
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Supplementary Materials for Sampling to Distill: Knowledge
Transfer from Open-World Data

Anonymous Authors

In this supplementary material, we provide more details of our
method, organized as follows:

• In Section 1, we further supplement the sampling-based
methods so that readers can better understand and choose
among multiple DFKD methods.

• In Section 2, we provide more training details of the used
data augmentations method, corresponding to Section 4.1
of the main body. Besides, we set additional experiments
about the loss trade-off parameters in Equation (8) of the
main body and the prototype number per class in Section 3.2
of the main body. We compare some limited DFKD methods
on the MNIST dataset and two data-based KD methods.

• In Section 3, we compare the update steps of various DFKD
methods about the distillation computational complexity,
according to the original papers and open-source code.

• In Section 4, we visualize the classification results of the
CIFAR-100 and ImageNet datasets to further and more fairly
prove the effectiveness of the proposed sampling method.

1 SUPPLEMENT TO THE SAMPLING-BASED
METHOD

To better understand the proposed sampling-based method, we
provide more explanations, including: (a) the similarities and dif-
ferences between the sampling-based and the generation-based
methods, (b) the motivation and purpose of the sampling-based
methods, and (c) the impact on students’ performance with a va-
riety of sampled data from different datasets & the comparison of
ours and other sampling-based methods. These contents may be
helpful for readers to choose among different DFKD methods.

1.1 Sampling-based & Generation-based
Methods

Similarities. Both sampling-based and generation-based methods
require a necessary assumption that the pre-trained teacher model
has learned the distribution of the original dataset, i.e. , the teacher
model can make directional predictions on the original data rather
than near random predictions like an initialized model. Under this
assumption, the generation-based methods constrain the genera-
tor from synthesizing data that satisfies the teacher’s predictive
distribution. Like the above process, the sampling-based methods
try to find data that more satisfies the teacher’s prediction in the
open-world dataset to fit the distribution.
Differences. The substitution data comes from different sources.
For the generation-basedmethods, one ormore learnable generators
are introduced to synthesize the substitution data. The generators
update together with the student model. The additional generators
bring additional memory and gradient calculation costs (e.g. , main-
stream methods introduce a thousand generators for the ImageNet
dataset). For the sampling-based methods, since there are many
semantically rich unlabeled open-world data available in reality,

Original

Augmented

Contrast Brightness

Rotate Solarize

Figure 1: Visualization of RandAugment. The left is a
schematic diagram of the original and augmented. The right
is the results of each transform separately.

the appropriate unlabeled data is screened as substitution data. The
above process overcomes the additional model update cost and thus
has a faster speed.

1.2 The Motivation and Purpose of the
Sampling-based Methods

In addition to avoiding unnecessary generation costs, the effective-
ness of sampled data is the pursuit of different sampling methods,
i.e., how to sample less training data or train fewer epochs to get
higher performance when the data range of the unlabeled sampling
set is determined. The above goals are consistent and independent
of how similar the unlabeled substitute data is to the test data. Even
if there is a significant domain shift between the unlabeled substi-
tute data and the original data, sampling-based methods still try to
get the most helpful data from it.

In Table 2 of the main body, we show the impact of different num-
bers of sampled data (i.e. , 150k or 600k) on the student performance,
which may be able to help readers weigh model performance and
sampling cost.

1.3 Sampling from Different Datasets
Since different open-world datasets have different distributions
with different semantic information, the teacher model has differ-
ent familiarity with these datasets. For the current sampling-based
methods, the sampled data entirely depends on the teacher’s pref-
erence for unlabeled data. Therefore, different substitute datasets
obviously affect the performance of students.

We compare three sampling-based methods (Mosaick [4], DFND
[1], and our ODSD) on the CIFAR-100 dataset. 150k or 600k un-
labeled data are sampled from ImageNet [3], Places365 [12], and
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Table 1: Student performance of different sampling-based methods with different substitute datasets.

Method Unlabeled substitute datasets & the number of sampled data

ImageNet-150k ImageNet-600k Places365-150k Places365-600k Flickr1M-150k Flickr1M-600k

Mosaick 74.59 75.91 73.86 74.75 73.79 74.94
DFND 74.20 74.42 73.37 74.25 73.56 74.46
ODSD 77.90 78.45 75.47 76.35 75.52 76.57

Flickr1M [6]. The teacher uses the ResNet-34 as its backbone, and
the student uses the ResNet-18. As shown in Table 1, our ODSD out-
performs other sampling-based methods in various settings, which
proves the effectiveness of ODSD.

In the main body, we choose the same substitute datasets with
the default settings in existing sampling-based methods [1] for fair
comparison (see Table 1 of themain body for details). In addition, we
have clearly marked the type (Sampling or Generation) of various
methods in each table, which helps readers choose their favorable
DFKDmethod. In general, we recommend trying our ODSDmethod
first when open-world unlabeled data is available. It is faster than
generation-based methods and performs competitively.

2 ADDITIONAL EXPERIMENTS
2.1 Data Augmentation
For the data augmentation involved, we combine four data trans-
form methods: contrast, brightness, rotate, and solarize as shown
in Figure 1. On the one hand, such a setting can reduce the com-
putational cost of data transformation. On the other hand, it can
also bring specific prediction difficulties to the teacher and student.
In the contrastive task, prediction tasks will become difficult after
augmentations. Furthermore, the representation quality of the net-
work will be greatly improved. To reflect the simple-difficult data
pair, we sample simple and studious data with a similar distribution
to the original data and then apply data augmentation to highlight
the complex and easy comparison. Based on this, the student can
learn a differentiated knowledge representation to gain a better
understanding ability.

Table 2: Diagnostic experiments on the total losses.

𝜆1
Accuracy (%)
50k 150k

0 74.39 77.27
0.5 74.41 77.28
1 74.41 77.27
5 74.45 77.50
10 74.73 77.58
15 74.21 77.16
(a) L𝐾𝐷 + 𝜆1 · L𝑛 .

𝜆2
Accuracy (%)
50k 150k

0 74.39 77.27
0.1 74.85 77.43
0.3 74.81 77.67
0.5 74.89 77.71
0.7 74.55 77.67
1 74.42 77.49
(b) L𝐾𝐷 + 𝜆2 · L𝑐 .

2.2 Loss Trade-off Parameters 𝜆
To verify the effectiveness and optimization parameters of the train-
ing objectives, we test the influence of L𝑛 and L𝑐 on students’

Table 3: Further analysis about L𝑐 = L𝑐1 + L𝑐2.

𝜆 0 0.1 0.3 0.5 0.7 1

L𝐾𝐷 + 𝜆 · L𝑐1 77.27 77.45 77.40 77.62 77.51 76.76
L𝐾𝐷 + 𝜆 · L𝑐2 77.27 77.33 77.57 77.54 77.26 77.15

Table 4: Prototype number per class 𝐾 .

Prototype 1 5 10 20 30 50

Accuracy (%) 50k 74.24 75.26 74.85 74.84 74.24 73.34
150k 77.25 77.90 77.47 77.64 77.62 77.54

performance, respectively. We conduct the experiments on the
CIFAR-100 dataset and use ResNet-34 as the teacher’s backbone
and ResNet-18 as the student’s backbone. The student trains 200
epochs, and different data sampling numbers are set.

As shown in Table 2, the best experimental results have been
shown with bold. We separately set the combination of L𝐾𝐷 and
the two proposed losses. Finally, we choose 𝜆1 as 10 and 𝜆2 as 0.5.
Such parameter combination is also the default setting of other
experiments. Further, as shown in Table 3, we carefully disassemble
L𝑐 to study the impact of two separate parts L𝑐1 and L𝑐2 on
student performance. The student performs well when 𝜆 = 0.5. For
simplicity, we set 𝜆2 = 0.5.

Table 5: Student accuracy (%) on the MNIST dataset.

Methods Type Performance

Teacher - 99.34
Student 98.97

[7]

Generation

92.47
DAFL [2] 99.16
DFAD [5] 98.90
ZSKD [8] 98.77

Wang et al. [11] 99.08
FEDGEN [13] 95.52

ODSD Sampling 99.29

2.3 Prototype Number in Per Class 𝐾
The size of 𝐾 reflects the complexity of intra-class modeling. When
𝐾 = 1, the expression of the intra-class relationship is relatively
simple, but sometimes it can not accurately exclude data with abnor-
mal predictions. When 𝐾 is particularly large, the average number



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Supplementary Materials for Sampling to Distill: Knowledge Transfer from Open-World Data ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Table 6: “e”: epoch, “i”: iterations, “b”: batch size, “g”: the number of generators, and “n”: the number of data. The results of
distillation computational complexity in various methods on various datasets are counted. The above values are based on the
results reported in the original papers and the open-source codes.

Datasets Methods Type
DCC

Magnitude
Generation module costs Student module costs

CIFAR

DAFL
Generation

2000e×120i×1024b 2000e×120i×1024b 5×10^8
DeepInv 2000e×256b 2000e×120i×1024b 2×10^8
ZSKT 80000e×128b 80000e×10i×128b 1×10^8
DFND

Sampling
- 600000n×200e 1×10^8

ODSD - 600000n×200e 1×10^8

ImageNet

DeepInv
Generation

3000i×84b×1000g 140000n×90e 3×10^8
DFD 10000i×64b×1000g 300000 6×10^8
Fast 400e×50i×128b×1000g 400e×1000i×100b 3×10^8
ODSD Sampling - 600000n×200e 1×10^8

NYUv2
DFAD Generation 300e×50i×64b 300e×250i×64b 6×10^6
ODSD Sampling - 200000n×20e 4×10^6

of data at each prototype decreases, which leads to the problem
of the prototype itself shifting. Table 4 reports our approach’s per-
formance concerning the number of prototypes per class. Student
performance does not always rise with the increase in the number of
prototypes. Comprehensively considering student performance and
calculation cost, we choose𝐾 = 5 and achieve the best performance.
In this situation, our sampling method introduces 256.78s for sam-
ple selection for CIFAR100, which is almost negligible compared to
the additional training of a customized generator.

2.4 Additional Experiments on MNIST Dataset
Considering that some DFKD methods are only applicable to sim-
ple datasets such as MNIST due to some limitations, we conduct
additional comparative experiments on the MNIST dataset, which
is composed of 28 × 28 pixel images from 10 classes (from 0 to 9).
To make a fair comparison, we use LeNet-5 as the teacher model
and LeNet-5-HALF as the student model, which is the same as the
previous methods. For ODSD, the unlabeled dataset is the 64×64 Im-
ageNet. The experimental results are shown in Table 5. Our method
still achieves the SOTA performance. From the comparative experi-
ments of the MNIST and ImageNet datasets, we can find that our
method is applicable to multiple baselines of different scales, which
shows that ODSD has good universality and competitiveness.

2.5 Discussion with CRD [10] & RKD [9]
We discuss the differences with existing data-based knowledge
distillation methods separately. 1) For CRD [10], they focus on
collecting the correlation between samples and categories in the
dataset to assist the knowledge distillation process. Firstly, a large
memory bank is continuously updated to contain as much knowl-
edge about the entire dataset as possible while at the same time
introducing additional storage and computing costs. Besides, for
the DFKD task, the training and original data contain the domain
shifts, and the data of multiple batches is variable (the generator’s
update or the difference among sampled data). These issues may

Table 7: The comparison with CRD&RKD on CIFAR datasets.
The teachers use ResNet-34, and the students use ResNet-18
as the backbones. GPU time indicates the training time of
one epoch on a single RTX 3090 GPU. Memory indicates the
memory usage with the batch size of 64.

Methods CIFAR-10 CIFAR-100

Accuracy (%) GPU time Memory Accuracy (%) GPU time Memory

CRD 93.56 274.25s 3184M 73.25 286.62s 3231M
RKD 92.46 136.34s 2117M 73.19 144.17s 2129M
ODSD 95.70 152.25s 2002M 78.45 160.72s 2012M

cause a biased memory bank, reducing CRD’s effectiveness for the
DFKD task. Our method trains students in the current mini-batch,
getting rid of the dependence on the consistency of the sample
batch distribution in each item and reducing the computing and
storage costs. 2) For RKD [9], they explore relationships among
samples, which depend on the difference of samples in a mini-batch.
However, in the DFKD task, the synthetic or sampled data is guided
by the teacher’s model preferences (the generator’s update relies
on the teacher’s pseudo-label and prediction & the sampling pro-
cess refers to the teacher’s confidence). The preferences reduce the
variance of samples in a batch, reducing RKD’s effectiveness. Our
method explores the relationships of samples from multiple views
and encourages the student to learn from both the teacher and
the student itself, alleviating the dependence on training sample
distribution similarity and sample quality.

In addition, we comprehensively compare these methods. The
outstanding results in Table 7 demonstrate that our design has
achieved comprehensive improvements on the DFKD task and also
demonstrate a significant difference with existing methods.

3 UPDATE STEPS
For a long time, there has been a lack of a unified comparison
index of update calculation in the field of DFKD. Only referring
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Figure 2: t-SNE visualization of the classification results on
the CIFAR-100 and ImageNet datasets. Our proposed method
obtains clearer clustering results, showing students have
stronger learning abilities.

to the generation time of substitute data is not comparable to the
method based on data sampling. Only considering the training
time ignores the cost of generating substitute data. Comparing
the total distillation time is computationally expensive, and the
default batch size and the memory for generating data of some
methods are enormous, making it difficult to reproduce accurately.
For a more fair comparison, we introduce an evaluation metric of
distillation computational complexity (DCC), which includes the
cost of updating the generation module and the cost of updating
the student module. DCC represents the total number of network
updates referring to the unit of a single data, which means the
algorithm’s dependence on the number of data and iterations in
the training process. It is a fair comparison to different algorithm
types.

Table 6 shows the DCC metric of various algorithms on three
datasets. For the CIFAR datasets, we sample the teacher-student
backbone pairs with ResNet34-ResNet18. ResNet-50-ResNet-50 and
ResNet-50-mobilenetv2 are selected on the ImageNet dataset and
NYUv2 dataset, respectively. It is worth noting that the implemen-
tation details of some methods are missing or undetectable, so they
do not appear in the table. We have tried our best to restore the
distillation process of various methods. Although there is a lack of
a unified evaluation method, fortunately, various methods seem to
have reached a tacit understanding, making their DCC in the same
order of magnitude gradient. At the same time, we also try to make
our method consistent with previous work on this metric during
the whole task.

4 ADDITIONAL VISUALIZATION
To further and more fairly prove the method’s effectiveness, we
compare the visualization results with the SOTA sampling-based
method on the CIFAR-100 and ImageNet datasets. We sample 100
classes in the test set for the above two datasets. The aggregation
degree of points reflects the learning degree of the network for the
task. The results are shown in Figure 2. The students trained by
our method have stronger learning abilities and can distinguish

different categories better. Our ODSD method can perform more
effective knowledge mining and understanding than the DFND
method [1].
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