and only
if (T,y) is a positive instance of SB-Check-SUB-SR. But before we can prove this, we will need
some intermediary tools and claims that we develop next.

Let us start by distinguishing two kinds of leaves of T ′. Let us say that the leaves of T ′ introduced in
step 1 of the recursive procedureR are natural, while those introduced in step 3 are artificial. We
denote by N the set of natural leaves of T ′ and by A the set of artificial leaves of T ′. Moreover, let
Nt,Nf represent the true and false natural leaves, and define At,Af analogously. We will also
use T ′

↓z to denote the leaf where instance z ends when evaluated over tree T ′. With this notation,
T ′(z) = 1 is equivalent to T ′

↓z ∈ At ∪Nt. We now make the following claims.

Claim 2. For every partial instance y′⋆ ⊆ y⋆, it holds that

Pr
z∼U(y′⋆)

[
T ′
↓z ∈ At | T ′

↓z ∈ A
]
= Pr

z∼U(y′⋆)

[
T ′
↓z ∈ Af | T ′

↓z ∈ A
]
=

1

2
.

Proof of Claim 2. Observe that every leaf ℓ ∈ A has a parent node v in T ′ labeled with some feature
i′ whose parent node u in T ′ is labeled with feature i. Let G(ℓ) = u be said the grandparent of ℓ, and
assume that G−1(u) = {ℓ′ | G(ℓ′) = u}. With this notation, we can split the set A as follows:

A =
⋃

node u with label i ̸∈S

{
T ′
↓z | G

(
T ′
↓z
)
= u

}
,

26



where the union is actually disjoint. Thus, we have that for every partial instance y′⋆ ⊆ y⋆:

Pr
z∼U(y′⋆)

[
T ′
↓z ∈ At | T ′

↓z ∈ A
]
=∑

node u with label i̸∈S

Pr
z∼U(y′⋆)

[
T ′
↓z ∈ At | T ′

↓z ∈ A ∩G−1(u)
]
· Pr
z∼U(y′⋆)

[
T ′
↓z ∈ A ∩G−1(u) | T ′

↓z ∈ A
]
,

but we have the following equation for the last term

Pr
z∼U(y′⋆)

[
T ′
↓z ∈ At | T ′

↓w ∈ A ∩G−1(u)
]
=

1

2
,

as the event is equivalent to z[i] = 1, z[i′] = 0, and this is equally likely to the complement event
z[i] = 0, z[i′] = 1, given that y′⋆[i] = y′⋆[i′] = ⊥. Therefore

Pr
z∼U(y′⋆)

[
T ′
↓z ∈ At | T ′

↓z ∈ A
]
=∑

node u with label i ̸∈S

1

2
· Pr
z∈U(y′⋆)

[
T ′
↓z ∈ A ∩G−1(u) | T ′

↓z ∈ A
]
=

1

2
·

∑
node u with label i ̸∈S

Pr
z∈U(y′⋆)

[
T ′
↓z ∈ A ∩G−1(u) | T ′

↓z ∈ A
]
=

1

2
.

Claim 3. Given a partial instance y′ ⊆ y, we can naturally define y′⋆ as the partial instance of
dimension 2n− |S|+m that matches y′ on its defined features, and holds y′⋆[i] = y′⋆[i′] = ⊥ for
every feature i such that y′[i] = ⊥. Then it holds that

Pr
z∼U(y′)

[T (z) = 1] = Pr
z∼U(y′⋆)

[
T ′
↓z ∈ Nt | T ′

↓z ∈ N
]
.

Proof of Claim 3. Given that the resulting leaf is natural, for every node u of T ′ such that u is labeled
with feature i ̸∈ S, the tuple (u, L,R) was considered when constructing T ′ and the path of w in T ′

goes through u, it must be the case that z[i] = z[i′] = 0 or z[i] = z[i′] = 1, as otherwise T ′
↓z ∈ A.

But these two alternatives are equally likely by definition of T ′. Thus, by using a simple induction
argument, for every leaf ℓ of T with a corresponding natural leaf ℓ′ of T ′, it holds that

Pr
z∼U(y′)

[T↓z = ℓ] = Pr
z∼U(y′⋆)

[
T ′
↓z = ℓ′ | T ′

↓z ∈ N
]
,

from where the claim immediately follows.

Claim 4. By choosing m ≥ max{2u(T,y) + 2n, 9}, we have that

Pr
z∼U(y⋆)

[(T ′ ∩ T1)(z) = 1] >
1

2
.

Proof of Claim 4. First, consider that for T1, we have that

Pr
z∼U(y⋆)

[T1(z) = 1] = 1−
(
1

2

)m

−m

(
1

2

)m

= 1− (m+ 1)

(
1

2

)m

,

while on the other hand

Pr
z∼U(y⋆)

[T ′(z) = 1] = Pr
z∼U(y⋆)

[
T ′
↓z ∈ At

]
+ Pr

z∼U(y⋆)
[T ′

↓z ∈ Nt]

= Pr
z∼U(y⋆)

[T ′
↓z ∈ At | T ′

↓z ∈ A] · Pr
z∼U(y⋆)

[T ′
↓z ∈ A]

+ Pr
z∼U(y⋆)

[T ′
↓z ∈ Nt | T ′

↓z ∈ N ] · Pr
z∼U(y⋆)

[T ′
↓z ∈ N ]

=
1

2
· Pr
z∼U(y⋆)

[T ′
↓z ∈ A]

+ Pr
z∼U(y⋆)

[T ′
↓z ∈ Nt | T ′

↓z ∈ N ] · Pr
z∼U(y⋆)

[T ′
↓z ∈ N ],

27



where the last equality uses Claim 2. Let us now show that

Pr
z∼U(y⋆)

[T ′
↓z ∈ Nt | T ′

↓z ∈ N ] ≥ 1

2
+

(
1

2

)n

.

By Claim 3 this is the same as showing that

Pr
z∼U(y)

[T (z) = 1] ≥ 1

2
+

(
1

2

)n

,

which is guaranteed by the definition of the SB-Check-SUB-SR problem, as we know that

Pr
z∼U(y)

[T (z) = 1] >
1

2
,

and also that Prz∼U(y)[T (z) = 1] must be of the form
(

k
2n

)
with k ∈ N, given that n is the dimension

of T .

Now, consider that

Pr
z∼U(y⋆)

[T ′
↓z ∈ A] = 1−

(
1

2

)u(T,y)

.

Notice that this holds because T is strongly-balanced, so falling into a natural leaf in T ′ requires
going through u(T,y) layers without choosing an artificial leaf, which happens with probability 1

2 at
each layer. Thus, we have that

Pr
z∼U(y⋆)

[T ′(z) = 1] ≥ 1

2

(
1−

(
1

2

)u(T,y)
)

+

(
1

2
+

(
1

2

)n)(
1

2

)u(T,y)

=
1

2
+

(
1

2

)n+u(T,y)

.

Moreover, given that T ′ and T1 impose restrictions over disjoint sets of features, we have that

Pr
z∼U(y⋆)

[T ′(z) = 1 | T1(z) = 1] = Pr
z∼U(y⋆)

[T ′(z) = 1].

Putting together all the previous results, we obtain that

Pr
z∼U(y⋆)

[(T ′ ∩ T1)(z) = 1] = Pr
z∼U(y⋆)

[T ′(z) = 1 | T1(z) = 1] · Pr
z∼U(y⋆)

[T1(z) = 1]

= Pr
z∼U(y⋆)

[T ′(z) = 1] · Pr
z∼U(y⋆)

[T1(z) = 1]

≥

(
1

2
+

(
1

2

)n+u(T,y)
)(

1− (m+ 1)

(
1

2

)m)

=
1

2
− (m+ 1)

(
1

2

)m+1

+

(
1

2

)n+u(T,y)

− (m+ 1)

(
1

2

)m+n+u(T,y)

≥ 1

2
− (m+ 1)

(
1

2

)m

+

(
1

2

)n+u(T,y)

≥ 1

2
−
(
1

2

)m−⌈log(m+1)⌉

+

(
1

2

)n+u(T,y)

.

But we are assuming m ≥ max{2n+ 2u(T,y), 9}, which implies that m ≥ 2n+ 2u(T,y). Hence,
we have that

m− ⌈log(m+ 1)⌉ > n+ u(T,y),

as m− ⌈log(m+ 1)⌉ > m
2 since m ≥ 9. We conclude that

1

2
−
(
1

2

)m−⌈log(m+1)⌉

+

(
1

2

)n+u(T,y)

>
1

2
,

from which the claim follows.

28



Claim 5. For every partial instance y′⋆ ⊆ y⋆, it holds that

Pr
z∼U(y′⋆)

[
T ′
↓z ∈ A

]
= Pr

z∼U(y⋆)

[
T ′
↓z ∈ A

]
,

Pr
z∼U(y′⋆)

[
T ′
↓z ∈ N

]
= Pr

z∼U(y⋆)

[
T ′
↓z ∈ N

]
.

Proof of Claim 5. We only need to prove that Prz∼U(y′⋆)[T
′
↓z ∈ A] = Prz∼U(y⋆)[T

′
↓z ∈ A]. As

shown in the proof of Claim 4, this follows from the strongly-balanced property of T .

With these claims we can finally prove the reduction is correct. That is, we will show that
Compute-Minimal-SR(T ⋆,x, δ) is different from y⋆ if and only if (T,y) is a positive instance
of SB-Check-SUB-SR.

Forward direction. Assume the result of Compute-Minimal-SR(T ⋆,x, δ) is some partial instance
y′⋆ different from y⋆. Note immediately that it is not possible that y⋆ ⊊ y′⋆ as by definition of δ, we
have that

Pr
z∼U(y⋆)

[T ⋆(z) = 1] ≥ δ,

which would contradict the minimality of y′⋆. Let us first prove that y′⋆ ⊆ y⋆. As a first step, we
show that y′⋆[i] = y′⋆[i′] = ⊥ for every i ̸∈ S. We do this by way of contradiction, assuming first
that y′⋆[i] = 0 or y′⋆[i′] = 1 for some i ̸∈ S, and exposing how either case generates a contradiction.1

1. If there is some feature i ̸∈ S such that y′⋆[i] = 0, let us define y† to be equal to y′⋆ except
that y†[i] = ⊥. This means that y† ⊊ y′⋆. Moreover, let y†

1 be equal to y′⋆ except that
y†
1[i] = 1. We will now show that y† is also a valid output of the computation problem,

which will contradict the minimality of y′⋆. Indeed, given that (Ty0 ∩ T1)(z) = 0 for every
instance z, it holds that

Pr
z∼U(y†)

[T ⋆(z) = 1] = Pr
z∼U(y†)

[Ty0
(z) = 1] + Pr

z∼U(y†)
[(T ′ ∩ T1)(z) = 1]

= Pr
z∼U(y′⋆)

[Ty0
(z) = 1] + Pr

z∼U(y†)
[(T ′ ∩ T1)(z) = 1],

and we can then observe that the events T ′(z) = 1 and T1(z) = 1 are independent, thus
implying that

Pr
z∼U(y†)

[(T ′ ∩ T1)(z) = 1] = Pr
z∼U(y†)

[T ′(z) = 1] · Pr
z∼U(y†)

[T1(z) = 1].

By construction of y†, we also have that

Pr
z∼U(y†)

[T1(z) = 1] = Pr
z∼U(y′⋆)

[T1(z) = 1].

Thus, it now suffices to show that

Pr
z∼U(y†

1)
[T ′(z) = 1] ≥ Pr

z∼U(y′⋆)
[T ′(z) = 1],

as this implies by definition of y′⋆, y† and y†
1 that

Pr
z∼U(y†)

[T ′(z) = 1] ≥ Pr
z∼U(y′⋆)

[ T ′(z) = 1],

which in turn implies by the previous discussion that

Pr
z∼U(y†)

[T ⋆(z) = 1] ≥ Pr
z∼U(y′⋆)

[T ⋆(z) = 1] ≥ δ,

and leads to a contradiction.

In order to prove that Prz∼U(y†
1)
[T ′(z) = 1] ≥ Prz∼U(y′⋆)[T

′(z) = 1], we will consider
two cases, either y′⋆[i′] = 1 or y′⋆[i′] = ⊥.

1Recall that x[i] = 0 and x[i′] = 1, so if y′⋆[i] ̸= ⊥ or y′⋆[i′] ̸= ⊥, then y′⋆[i] = 0 or y′⋆[i′] = 1 as
y′⋆ ⊆ x.

29



(a) If y′⋆[i′] = 1, then we have that

Pr
z∼U(y†

1)
[T ′(z) = 1] ≥ Pr

z∼U(y′⋆)
[T ′(z) = 1],

as for every node u in T ′ labeled with i, any completion z of y′⋆ that goes through u
will be rejected by construction (landing in an artificial false leaf), and for paths of T ′

that do not go through a node labeled u there is no difference between completions of
y′⋆ and those for y†

1.
(b) If y′⋆[i′] = ⊥, then we have that for every node u in T ′ which corresponds to (u, L,R)

according to the recursive definition of a decision tree, and is labeled with i, the
probability of acceptance of a random completion z conditioned on its path going
through u, which is denoted by z ⇝ u, is as follows:

Pr
z∼U(y′⋆)

[T ′(z) = 1 | z ⇝ u] =
1

2
· Pr
z∼U(y′⋆)

[L(z) = 1 | z ⇝ u],

while on the other hand we have

Pr
z∼U(y†

1)
[T ′(z) = 1 | z ⇝ u] =

1

2
+

1

2
· Pr

z∼U(y†
1)
[R(z) = 1 | z ⇝ u].

By considering that

1

2
≥ 1

2
· Pr
z∼U(y′⋆)

[L(z) = 1 | z ⇝ u],

we conclude that

Pr
z∼U(y†

1)
[T ′(z) = 1 | z ⇝ u] ≥ 1

2
· Pr
z∼U(y′⋆)

[L(z) = 1 | z ⇝ u].

from which we conclude that

Pr
z∼U(y†

1)
[T ′(z) = 1 | z ⇝ u] ≥ Pr

z∼U(y′⋆)
[T ′(z) = 1 | z ⇝ u].

Therefore, by considering that z ⇝ u1 and z ⇝ u2 are disjoint events of u1, u2 are
distinct nodes of T ′ with labeled i, we have that

Pr
z∼U(y†

1)
[T ′(z) = 1] =

∑
u is a node of T ′

with label i

Pr
z∼U(y†

1)
[T ′(z) = 1 | z ⇝ u] · Pr

z∼U(y†
1)
[z ⇝ u]

≥
∑

u is a node of T ′

with label i

Pr
z∼U(y′⋆)

[T ′(z) = 1 | z ⇝ u] · Pr
z∼U(y†

1)
[z ⇝ u]

=
∑

u is a node of T ′

with label i

Pr
z∼U(y′⋆)

[T ′(z) = 1 | z ⇝ u] · Pr
z∼U(y′⋆)

[z ⇝ u]

= Pr
z∼U(y′⋆)

[T ′(z) = 1]

This concludes the proof of this case.

2. It remains to analyze the case when y′⋆[i] = ⊥ and y′⋆[i′] = 1, which can be proved in the
same way as the previous case y′⋆[i] = 0 and y′⋆[i′] = ⊥.

After this case analysis, we can safely assume that y′⋆[i] = y′⋆[i′] = ⊥ for every i ̸∈ S. We will now
show that y′⋆[bj ] = ⊥ for every j ∈ {1, . . . ,m}. To see this, consider that in general it could be that
y′⋆ forces a certain number k of features bj to get value 0, meaning that there is a set K ⊆ {1, . . . ,m}
with |K| = k such that y′⋆[bj ] = 0 for j ∈ K. We will argue that k = 0. Let us start by arguing that
k ≤ m− 2. Indeed, assume expecting a contradiction that k > m− 2, then by definition

Pr
z∼U(y′⋆)

[T1(z) = 1] = 0,

30



and thus
Pr

z∼U(y′⋆)
[T ⋆(z) = 1] = Pr

z∼U(y′⋆)
[Ty0

(z) = 1],

but

Pr
z∼U(y′⋆)

[Ty0
(z) = 1] ≤ 1

2
,

as y′⋆ cannot be a superset of y⋆, and thus at least one feature i of y⋆ is undefined in y′⋆, and the
event z[i] = y⋆[i], which happens with probability 1

2 , is required for Ty0
(z) = 1. But by definition

of δ, if y′⋆ is the output of the computational problem, then its probability of acceptance is at least

Pr
z∼U(y⋆)

[(T ′ ∩ T1)(z) = 1],

and this probability is greater than 1
2 (Claim 4), and thus we have a contradiction. We now safely

assume k ≤ m− 2 and thus m− k ≥ 2. Observe that as at least one component of y⋆ is undefined
in y′⋆, we have

Pr
z∼U(y′⋆)

[Ty0(z) = 1] ≤ 1

2
·
(
1

2

)m−k

,

and thus

Pr
z∼U(y′⋆)

[(T ′ ∩ T1)(z) = 1] ≥ δ − 1

2
·
(
1

2

)m−k

,

which, considering that

Pr
z∼U(y′⋆)

[T1(z) = 1] = 1−
(
1

2

)m−k

− (m− k)

(
1

2

)m−k

,

implies that

Pr
y∼U(z′⋆)

[T ′(z) = 1] ≥
δ − 1

2 ·
(
1
2

)m−k

1−
(
1
2

)m−k − (m− k)
(
1
2

)m−k
,

as T ′(z) = 1 and T1(z) = 1 are independent events. We now show that the RHS of the previous
equation is greater than δ. Indeed, for ease of notation set r := (m− k + 1) and note how the RHS
can be rewritten as

δ −
(
1
2

)r
1− r

(
1
2

)r−1 .

Now consider that as m− k ≥ 2 we have that r ≥ 3 and thus 2r−1 > r, which implies r
(
1
2

)r−1
< 1,

and thus the denominator of the previous equation is positive, implying that what we want to show is
equivalent to

δ −
(
1

2

)r

> δ

(
1− r

(
1

2

)r−1
)
,

which is in turn equivalent to

δr

(
1

2

)r−1

>

(
1

2

)r

,

but as by Claim 4 we have δ > 1
2 , and r ≥ 3, the previous equation is trivially true. We have therefore

showed that
Pr

z∼U(y′⋆)
[T ′(z) = 1] > δ.

Now let y⊖ be the partial instance such that y⊖[i] = y′⋆[i] for every i ∈ S, and is undefined in all
other features. Note that y⊖ ⊆ y′⋆ and also y⊖ ⊆ y⋆. If y⊖ = y′⋆, then y′⋆ ⊆ y⋆ which is what
we are hoping to prove. So we now assume y⊖ ⊊ y′⋆ expecting a contradiction. Note that T ′ does
not use the bj features at all, and therefore we have that

Pr
z∼U(y⊖)

[T ′(z) = 1] = Pr
z∼U(y′⋆)

[T ′(z) = 1] > δ.

31



We will use this to prove that y⊖ would have been a valid outcome of the computing problem, thus
contradicting the minimality of y′⋆. Indeed,

Pr
z∼U(y⊖)

[T ⋆(z) = 1] > Pr
z∼U(y⊖)

[T ′(z) = 1] · Pr
z∼U(y⊖)

[T1(z) = 1],

and note that as

Pr
z∼U(y⊖)

[T ′(z) = 1] > δ,

it must be the case that

Pr
z∼U(y⊖)

[T ′(z) = 1] ≥ δ +

(
1

2

)2n−|S|

,

as only 2n− |S| features appear as labels in T ′ and, thus, the completion probability of any partial
instance over T ′ must be an integer multiple of

(
1
2

)2n−|S|
. Now let us abbreviate 2n− |S| as ℓ and

choose m ≥ 2ℓ. We thus have that

Pr
z∼U(y⊖)

[T ⋆(z) = 1] ≥ Pr
z∼U(y⊖)

[T ′(z) = 1] · Pr
z∼U(y⊖)

[T1(z) = 1]

≥

(
δ +

(
1

2

)2n−|S|
)(

1− (m+ 1)

(
1

2

)m)

≥

(
δ +

(
1

2

)2n−|S|
)(

1− (2ℓ+ 1)

(
1

2

)2ℓ
)

= δ − δ(2ℓ+ 1)

(
1

2

)2ℓ

+

(
1

2

)ℓ

− (2ℓ+ 1)

(
1

2

)3ℓ

≥ δ − (2ℓ+ 1)

(
1

2

)2ℓ

+

(
1

2

)ℓ

− (2ℓ+ 1)

(
1

2

)2ℓ

= δ − (4ℓ+ 2)

(
1

2

)2ℓ

+

(
1

2

)ℓ

= δ +

(
1

2

)ℓ
(
1− (4ℓ+ 2)

(
1

2

)ℓ
)
,

where the last parenthesis is positive for ℓ ≥ 5, which can be assumed without loss of generality
as otherwise the original instance of the decision problem would have constant size. We have thus
concluded that

Pr
z∼U(y⊖)

[T ⋆(z) = 1] ≥ Pr
z∼U(y⊖)

[(T ′ ∩ T1)(z) = 1] ≥ δ, (6)

thus showing that y⊖ is a valid outcome for the computing problem, which contradicts the minimality
of y′⋆. This in turn implies that y′⋆ = y⊖, and thus subsequently that y′⋆ ⊆ y⋆. Let us now show
how by combining Claims 2, 3 and 5, we can conclude the forward direction entirely. Indeed, note
that the trivial equality

Pr
z∼U(y⋆)

[T1(z) = 1] = Pr
z∼U(y′⋆)

[T1(z) = 1]

implies that

Pr
z∼U(y⋆)

[T ′(z) = 1] ≤ Pr
w∼U(y′⋆)

[T ′(z) = 1],

as we already have proved that Prz∼U(y′⋆)[(T
′ ∩ T1)(z) = 1] ≥ δ by equation 6 and the fact that

y⊖ = y′⋆, and we have that δ = Prz∼U(y⋆)[(T
′ ∩ T1)(z) = 1]. We can use Claims 2, 3 and 5 to

32



conclude that

Pr
z∼U(y)

[T (z) = 1] = Pr
z∼U(y⋆)

[T ′
↓z ∈ Nt | T ′

↓z ∈ N ]

=

Pr
z∼U(y⋆)

[T ′
↓z ∈ Nt]

Pr
z∼U(y⋆)

[T ′
↓z ∈ N ]

=

Pr
z∼U(y⋆)

[T ′
↓z ∈ Nt]

Pr
z∼U(y′⋆)

[T ′
↓z ∈ N ]

=

Pr
z∼U(y⋆)

[T ′(z) = 1]− Pr
z∼U(y⋆)

[T ′
↓z ∈ At]

Pr
z∼U(y′⋆)

[T ′
↓z ∈ N ]

=

Pr
z∼U(y⋆)

[T ′(z) = 1]− Pr
z∼U(y⋆)

[T ′
↓z ∈ At | T ′

↓z ∈ A] · Pr
z∼U(y⋆)

[T ′
↓z ∈ A]

Pr
z∼U(y′⋆)

[T ′
↓z ∈ N ]

=

Pr
z∼U(y⋆)

[T ′(z) = 1]− Pr
z∼U(y′⋆)

[T ′
↓z ∈ At | T ′

↓z ∈ A] · Pr
z∼U(y′⋆)

[T ′
↓z ∈ A]

Pr
z∼U(y′⋆)

[T ′
↓z ∈ N ]

≤
Pr

z∼U(y′⋆)
[T ′(z) = 1]− Pr

z∼U(y′⋆)
[T ′

↓z ∈ At | T ′
↓z ∈ A] · Pr

z∼U(y′⋆)
[T ′

↓z ∈ A]

Pr
z∼U(y′⋆)

[T ′
↓z ∈ N ]

=

Pr
z∼U(y′⋆)

[T ′(z) = 1]− Pr
z∼U(y′⋆)

[T ′
↓z ∈ At]

Pr
z∼U(y′⋆)

[T ′
↓z ∈ N ]

=

Pr
z∼U(y′⋆)

[T ′
↓z ∈ Nt]

Pr
z∼U(y′⋆)

[T ′
↓z ∈ N ]

= Pr
z∼U(y′⋆)

[T ′
↓z ∈ Nt | T ′

↓z ∈ N ]

= Pr
z∼U(y′)

[T (z) = 1],

where y′ is the partial instance of dimension n such that y′[i] = y′⋆[i] for every i such that y′⋆[i] ̸= ⊥,
and y′ is undefined in all other features. By this definition, y′ ⊊ y as we had y′⋆ ⊊ y⋆ (because
by assumption y′⋆ ̸= y⋆), and thus we have effectively proved that the instance (T, z) is a positive
instance of SB-Check-SUB-SR. This concludes the proof of the forward direction.

Backward direction. Assume the instance (T,y) is a positive instance of SB-Check-SUB-SR
and, thus, there exists some y′ ⊊ y such that

Pr
z∼U(y′)

[T (z) = 1] ≥ Pr
z∼U(y)

[T (z) = 1].

Define z′⋆ of the dimension of T ⋆ based on y′ by setting y′⋆[i] = y′[i] for every i such that y′[i] ̸= ⊥,
and leave the rest of y′⋆ undefined. Note that this definition immediately implies y′⋆ ⊊ y⋆. By
Claim 3 the previous equation implies that

Pr
z∼U(y′⋆)

[
T ′
↓z ∈ Nt | T ′

↓z ∈ N
]
≥ Pr

z∼U(y⋆)

[
T ′
↓z ∈ Nt | T ′

↓z ∈ N
]
,

which implies in turn that

Pr
z∼U(y′⋆)

[T ′
↓z ∈ Nt]

Pr
z∼U(y′⋆)

[T ′
↓z ∈ N ]

≥
Pr

z∼U(y⋆)
[T ′

↓z ∈ Nt]

Pr
z∼U(y⋆)

[T ′
↓z ∈ N ]

.

33



By Claim 5 the denominators of the previous inequality are equal and, thus,

Pr
z∼U(y′⋆)

[
T ′
↓z ∈ Nt

]
≥ Pr

z∼U(y⋆)

[
T ′
↓z ∈ Nt

]
,

from where

Pr
z∼U(y′⋆)

[
T ′
↓z ∈ Nt

]
+ Pr

z∼U(y⋆)

[
T ′
↓z ∈ At

]
≥

Pr
z∼U(y⋆)

[
T ′
↓z ∈ Nt

]
+ Pr

z∼U(y⋆)

[
T ′
↓z ∈ At

]
= Pr

z∼U(y⋆)
[T ′(z) = 1].

But combining Claims 2 and 5 we have that

Pr
z∼U(y⋆)

[
T ′
↓z ∈ At

]
= Pr

z∼U(y′⋆)

[
T ′
↓z ∈ At

]
,

which when combined with the previous equation gives us

Pr
z∼U(y′⋆)

[T ′(z) = 1] ≥ Pr
z∼U(y⋆)

[T ′(z) = 1],

and using again that
Pr

z∼U(y′⋆)
[T1(z) = 1] = Pr

z∼U(y⋆)
[T1(z) = 1],

we obtain that

Pr
z∼U(y′⋆)

[(T ′ ∩ T1)(z) = 1] ≥ Pr
z∼U(y⋆)

[(T ′ ∩ T1)(z) = 1] = δ.

Finally, by observing that

Pr
z∼U(y′⋆)

[T ⋆(z) = 1] ≥ Pr
z∼U(y′⋆)

[(T ′ ∩ T1)(z) = 1] ≥ δ,

we have that y′⋆ is a valid output for the computational problem, and give it is a strict subset of y⋆,
the result of Compute-Minimal-SR(T ⋆,x, δ) cannot be equal to y⋆. This concludes the backward
direction, and with it the entire proof is complete.

C Proof of Theorem 4

Theorem 4. Let c ≥ 1 be a fixed integer. Both Compute-Minimum-SR and Compute-Minimal-SR
can be solved in polynomial time for decision trees with split number at most c.

Proof. It suffices to provide a polynomial time algorithm for Compute-Minimum-SR. (The same
algorithm works for Compute-Minimal-SR as a minimum δ-SR is in particular minimal.) In turn,
using standard arguments, it is enough to provide a polynomial time algorithm for the following
decision problem Check-Minimum-SR: Given a tuple (T,y, δ, k), where T is a decision tree of
dimension n, y ∈ {0, 1,⊥}n is a partial instance, δ ∈ (0, 1], and k ≥ 0 is an integer, decide whether
there is a partial instance y′ ⊆ y such that n− |y′|⊥ ≤ k (i.e., y has at most k defined components)
and Prz[T (z) = 1 | z ∈ COMP(y′)] ≥ δ.

In order to solve Check-Minimum-SR over an instance (T,y, δ, k), where T has split number at
most c, we apply dynamic programming over T in a bottom-up manner. Let Z ⊆ {1, . . . , n} be
the set of features defined in y, that is, features i with y[i] ̸= ⊥. Those are the features we could
eventually remove when looking for y′. For each node u in T , we solve a polynomial number of
subproblems over the subtree Tu. We define

Int(u) := F
(
N↓

u

)
∩ F

(
N↑

u

)
∩ Z New(u) :=

(
F
(
N↓

u

)
\ Int(u)

)
∩ Z.

In other words, Int(u) are the features appearing both inside and outside Tu, while New(u) are the
features only inside Tu, that is, the new features introduced below u. Both sets are restricted to Z as
features not in Z play no role in the process.

Each particular subproblem is indexed by a possible size s ∈ {0, . . . , k} and a possible set J ⊆ Int(u)
with |J | ≤ s and the goal is to compute the quantity:

pu,s,J := max
y′∈Cu,s,J

Prz[Tu(z) = 1 | z ∈ COMP(y′)],

34



where Cu,s,J is the space of partial instances y′ ⊆ y with n− |y′|⊥ ≤ s and such that y′[i] = y[i]
for i ∈ J and y′[i] = ⊥ for i ∈ Int(u) \ J . In other words, the set J fixes the behavior on Int(u)
(keep features in J , remove features in Int(u) \ J) and hence the maximization occurs over choices
on the set New(u) (which features are kept and which features are removed). The key idea is that
pu,s,J can be computed inductively using the information already computed for the children u1 and
u2 of u. Intuitively, this holds since the common features between Tu1

and Tu2
are at most c, which

is a fixed constant, and hence we can efficiently synchronize the information stored for u1 and u2.
Finally, to solve the instance (T,y, δ, k) we simply check whether pr,k,∅ ≥ δ, for the root r of T .

Formally, let us define for a set H ⊆ Z, the partial instance yH ∈ {0, 1,⊥}n such that yH [i] = y[i]
for every i ∈ H , and yH [i] = ⊥ for every i ̸∈ H . In particular, yH ⊆ y. Then we can write pu,s,J as

pu,s,J = max
K⊆New(u)
|K|≤ s−|J|

Prz[Tu(z) = 1 | z ∈ COMP(yJ∪K)].

Let u1 and u2 be the children of u. We have that New(u) is the disjoint union of:

New(u) = New(u1) ∪ New(u2) ∪ Sync(u),

where Sync(u) := New(u) ∩
(
F
(
N↓

u1

)
∩ F

(
N↓

u2

))
. In other words, the features in Sync(u) are the

features that are in both Tu1
and Tu2

but not outside Tu. We conclude by explaining the computation
of pu,s,J . We consider the following cases:

1. The feature i labeling u is in J . This means we have to keep feature i. If y[i] = 0, then to
compute pu,s,J we can simply look at u1 (the left child). Note that Int(u1) is the disjoint
union of Int(u1) ∩ Int(u) and Sync(u). Then

pu,s,J = max
J′⊆Sync(u)

|J′|≤s−|Int(u1)∩J|

pu1,s,(Int(u1)∩J)∪J′ .

This computation can be done in polynomial time as Sync(u) ≤ c and then there are a
constant number of possible J ′ ⊆ Sync(u). The case when y[i] = 1 is analogous, taking u2

instead of u1.

2. The feature i labeling u is either outside Z or belongs to Int(u) \ J . This means feature
i is undefined. Again, we have that Int(u1) is the disjoint union of Int(u1) ∩ Int(u) and
Sync(u). Similarly, Int(u2) is the disjoint union of Int(u2) ∩ Int(u) and Sync(u). Then

pu,s,J = max
J′⊆Sync(u)
|J′|≤s−|J|

max
0≤s1,s2≤s

s1+s2≤s−|J|−|J′|

1

2
· pu1,s1,(Int(u1)∩J)∪J′ +

1

2
· pu2,s2,(Int(u2)∩J)∪J′ .

Again, this can be done in polynomial time as Sync(u) ≤ c.

3. Finally, the remaining case is that the feature i labeling u is in New(u). In that case we have
the two possibilities: either we keep feature i or we remove it. If s− |J | = 0, then the only
possible choice is to remove the feature i, and hence pu,s,J is computed exactly as in case
(2). If s− |J | > 0. Then we take the maximum between the cases when we keep feature i
and the case when we remove feature i. For the latter, pu,s,J is computed exactly as in case
(2). For the former, we compute pu,s,J in a similar way as in case (1). More precisely, if
y[i] = 0, then:

pu,s,J = max
J′⊆Sync(u)

|J′|≤s−1−|Int(u1)∩J|

pu1,s−1,(Int(u1)∩J)∪J′ .

The case y[i] = 1 is analogous.

35



D Proof of Lemma 1

Lemma 1. Let C be a class of monotone models,M∈ C a model of dimension n, and x ∈ {0, 1}n
an instance. Consider any δ ∈ (0, 1]. Then if y ⊆ x is a δ-SR for x underM which is not minimal,
then there is a partial instance y′ := y \ {i}, for some i ∈ {1, . . . , n}, such that y′ is a δ-SR for x
underM.

Proof. Note that, ifM(x) = 1 then we can safely assume that for every i where y[i] ̸= ⊥ it holds
that y[i] = 1, as otherwise if y[i⋆] = 0 for some i⋆, then the lemma trivially holds by setting
y′ = y \ {i⋆} because of monotonicity. Similarly, ifM(x) = 0 then we can safely assume that for
every i where y[i] ̸= ⊥ it holds that y[i] = 0.

As by hypothesis y is not minimal, there exists a δ-SR y⋆ ⊊ y that minimizes |y⋆|⊥. We will prove
that |y⋆|⊥ = |y|⊥ + 1, from where the lemma immediately follows.

Assume for the sake of a contradiction that |y⋆|⊥ > |y|⊥ + 1. Then, there must exist a feature i⋆

that y⋆[i⋆] = ⊥ ≠ y[i⋆], and such that y⋆ ∪ {i⋆} ≠ y, where y⋆ ∪ {i⋆} is defined as

(y⋆ ∪ {i⋆})[i] =
{
y[i⋆] if i = i⋆

y⋆[i⋆] otherwise.

Similarly we denote y⋆ ∪ (i⋆ → α), with α ∈ {0, 1}, the partial instance defined as

(y⋆ ∪ (i⋆ → α))[i] =

{
α if i = i⋆

y⋆[i⋆] otherwise.

We now claim that y⋆ ∪ {i⋆} is also a δ-SR for x underM, which will contradict the minimality of
y⋆, as |y⋆ ∪ {i⋆}|⊥ < |y⋆|. Let us denote by C(M,y) the number of completions z ∈ COMP(y)
such thatM(z) = 1. Now there are two cases, ifM(x) = 1 then

C(M,y⋆) = C(M,y⋆ ∪ (i⋆ → 0)) + C(M,y⋆ ∪ (i⋆ → 1))

≤ 2C(M,y⋆ ∪ (i⋆ → 1)), (Because of monotonicty)

from where

C(M,y⋆ ∪ (i⋆ → 1))

2|y⋆∪(i⋆→1)|⊥
=

C(M,y⋆ ∪ (i⋆ → 1))

2|y⋆|⊥−1
≥ C(M,y⋆)

2 · 2|y⋆|⊥−1
≥ δ,

which implies that y⋆ ∪ (i⋆ → 1) is also a δ-SR (note that y⋆ ∪ (i⋆ → 1) = y⋆ ∪ {i⋆} because of
the initial observation), contradicting the minimality of y⋆. Similarly, ifM(x) = 0, then

C(M,y⋆) = C(M,y⋆ ∪ (i⋆ → 0)) + C(M,y⋆ ∪ (i⋆ → 1))

≥ 2C(M,y⋆ ∪ (i⋆ → 0)), (Because of monotonicty)

from where

2|y
⋆∪(i⋆→0)|⊥ − C(M,y⋆ ∪ (i⋆ → 0))

2|y⋆∪(i⋆→0)|⊥
=

2|y
⋆|⊥−1 − C(M,y⋆ ∪ (i⋆ → 0))

2|y⋆|⊥−1

≥ 1− C(M,y⋆)

2 · 2|y⋆|⊥−1
≥ δ,

thus implying that y⋆ ∪ (i⋆ → 0) is also a δ-SR for x under M, which again contradicts the
minimality of y⋆.

E Experiments

This section presents some experimental results both for the deterministic encoding (δ = 1) and for
the general probabilistic encoding (δ < 1).

36



Datasets For testing the deterministic encoding we use the classical MNIST dataset (Deng, 2012),
binarizing features by simply setting to black all pixels of value less than 128. For testing the general
probabilistic encoding we build a dataset of 5x5 images that are either tall or wide, and the task is to
predict the kind of a given rectangle. This idea is based on the dataset built by Choi et al. (2017) for
illustrating sufficient reasons.2

Training decision trees We use scikit-learn (Pedregosa et al., 2011) to train decision trees. In
order to accelerate the training, the splitter parameter is set to random. Also, due to the natural
class unbalance on the MNIST dataset, we set the parameter class_weight to balanced.

Hardware All our experiments have been run on a personal computer with the following specifica-
tions: MacBook Pro (13-inch, M1, 2020), Apple M1 processor, 16 GB of RAM.

Solver We use CaDiCaL (Biere et al., 2020), a standard CDCL based solver. In order to find k⋆,
the minimum k for which an explanation of size k exists one can either proceed by using a MaxSAT
solver, directly to minimize the number of features used in the explanation, or use a standard SAT
solver and do a search over k to find the minimum size for which an explanation exists. After testing
both approaches we use the latter as it showed to be more efficient in most cases. Instead of using
binary search to find the k⋆, we use doubling search. This is because a single instance with k = n

2 at
the start of a binary search can dominate the complexity, and often k⋆ ≪ n.

Deterministic results Given the compactness of the deterministic encoding, with O(nk +
|T |) clauses, it is feasible to use it for MNIST instances, for which n = 28 × 28 = 784. Ta-
bles 2 and 3 exhibit results obtained for this dataset when recognizing digit 1. Figures 11 and 12
exhibit minimum sufficient reasons for positive and negative instance (respectively) on a decision
tree for recognizing the digit 1. Figures 13 and 14 show examples when recognizing the digit 3, and
finally Figures 15 and 16 exhibit examples when recognizing the digit 9. Figure 10 shows empirically
how time scales linearly with k⋆, the size of the minimum sufficient reason found.

Probabilistic results Because of the complexity of the encoding, we test over the synthetic dataset
described above in which the dimension is only 5× 5 = 25. The positive class corresponds to wide
rectangles. Table 1 summarizes the results obtained for this dataset, while Figure 17 shows examples.
We emphasize the following observations:

1. Computing probabilistic sufficient reasons through the general probabilistic encoding (i.e.,
δ < 1) is less efficient than computing deterministic ones, even by several orders of
magnitude.

2. As the value of δ approaches one, the size of the minimum δ-SR approaches k⋆, the size of
the minimum sufficient reason for the given instance. On the other hand, as δ decreases the
size of the minimum δ-SR goes to 0. This trade-off implies that δ can be used to control the
size of the obtained explanation.

3. The time per explanation increases significantly as δ approaches 1, even though the encoding
itself does not get any larger, implying that the resulting CNF is more challenging. Inter-
estingly enough, for δ = 1 the deterministic encoding is very efficient, thus suggesting a
discontinuity. It remains a challenging problem to compute δ-SRs for δ < 1 in a way that at
least matches the efficiency of the case δ = 1.

2Under the name of PI-explanations. To the best of our knowledge their dataset is not published and thus we
recreated it.

37



Table 1: Experimental results for the probabilistic encoding over positive instances of tall rectangles.
Each datapoint is the average of 3 instances.

δ Size of smallest explanation Time Number of leaves Accuracy of the tree

0.6 0.0 0.105s 20 0.854
0.7 1.0 0.362s 20 0.854
0.8 2.0 0.669s 20 0.854
0.9 3.0 1.551s 20 0.854

0.95 3.0 1.409s 20 0.854
1.0 3.0 0.032s 20 0.854

0.6 0.0 0.183s 30 0.965
0.7 1.0 0.567s 30 0.965
0.8 1.0 0.578s 30 0.965
0.9 3.67 5.377s 30 0.965

0.95 5.67 12.27s 30 0.965
1.0 6.67 0.037s 30 0.965

0.6 2.0 1.003s 40 0.986
0.7 3.0 2.259s 40 0.986
0.8 4.0 3.507s 40 0.986
0.9 6.0 10.318s 40 0.986

0.95 7.0 16.387s 40 0.986
1.0 10.0 0.046s 40 0.986

0.6 2.67 1.992s 50 1.0
0.7 4.33 6.111s 50 1.0
0.8 5.0 7.216s 50 1.0
0.9 7.0 26.58s 50 1.0

0.95 7.67 33.129s 50 1.0
1.0 8.33 0.044s 50 1.0

Table 2: Experimental results for the deterministic encoding over negative instances of digit 1 in
MNIST. Each datapoint corresponds to the average of 10 instances.

Number of leaves Size of smallest explanation Time Accuracy of the tree

100 3.6 0.17s 0.988
125 3.1 0.141s 0.989
150 3.7 0.196s 0.989
175 4.1 0.216s 0.99
200 4.3 0.255s 0.991
225 3.9 0.269s 0.991
250 4.1 0.304s 0.992
275 4.1 0.334s 0.992
300 4.4 0.329s 0.993
325 4.0 0.292s 0.993
350 4.3 0.327s 0.993
375 4.0 0.283s 0.993
400 5.2 0.337s 0.993
425 6.0 0.346s 0.993
450 6.8 0.495s 0.993
475 6.4 0.401s 0.993
500 5.8 0.497s 0.993

38



Table 3: Experimental results for the deterministic encoding over positive instances of digit 1 in
MNIST. Each datapoint corresponds to the average of 10 instances.

Number of leaves Size of smallest explanation Time Accuracy of the tree

100 17.0 1.238 0.988
125 17.5 1.077 0.989
150 18.4 1.058 0.989
175 17.9 1.082 0.99
200 19.0 1.001 0.991
225 21.4 1.188 0.991
250 25.0 1.405 0.992
275 23.7 1.183 0.992
300 31.2 1.603 0.993
325 31.3 1.504 0.993
350 28.5 1.365 0.993
375 30.9 1.547 0.993
400 32.1 2.429 0.993
425 34.3 2.188 0.993
450 34.3 2.115 0.993
475 42.5 2.533 0.993
500 43.6 2.614 0.993

100 200 300 400 500
0

1

2

3

Number of leaves

Ti
m

e
pe

re
xp

la
na

tio
n

[s
]

Negative instance
Positive instance

Figure 8: Time for computing a minimum sufficient reason (δ = 1) as a function of decision tree
size. All datapoints correspond to an average of 10 different instances for decision trees trained to
recognize the digit 1 in the MNIST dataset.

39



100 200 300 400 500
0

10

20

30

40

50

Number of leaves

Si
ze

of
M

SR

Negative instance
Positive instance

Figure 9: Size of minimum sufficient reasons (δ = 1) as a function of decision tree size. All
datapoints correspond to an average of 10 different instances for decision trees trained to recognize
the digit 1 in the MNIST dataset.

0 10 20 30 40
0

1

2

3

Size of MSR

Ti
m

e
pe

re
xp

la
na

tio
n

[s
]

Figure 10: Relationship between the size of the Minimum Sufficient Reason and the time it takes to
obtain it.

40



(a) k⋆ = 49 (b) k⋆ = 42 (c) k⋆ = 49

(d) k⋆ = 49 (e) k⋆ = 49 (f) k⋆ = 42

(g) k⋆ = 49 (h) k⋆ = 49 (i) k⋆ = 49

(j) k⋆ = 49 (k) k⋆ = 49 (l) k⋆ = 49

Figure 11: Examples of Minimum Sufficient Reasons over the MNIST dataset. All instances are
(correctly predicted) positive instances for a decision tree of 591 leaves that detects the digit 1. Light
pixels of the original image are depicted in grey, and the light pixels of the original image that are
part of the minimum sufficient reason are colored white. Dark pixels that are part of the minimum
sufficient reason are colored with red. Individual captions denote the size of the minimum sufficient
reasons with k⋆.

41



(a) k⋆ = 5 (b) k⋆ = 5 (c) k⋆ = 5

(d) k⋆ = 5 (e) k⋆ = 5 (f) k⋆ = 7

(g) k⋆ = 5 (h) k⋆ = 5 (i) k⋆ = 5

(j) k⋆ = 6 (k) k⋆ = 5 (l) k⋆ = 5

Figure 12: Examples of Minimum Sufficient Reasons over the MNIST dataset. All instances are
correctly predicted negative instances for a decision tree of 591 leaves that detects the digit 1. Light
pixels of the original image are depicted in grey, and the light pixels of the original image that are
part of the minimum sufficient reason are colored white. Dark pixels that are part of the minimum
sufficient reason are colored with red. Individual captions denote the size of the minimum sufficient
reasons with k⋆.

42



(a) k⋆ = 30 (b) k⋆ = 19 (c) k⋆ = 30

(d) k⋆ = 13 (e) k⋆ = 17 (f) (Misclassified) k⋆ = 9

(g) (Misclassified) k⋆ = 7 (h) k⋆ = 28 (i) k⋆ = 15

(j) k⋆ = 30 (k) k⋆ = 30 (l) k⋆ = 15

Figure 13: Examples of Minimum Sufficient Reasons over the MNIST dataset. All images correspond
to positive instances for a decision tree of 1486 leaves that detects the digit 3. Two instances are
misclassified. Light pixels of the original image are depicted in grey, and the light pixels of the
original image that are part of the minimum sufficient reason are colored white. Dark pixels that are
part of the minimum sufficient reason are colored with red. Individual captions denote the size of the
minimum sufficient reasons with k⋆.

43



(a) k⋆ = 11 (b) k⋆ = 8 (c) k⋆ = 11

(d) k⋆ = 12 (e) k⋆ = 12 (f) k⋆ = 15

(g) (k⋆ = 15 (h) k⋆ = 11 (i) k⋆ = 14

(j) k⋆ = 13 (k) k⋆ = 11 (l) k⋆ = 7

Figure 14: Examples of Minimum Sufficient Reasons over the MNIST dataset. All images correspond
to negative instances for a decision tree of 1486 leaves that detects the digit 3 and are classified
correctly. Light pixels of the original image are depicted in grey, and the light pixels of the original
image that are part of the minimum sufficient reason are colored white. Dark pixels that are part
of the minimum sufficient reason are colored with red. Individual captions denote the size of the
minimum sufficient reasons with k⋆.

44



(a) (Misclassified) k⋆ = 10 (b) (Misclassified) k⋆ = 9 (c) k⋆ = 35

(d) k⋆ = 18 (e) k⋆ = 45 (f) (k⋆ = 45

(g) (Misclassified) k⋆ = 17 (h) k⋆ = 20 (i) k⋆ = 45

(j) k⋆ = 45 (k) k⋆ = 44 (l) k⋆ = 45

Figure 15: Examples of Minimum Sufficient Reasons over the MNIST dataset. All images correspond
to positive instances for a decision tree of 1652 leaves that detects the digit 9. Three instances are
misclassified. Light pixels of the original image are depicted in grey, and the light pixels of the
original image that are part of the minimum sufficient reason are colored white. Dark pixels that are
part of the minimum sufficient reason are colored with red. Individual captions denote the size of the
minimum sufficient reasons with k⋆.

45



(a) k⋆ = 16 (b) k⋆ = 8 (c) k⋆ = 9

(d) k⋆ = 12 (e) k⋆ = 5 (f) (k⋆ = 12

(g) ( k⋆ = 9 (h) k⋆ = 6 (i) k⋆ = 12

(j) k⋆ = 6 (k) k⋆ = 9 (l) k⋆ = 15

Figure 16: Examples of Minimum Sufficient Reasons over the MNIST dataset. All images correspond
to (correctly classified) negative instances for a decision tree of 1652 leaves that detects the digit 9.
Light pixels of the original image are depicted in grey, and the light pixels of the original image that
are part of the minimum sufficient reason are colored white. Dark pixels that are part of the minimum
sufficient reason are colored with red. Individual captions denote the size of the minimum sufficient
reasons with k⋆.

46



(a) k⋆ = 0, δ = 0.6. (b) k⋆ = 3, δ = 0.6.

(c) k⋆ = 1, δ = 0.7. (d) k⋆ = 1, δ = 0.7.

(e) k⋆ = 2, δ = 0.8. (f) k⋆ = 2, δ = 0.8.

(g) k⋆ = 3, δ = 0.9. (h) k⋆ = 3, δ = 0.9.

Figure 17: Examples of δ-SRs over the synthetic rectangle dataset, where instances have been
correctly classified as wide rectangles. In fact, the explanations depicted in (g) and (h) have probability
1, and thus no further changes are obtained when raising δ.

47


