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ABSTRACT

We study the problem of no-regret learning algorithms for general monotone and
smooth games and their last-iterate convergence properties. Specifically, we in-
vestigate the problem under bandit feedback and strongly uncoupled dynamics,
which allows modular development of the multi-player system that applies to a
wide range of real applications. We propose a mirror-descent-based algorithm,
which converges in O(T’l/ 4) and is also no-regret. The result is achieved by a
dedicated use of two regularizations and the analysis of the fixed point thereof.
The convergence rate is further improved to O(T~'/?) in the case of strongly
monotone games. Motivated by practical tasks where the game evolves over time,
the algorithm is extended to time-varying monotone games. We provide the first
non-asymptotic result in converging monotone games and give improved results
for equilibrium tracking games.

1 INTRODUCTION

We consider multi-player online learning in games. In this problem, the cost function for each player
is unknown to the player, and they need to learn to play the game through repeated interaction with
other players. We focus on a class of monotone and smooth games, which was first introduced
by [Rosen| (1965). This encapsulates a wide array of common games, such as two-player zero-sum
games, convex-concave games, and zero-sum polymatrix games (Bregman & Fokin, |1987). Our
goal is to find algorithms that solve the problem under bandit feedback and strongly uncoupled dy-
namics. Within this context, each player can only access information regarding the cost function
associated with their chosen actions without prior insight into their counterparts. This allows mod-
ular development of the multi-player system in real applications and leverages existing single-agent
learning algorithms for reuse.

Many works have focused on the time-average convergence to Nash equilibrium on learning in
monotone games (Even-Dar et al. [2009; [Syrgkanis et al., 2015} [Farina et al., 2022). However,
these works only guarantee the convergence of the time average of the joint action profile. Such
convergence properties are less appealing, because while the trajectories of the players converge in
the time-average sense, it may still exhibit cycling (Mertikopoulos et al., 2018). This jeopardizes
the practical use of such algorithms.

Popular no-regret algorithms such as mirror descent have demonstrated convergence in the last it-
erate within specific scenarios, such as two-player zero-sum games (Cai et al., 2023)) and strongly
monotone games (Bravo et al., 2018; |Drusvyatskiy et al.,[2022; |Lin et al.,|2021). Yet convergence to
Nash equilibrium in monotone and smooth games is not available unless one assumes exact gradient
feedback and coordination of players (Cai et al., 2022} |Cai & Zheng] 2023). It remains open as to
whether a no-regret algorithm can efficiently converge to a Nash equilibrium in monotone games
with bandit feedback and strongly uncoupled dynamics. In this paper, we investigate the pivotal
question:

How fast can no-regret algorithms converge (in the last iterate) to a Nash equilibrium in general
monotone and smooth games with bandit feedback and strongly uncoupled dynamics?

In this work, we present a mirror-descent-based algorithm designed to converge to the Nash equilib-
rium in monotone and smooth games. Our algorithm is uncoupled and convergent and is applicable
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to the general monotone and smooth game setting. Motivated by real applications, where many
games are also time-varying, we extend our study to encompass time-varying monotone games.
This justifies that our algorithm could be deployed in both stationary and non-stationary tasks.

We achieve state-of-the-art results in both monotone games and time-varying monotone games.

* In monotone and smooth games:

— Under bandit feedback and strongly uncoupled dynamics, we show our algorithm
achieves a last-iterate convergence rate of O(T~1/4).

— In cases where the game exhibits strong monotonicity, our result improves to
O(T~'/?), matching the current best available convergence rates for strongly mono-
tone games (Drusvyatskiy et al., 2022; [Lin et al., 2021).

— Our algorithm is no regret albeit players may be self-interested. The individual regret

is at most O(T3/*) in monotone games and at most O(7"*/?) in strongly monotone
games.

* In time-varying monotone and smooth games:

— If the game eventually converges to a static state within a time frame of O(T?), our
algorithm achieves convergence in O(T~1/4*¢),

— If the game does not converge but experiences gradual changes in the Nash
equilibrium that evolves in O(T¥), our algorithm exhibits convergence rates of

0 (max {T2S"/ 3-2/3 T(4p+5)*/72-9/8 }) . The algorithm outperforms best available
results of 7%/°~1/5 by Duvocelle et al|(2023) and T¢/3~2/3 by Yan et al.|(2023).

Table[T]and Table [2] summarize our results and the results of previous works.

2 RELATED WORKS

Monotone games The convergence of monotone games has been studied in a significant line of
research. For a strongly monotone game under exact gradient feedback, the linear last-iterate conver-
gence rate is known (Tseng} [1995; [Liang & Stokes| 2019} [Zhou et al.l2020). Under noisy gradient
feedback, Jordan et al| (2023) showed a last-iterate convergence rate of O(7~!). Under bandit
feedback, [Bervoets et al.| (2020) proposed an algorithm that asymptotically converges to the equi-
librium if it is unique. Bravo et al.| (2018) subsequently introduced an algorithm with a last-iterate
convergence rate of O(T~'/3), while also ensuring the no-regret property. Later works (Lin et al.,
2021) further improved the last-iterate convergence rate to O(7~'/?) under bandit feedback using
the self-concordant barrier function. Jordan et al.| (2023 gave a result of the same rate, but with the
additional assumption that the Jacobian of each player’s gradient is Lipschitz continuous. In the case
of bandit but noisy feedback (with a zero-mean noise), |Lin et al.|(2021)) showed that the convergence
rate is still O(T—1/?).

For monotone but not strongly monotone games, Mertikopoulos & Zhou| (2019) leveraged the dual
averaging algorithm to demonstrate an asymptotic convergence rate under noisy gradient feedback.
With access to the exact gradient information, Cai & Zheng| (2023)) gave a last-iterate convergence
rate of O(T~1). In the context of bandit feedback, Tatarenko & Kamgarpour (2019) proposed an
algorithm that asymptotically converges to the Nash equilibrium. Table[I|provides a summary of the
recent results.

Time-varying monotone games Motivated by real-world applications such as Cournot competi-
tion, where multiple firms supply goods to the market and pricing is subject to fluctuations due to
factors like weather, holidays, and politics. |Duvocelle et al.| (2023) studied the strongly monotone
game under a time-varying cost function. When the game converges to a static state, they propose an
algorithm that achieves asymptotic convergence under bandit feedback. Assuming the cost function
varies O(T¢) across a horizon 7T, |Duvocelle et al.|(2023) provided an algorithm that attains a con-
vergence rate of O(T%/>~1/5) under bandit feedback. Subsequent work of Yan et al. (2023) further
improved this rate to O(7/3-2/3) under exact gradient feedback.
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Table 1: Summary of results for monotone games. “E” stands for the result in expectation and “P”
stands for the result held in high probability. Strongly monotone games are abbreviated to “StroM”,
while monotone games are abbreviated to “M”. We use “linear*” to denote the two-player zero-sum
game, which is a special case of the linear game. We use “(N)” to remark that the results can also be
obtained with noisy feedback.

| Class of games | Feedback | Results
Bravo et al. (2018) StroM bandit O(T~1/3) (E)
Drusvyatskiy et al|(2022) StroM bandit O(T~'/?) (E)
Lin et al.| (2021) StroM bandit (N) O(T~'/?) (E)
Jordan et al.[(2023) StroM noisy gradient o(r—1)
Ours StroM bandit (N) | O(T~/?) (E & P)
Mertikopoulos & Zhou|(2019) M noisy gradient asymptotic
Cai & Zheng[(2023) M exact gradient o(r—1)
Tatarenko & Kamgarpour|(2019) M bandit asymptotic
Ours M bandit (N) O(T~%) (E)
Cai et al.[(2023) linear* bandit O(T~1/%) (E)
Ours linear bandit O(T~'/%) (E)

Table 2: Summary of last-iterate convergence results for time-varying games. All results here are
in expectation results. Strongly monotone games are abbreviated to “StroM”, and monotone games
are abbreviated to “M”.

Classof | .
games | Time-varying property | Feedback Results
Duvocelle et al.[(2023) | StroM converging in O(T'%) bandit asymptotic
Ours M converging in O(T%) bandit O(T—V/4+e)
Duvocelle et al. (2023) | StroM | O(T¥) variation path bandit O(T¥/5=1/5)
Yan et al.{(2023) StroM | O(T¥) variation path exact O(T¥/372/3)
gradient
0] (max{T2“"/3_2/3,
Ours M O(T¥) variation path bandit T(4“"+5)2/72*9/8})

3 PRELIMINARIES

We consider a multi-player game with n players, with the set of players denoted as . Each
player i takes action on a compact and convex set X; C R of d dimensions, and has cost func-
tion ¢;(x;,x_;), where z; € X is the action of the i-th player and x_; € Hje[n],j# X; is the
action of all other players. We assume the radius of X is bounded, i.e., ||z — 2’| < B,Vz,z’ € X;.
Without loss of generality, we further assume ¢;(z) € [0, 1].

In this work, we study a class of monotone continuous games, where the gradient of the cost func-
tions is monotone and the cost functions continuous (Assumption [3.I). Games that satisfy this as-
sumption include convex-concave games, convex potential games, extensive form games, Cournot
competition, and splittable routing games. A discussion of these games is available in Section
Note that the class of monotone continuous games is commonly studied in the literature (Lin et al.,
2021} [Farina et al., [2022).

Assumption 3.1. For all player i € N, the cost function c;(z;,x_;) is continuous, differentiable,
convex, and {;-smooth in x;. Further, ¢; has bounded gradient |Vc;(x)| < G and the gradient
F(z) = [Vici(z)]ien is a monotone operator, i.e., (F(z) — F(y)) " (z —y) >0, Va,y.

For notational convenience, we denote L = N /.
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A common solution concept in the game is Nash equilibrium, which is a state of dynamic where no
player can reduce its cost by unilaterally changing its action. Our aim is to learn a Nash equilibrium
x* € []; A; of the game. Formally, the Nash equilibrium is defined as follows.

Definition 3.1 (Nash equilibrium). An action x* € [, X; is a Nash equilibrium if c;(z*) <
cilxg, x*;), Yo, € Xy, a; #xf,i € N.

When the game satisfies Assumption and is with a compact action set, it is known that it must
admit at least one Nash equilibrium (Debreul [1952)).

3.1 EXAMPLES OF MONOTONE CONTINUOUS GAMES

A wide range of monotone games are captured by Assumption[3.1] and we now present a few classic
examples. We include more examples in the appendix.

Example 3.1 (convex-concave game). Consider a two-player convex-concave game, where the ob-
Jective function is c¢1(x1,x2) = f(x1,22), co(x1,22) = —f(x1,22). It is immediate that if [ is
continuous, differentiable, smooth, convex in x1, concave in xs, then the game satisfies Assumption
Examples are rock paper scissors and chicken games.

Example 3.2 (Cournot competition). In the Cournot oligopoly model, there is a finite set of N
firms, where firm i supplies the market with a quantity x; € [0,C;] of some good and C; is the
Sfirm’s production capacity. The good is priced as a decreasing function P(xio1) = a — bxyot, where

Tiot = vazl x; is the total number of goods supplied to the market, and a,b > 0 are positive
constants. The cost of firm i is then given by c¢;(x;,x_;) = d;x; — x;P(x401), where d; is the cost
of producing one unit of good. This is the associated production cost minus the total revenue from
producing x; units of goods. It is clear that c; is continuous and differentiable, and |Bravo et al.
(2018) showed c; has positive definite and bounded hessian (is convex and smooth).

Example 3.3 (Splittable routing game). In a splittable routing game, each player directs a flow,
denoted as f;, from a source to a destination within an undirected graph G = (V, E). Each edge
e € E is linked to a latency function, represented as L.(f), which denotes the latency cost of
the flow passing through the edge. The strategies available to player i are the various ways of
dividing or ”splitting” the flow f; into distinct paths connecting the source and the destination.
With some restrictions on the latency function, the game satisfies Assumption (Roughgarden &
Schoppmann, |2015)).

3.2 BANDIT FEEDBACK AND STRONGLY UNCOUPLED DYNAMIC

In this work, we focus on learning under bandit feedback and strongly uncoupled dynamics. The
bandit feedback setting restricts each player to only observe the cost function ¢;(xz;,z_;) with re-
spect to the action taken x;. The strongly uncoupled learning dynamic (Daskalakis et al.l 2011}
means players do not have prior knowledge of cost function or the action space of other players
and can only keep track of a constant amount of historical information. As the bandit feedback
and strongly uncoupled dynamic only require each player to access information of its own, this al-
lows for modular development of the multi-player system, by reusing existing single-agent learning
algorithms.

4 ALGORITHM

Our algorithm builds upon the renowned mirror-descent algorithm. The efficacy of online mirror-
descent in solving Nash equilibrium has been demonstrated under full information, and in both
linear or strongly monotone games, with extensive investigations into its last-iterate convergence
investigated in (Cen et al.[(2021); |Lin et al.| (2021); |Cai et al.| (2023)); Duvocelle et al.| (2023).

Our algorithm differs from classic online mirror descent approaches by making use of two regular-
izers: A self-concordant barrier regularizer / to build an efficient Ellipsoidal gradient estimator and
contest the bandit feedback; and a regularizer p to accommodate monotone (and not strongly mono-
tone) games. Similar use of two regularizers has also been investigated (Lin et al., 2021)). However,
their method used the Euclidean norm regularization, which cannot be extended to our setting.
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Regularizers Let h be a v-self-concordant barrier function (Definition4.T]), p be a convex function
with uI < V?p(x) < (I, ¢ > 0,u > 0. Let D, denote the Bregman divergence induced by
p. We choose p such that for any z;,z; € X;, Dp(z;,z)) < C, < oo, and for some k > 0,
ci(zi,x—;) — kp(x;) to be convex. Notice that when ¢; is convex but not linear, we can always find
such p when the action set is bounded. Intuitively, this is to interpolate a function p that possesses
less curvature than all ¢;. We will discuss the modification to the algorithm needed when c; is linear
in Section

Definition 4.1. A function h : int(X) — R is a v-self concordant barrier for a closed convex
set X C R™, where int(X) is an interior of X, if 1) h is three times continuously differentiable;
2) h(z) — oo if x — OX, where OX is a boundary of X; 3) for Vx € int(X) and VA € R",

we have [V3h(z)[\ M| < 2 (ATV2h()N) Y and [Vh(z)TA| < o (ATV2h(z)A) "2 where
Voh(a) s Ao o] = grdregrsh (@ + B + tada +taha)]|

1=t2=t3=0 '
1. h is three times continuously differentiable;

2. h(z) = oo if x — OX, where OX is a boundary of X;

3. for Vo € int(X) and YA € R", we have |V3h(z)[\ NN < 2 (ATV2h(2)A)*?

and |Vh(z)TA < (ATV2h@)A)YP where  V3h(z) [\, Ao, Ns] =

83
senonh (T + A+t + t3/\3)’t1:t2:t3:0'

It is shown that any closed convex domain of R4 has a self-concordant barrier (Lee & Yuel 2021).

Ellipsoidal gradient estimator As our algorithm operates under bandit feedback and strongly
uncoupled dynamics, we would need to design a gradient estimator while only using costs for the
individual player.

Let S¢, B be the d-dimensional unit sphere and the d-dimensional unit ball, respectively. Our
algorithm estimates the gradient using the following ellipsoidal estimator:

gt = gci(:@t)(Ag)—lzf, Al = (V2h(at) + ne(t + 1)V2p(e) V2, &t = ol +6,AL¢

(2 177
t

where z! is uniformly independently sampled from S¢ and &;,7; € [0, 1] are tunable parameters.

One can show that §! is an unbiased estimate of the gradient of a smoothed cost function ¢é;(z") =
EoptapiBot om0 [ci (2] + Ajwf, 2" ;)]. When p is strongly convex, one can upper bound
|Viéi(z) — Vici(z)| by the maximum eigenvalue of Af and it suffices to take §; = 1, which
recovers the results in [Lin et al.| (2021). However, when p is convex and not strongly convex, one
would need to carefully tune §; to control the bias from estimating the smoothed cost function. This
ellipsoidal gradient estimator was first introduced by |Abernethy et al.| (2008)) for the case of ¢; be-
ing linear, and was then extended by Hazan & Levy| (2014) to the case of strongly convex costs.
In learning for games, the ellipsoidal estimator was used in the case of strongly monotone games
(Bravo et al.| 2018; [Lin et al., [2021)).

Based on the ellipsoidal gradient estimator, we present our uncoupled and convergent algorithm for
monotone games under bandit feedback.

Implementation Notice that solving Equation (1)) is equivalent to solving a convex but poten-
tially non-smooth optimization problem. Certain sets X C R, including the cases when X is the
strategy space of a normal-form game or an extensive-form game, can be solved by proximal New-
ton algorithm provably in O(log?(1/€)) iterations (Farina et al.,[2022). When such guarantees are
not required, one could accommodate other optimization methods in solving (I). Our experiment
section provides more details.

The choice of p and h is game-dependent. For example, when ¢;(x) = 2 and the action set is on
the positive half line, we can use the negative log function as our self-concordant barrier function h
and take p = .
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Algorithm 1: Algorithm

Input: Learning rate 7, parameter d;, regularizer h(-), p(-), constant

@} = argming .y, h(;)

=
fort=1,...,Tdo

Set AL = (V2h(a}) 4+ i (t + 1)V2p(at)) ~1/2

Play &! = x! + §, AL2!, receive bandit feedback c;(4;,4_;), sample z! ~ S4

Update gradient estimator g = %Ci(it)(Aﬁ)*lzf
Update the strategy

zi ™ = argmin {n; (i, ¢!) + mer(t + 1) Dp(as, 2%) + Dp (24, 28) } (1
T, €X;

5 NO-REGRET CONVERGENCE TO NASH EQUILIBRIUM

In this section, we present our main results on the last-iterate convergence to the Nash equilibrium.
We show that Algorithm [T|converges to the Nash equilibrium in monotone, strongly monotone, and
linear games. Such convergence is no-regret, meaning that the individual regret of each player is
sublinear.

For notational simplicity, we present the results in a perfect bandit feedback model, where player ¢
observes exactly ¢;(z*). The discussion of noisy bandit feedback, where player i observes c¢;(x?) +
ek, with €! be a zero-mean noise, is deferred to the appendix (Theorem [D.1)

5.1 PERFECT BANDIT FEEDBACK

The following theorem describes the last-iterate convergence rate (in expectation) for convex and
strongly convex loss under perfect bandit feedback.

Theorem 5.1. Take 1; = {thf/ 4 5 = {tl/ 4 . With Algorithm|l| we have

* T+1
E ZDP (Jci,miJr )]
ieEN
dv log(T) dB BL ac, dlog(T VnB2Llog(T) -
O (e | 23 - nBL 2 ndog) L B L) u=0
ndv log(T) nd¢B nBL ndC, ndlog(T) BLlog(T) '
O (nelog®)  ndch 4 nBL 4 ndCy | ndlogl +um/’f) 00,

In the case of the monotone games, |Bravo et al.| (2018) showed an asymptotic convergence to Nash
equilibrium. To the best of our knowledge, Theorem is the first result on the last-iterate con-
vergence rate for monotone games. For strongly monotone games, [Bravo et al.| (2018)) first gave a
O(T~1/3) last-iterate convergence rate, which was later improved to O(T~'/2) by Lin et al[(2021).

While we defer the proof to the appendix, we discuss the main ideas for deriving the results. By the
update rule, we can obtain the inequality
Dy, (w,», a:ﬁ“) + mk(t +1)D, (w,-, J:f“)

2
< Dy, (wiy @) + mer(t + 1) Dy (wy, at) 4+ e (Vie; (2) ,wi — at) 4 n - residual terms @

where w; is a fixed point given.

When the game is strongly monotone, we can directly use strongly monotonicity and take p to be the
. . . L 2 2
Euclidean norm to obtain a recursive relation similar to ||wl — xf“ ||2 < (-} le — it H2 +

residual terms. This amounts to applying this recursion and upper-binding the residual terms in-
dividually to obtain a last-iterate convergence. However, when the game is monotone but not
strongly monotone, we will need a different approach. Notice that G = Ve¢; — Vp is a mono-
tone operator. Using the property of Bregman divergence, we have (G(z) — G(z'),2' —x) <

- Zie./\/' (Dp (4, x;) + Dy (33;, ;).
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We then sum the recursive inequality and leverage the combination of two regularizations, which
obtain

nre(T +1) Z D, (wi,z; ™)

iEN
T
< Z Dy, (wi, acll) + K Z D, (wi, le) + Z Z ¢ <Vici(w)7wi — ;vf>
ieN ieN t=14ieN
T T
+ Z Z ne (9f — Vici (2*) ,w; — xf) + Z Z me (gl at — 2ty
t=1ieN t=1ieN

Now it suffices to properly choose a fixed point w; such that both the first term ), \- D, (wi, xll)

and the third term 23:1 Y ien Mt (Vici(w),w; — x!) are bounded. When w; is the Nash equilib-
rium z;, the third term can be upper bounded trivially using the monotonicity of ¢;, while it does
not imply a bounded first term. Therefore, we set w; = x} when the first term can be bounded.
Otherwise, we set it to a close enough point to z, such that the first term can be bounded and the
third term is bounded through a more careful calculation.

High probability result In the case of a strongly monotone game, our results show that the
O(Tﬁl/ %) last-iterate convergence rate holds a high probability. This is the first high-probability
result for last-iterate convergence in strongly monotone games.

Theorem 5.2. With a probability of at least 1 — log(T)o, 0
e 1 and with Algorithm we have ZieN D, (x*—‘ xT'H)

ndvlog(T) | nd¢B |, nBL , ndC, | ndlog(T) , dBLlog(T) 7LBd210g2(1/6)10g(zT))
O<7ﬁ + 2B nBL 1 T o (BL AT nBeon LI

INIA

5.2 INDIVIDUAL LOW REGRET

Beyond the fast convergence to Nash equilibrium, our algorithm also ensures each player with a
sublinear regret when playing against other players. The sublinear regret convergence is a desirable
property as the players could be self-interested in general, and want to ensure their return even when
other players are not adhering to the protocol. The low regret property remains true for players that
are potentially adversarial, despite the convergence to Nash equilibrium no longer holds in that case.

For player i, and a sequence of actions {#{}Z ;, define the individual regret as the cumulative

expected difference between the costs received and the cost of playing the hindsight optimal action.
That is, Y, E [e; (&4, 21,) — ¢i (wi, 2;)], where {a*;}T_, is a fixed sequence of actions of

other players. The following theorem shows a guarantee of the individual regret of each player.
L u=0 2 u=0

Theorem 5.3. Take 1; = {thf“ , 0p = {t / . For a fixed w; € X;, a fixed
saiz M >0, 1 uw>0,

sequence of {xt ;}1_,, and with Algorithm we have

O (vdT?*10g(T) + GVT + Ei\/ﬁBT3/4> p=0
) Vd\/Tlog(T)—i-G\/T—i-W) ©w>0"

T
D Elei (@5 2L) — ¢ (wialy)] =
t=1

Our result matches the v/7 regret bound for strongly monotone games (Lin et al.,[2021), but applies

to monotone games as well.

Implication on social welfare By designing the algorithm to be no-regret, we can also show that
the social welfare attained by the algorithm also converges to the optimal value.

The social welfare for a joint action x is defined as SW(z) = >, .\ ci(z). We let OPT =
min, SW(z) to denote the optimal social welfare.

Definition 5.1 (Roughgarden| 2015} |Syrgkanis et al.|2015). A game is (C1, Cs)-smooth, C; > 0,
Cy < 1, if there exists a strategy x', such that for any x € N, Y7, ci(xj,x—;) < C1OPT +
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We have the following proposition which shows that the social welfare converges to optimal welfare
on average.

Proposition 5.1. With n, = 557,00 = 7,

T ~ nvdlog(T fle
have £ 1 E[SW(3)] = O (GO5E 4+ podlosD), | ViBFuen )

and suppose every player employ Algorithm l we

5.3 SPECIAL CASE: LINEAR COST FUNCTION

When ¢; is linear, there does not exist a p that is convex while making ¢; — xkp convex. Algorithm
[T] therefore does not apply to the linear case. This coincides with our intuition that the landscape c;
does not provide enough curvature information for the algorithm to utilize.

To extend the algorithm to the linear case, we modify line 6 of Algorithm I as :ctH =

argmin,, ¢y, {TIt (i, 9%) + m7(t + 1) Dy (24, 2t) + Dp(z4, 2%)}. The idea is to first show the con-
vergence of 27’ to a game with the cost ¢;(x) +7p(x). With this regularized game, we choose p to be
a strongly convex function and measure the convergence in terms of the gap function (¢;(x), z; —x™*).
By carefully controlling 7, we obtain the following result.

Theorem 5.4. With n; = ﬁ, T =z, Gp = sup,, ||Vp(z)| and Algorithm we have

E Z <Vici (xT) ,wiT - xf>
1EN
-5 BGp,+ \/d(BL + G)(nv + nBL +nd?) \/dBL(BL+G) /dnC,(BL+ G)
— T1/6 + \/ﬁTl/G \/ﬁT1/4

Similar regularization techniques have been used in the analysis of the zero-sum game (Cen et al.,
2021; |Cai et al.l [2023). Our result matches the last-iterate convergence for zero-sum matrix game
(Cai et al.l [2023), which is a class of games with linear cost functions. However, our result is
more general as it applies to multi-player linear games with convex and compact action sets (while
previous works only apply to a simplex action set). It remains open to how games with linear cost
functions could be effectively learned and whether the convergence rate could be improved.

6 APPLICATION TO TIME-VARYING GAME

In this section, we further apply Algorithm[I]to games that evolve over time. A time-varying game
G, is a game where the cost function c!(-), i € A" depends on ¢. The game G; is not revealed to the
players before choosing their actions ;. We assume that G, satisfies Assumption [3.1]for every ¢.

Such evolving games have applications in Kelly’s auction and power control, where the cost function
may change as time-dependent values change, such as channel gains. While the changes of G; can
be random, we discuss two cases here, 1) when G; converges to a static game G in o(7T') time, and 2)

when the variation path of the Nash equilibrium, Zt 1z PLE _ 25*| is bounded in o(T).

Converging monotone game Let G; denote the game formed by the costs {ct()};cnr, and G be
the game formed by the costs {c¢;(-) }senr- Suppose G; converges to G, and let 2* be the set of Nash
equilibrium of the game G. The cost function ¢! converges to some cost function ¢; in o(7') time.
The following theorem shows the last iterate convergence to x*.

Theorem 6.1. With ZtT:1 Yienmaxy [Vici(x) — Vid(z)lle = T% tke 1 =

Wg/@ 5, = tl%’ and under Algorithm we have E [ZiEN D, (x;‘, %TH)] <
dvl dcC, dl mB2L1

0 (7” e D) petB 4 nBL o 20 pndogD) 4 VAP L@ 4 A

For monotone games, Duvocelle et al| (2023) showed an asymptotic last-iterate convergence rate.
To the best of our knowledge, Theorem @] is the first last-iterate convergence rate for the class of
converging monotone game.
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Figure 1: Experiment on Cournot competition, zero-sum two-player minimax game, and convex-
concave game. In Cournot competition, the curves of OMD and GD overlap with each other.

Evolving game and equilibrium tracking We now discuss the case where G; does not necessarily
converge to a game G, but the cumulative changes of the equilibrium are bounded. We use the

variation path V;(T') = 3=, Hx?l’* — b

In this setting, the last-iterate convergence is not applicable, and the convergence is measured in
terms of the average gap. Because of this, the algorithm is slightly modified and updates with

ot = argming, ¢y, {n: (i, 9}) + Da(wi,2})}.
Theorem 6.2. Assume Vi(T) < T%, ¢ € [0,1]. Take ny = ——y, 6 = 73, and un-
2d

—9p)>
o

; 1 T tat st \ At o bx\ A nwdtLn®/?B24nG
der Algorzthm we have %>, S cn (Vick (&1, 81;) &t —ap™) = O(W +

to track the cumulative changes of equilibrium.

1 (3
__n
9_ (40+5)2 J*
T8 T2

In the case of a strongly monotone game, |[Duvocelle et al. (2023) gave a result of T%/5-1/5 and|Yan
et al.| (2023) gave a result of 7%/3~2/3 In comparison, Theorem [6.2|extends the study to monotone

games, and improves the result to O (max {T2‘P/3_2/37 T(4p+5)*/72-9/8 })

7 EXPERIMENT

In this section, we provide a numerical evaluation of our proposed algorithm in three static games.
We repeat each experiment with 5 different random seeds. We ran all experiments with a 10-core

CPU, with 32 GB memory. We set 1; = ﬁ, and &; = 0.001.

We present the results of the following example games described below. More results with other
parameters can be found in the Appendix [K]

Cournot competition In this Cournot duopoly model, n players compete with constant marginal
costs, each having individual constant price intercepts and slopes. We model the game with 5
players, where the margin cost is 40, price intercept is [30, 50, 30, 50, 30], and the price slope is
[50, 30, 50, 30, 50].

Zero-sum matrix game In this zero-sum matrix game, the two players aim to solve the bilinear
problem min, max, = " Ay. We set this matrix A to be [[1,2],[3,4]].

monotone zero-sum matrix game In this monotone version of the zero-sum matrix game, we
regularize the game by the regularizer z2 + 2.

Algorithm |1|is evaluated against two baseline methods: online mirror descent and gradient descent,
with exact gradient, or estimated gradient (bandit feedback). We set the learning rate 7 to be 0.01
in both zero-sum matrix games and monotone zero-sum matrix games and 0.09 in Cournot compe-
tition.

Figure [I] summarizes our experimental findings, where our algorithm attains comparable perfor-
mance to online mirror descent and gradient descent with full information. This demonstrates the
efficacy of our algorithm. We also compare our algorithm to gradient descent with an estimated
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gradient, using the same ellipsoidal gradient estimator, for a more fair comparison. However, apart
from the zero-sum matrix game, we find the baseline algorithm performs too poorly to be compared.

8 CONCLUSION

In this work, we present a mirror-descent-based algorithm that converges in O(T_l/ 4) in general
monotone and smooth games under bandit feedback and strongly uncoupled dynamics. Our algo-
rithm is no-regret, and the result can be improved to O(7~'/2) in the case of strongly-monotone
games. To our best knowledge, this is the first uncoupled and convergent algorithm in general
monotone games under bandit feedback. We then extend our results to time-varying monotone
games and present the first result of O(T‘l/ 4) for converging games and the improved result of

0] (max{T%’/ 3-2/3, T4e+5)*/72-9/ 8}) for equilibrium tracking. We further verify the effective-

ness of our algorithm with empirical evaluations.
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A MORE GAME EXAMPLES

Example A.1 (Extensive form game (EFG)). EFGs are games on a directed tree. At terminal nodes
denoted as z € Z, each player i € N incurs a cost c;(z) based on a function ¢; : Z — R. The
action set of each player, X;, is represented through a sequence-form polytope known as X; |Koller
et al.|(1996)). Considering the probability p(z) of reaching a terminal node z € Z, the cost for player
i is expressed as c;(x) = 3 > p(2)ci(2) [[jep ) 0,2]. Here, x = (21,...,75) € [[jen &)
signifies the joint strategy profile, and x; [0 ], z] denotes the probability mass assigned to the last
sequence o , encountered by player j before reaching z. The smoothness and concavity of utilities
directly arise from multilinearity.

Example A.2 (convex potential game). A game is called a potential game if there exists a potential
function @ : X — R, such that, ¢;(x;, x_;) — ¢;(2h, x_;) = ®(x;,x_;) — P(a}, x_;), foralli € N.
If ® is continuous, differentiable, smooth, and convex in x;, then the game satisfies Assumption|3.1

For example, a non-atomic congestion game satisfies Assumption@ as shown in Proposition I and
2 of|Chen & Lu/(2016).

12
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B PROOF OF THEOREM [5.1]

1 _ 1 _
Theorem 5.1. Take n; = {20”13/4 p=0 o {t1/4 p=0 . With Algorithm|l| we have

ZD j’ 3“+1)]

ieN

O (P80 + 548 + 25k + 50 + 2RE(D) 4 L) =0

0 ndl;lo\/gT(T) 4+ ndeB % i n\cﬁp n ndlc\)/g%T) " BZ;%T)) 450,
Proof. We now upper bound the terms in Lemma J.1}
When ;= 0, taking expectation conditioned on !, we have E {|\Afgf||2 | mt} =

52E [ei(&)2]|2E]% | =] < %. By Lemma and the choice n; = ﬁ, we have

T T -
S B Gt —ai7] < Yot SB[l <ty
t=1 ¢

t=1 ieN t=1 iEN

By the definition of ¢;,

T
Z ZntE [(gf — V¢ (xt) Wi — x§> | xt]
1EN t=1
T
= Z ZmE [<Vléz(xt) — V,¢; (mt) Wi — Tt > | x ]
ieN t=1
T
= Z Z’r]tE [EUMN]BdEzfiNHJ‘;éiSd <V1cl (J?i + 5,514211]“56)5_1) — Vici (.I‘t) s W; — $f> | xt]
1EN t=1
T
<B Z ZntE winBiBy_ T, sd HV ¢ (x + 8 Alwy, 2 ) Vic; ( t) H | xt]
ieN t=1

By the smoothness of ¢;,

Ep;~paEs_ (I S [||vlc2 (z +5tAtw1, ) Vic; ( t)”]

2 2
Sy gy om, s \/53 [Aswil|* + 62> 1452
J#i

Since p is convex, V?p(z) is positive semi-definite, and A* < (V2h(2;))~ /2. For zt = 2t 4 Alw!
Define ||v||, = /v V2h(z)v, we have |zt —zt||,, < ||wt|\ < 1,and ! € W (z!), where W(acz) =
{x} € RY, ||zt —z4||2, < 1} is the Dikin ellipsoid. Since W (z;) C Xl,V:cZ € int(X;), we can upper
bound || A;w;||? by B2, the diameter of the set X;. Hence ||V (z!) — Vy¢; (21) || < £:6,5/nB. By
Lemma[L3]

ZZmE [(gffvici (xt),w —x > | :17] = ZZmE [<Vzél (xt) — Ve (ast),w — > | :17]

iEN t=1 iEN t=1
< Y SB[ (o) - Vies (&) s =] | o1
1EN t=1
T
<VAB2Y iy med.
iEN t=1

13
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When ¢ > 0, we set § = 1. Then, taking expectation conditioned on xt, we have
ap 12 . .

E {HAfng | xt} = d’E [¢;(2")?||2)? | 2'] < d?. By Lemma and the choice 17; = ﬁ,

we have

ETZW D E[(ghat -] < ETjn? >E|[laig]’] < nd2§2n3.

t=1  ieN t=1 i€EN

By Lemmal[J.3] for any w; € X;, we have

ZZntE —Vici (2) ,w; — x}) —ZZmE Vici(z') = Vie; (') ,w; — x)) | 2']

iEN t=1 iEN t=1
T
S ZBglzT]tE Z (Umax (A§)2> |$t
iEN t=1 JEN
T
gf Z; (t+1)

BZZeNﬁ 1
I Z(t+1)

where the third inequality is by V2h(z) being positive definite, and V2p(z) > ul.

Let L = ) ;.\ £i- When p = 0, combing and rearranging the terms, we have

* T+1
§ D Z;,T;

ieN
T T
<o mloe@ | n<1332 L nBL  n_ nC,  nd Z§+ VIB2LY_ymdr )
knrT nrT3/ T kT 0T knrT —~ 03 knrT
Take 10 = 5z577. 0t = 717 "t = O(Zf L t) = O(log(T)), and Y, m6; =

) (Zthl ;) = O(log(T )) Hence, we have

D, (7| <0 ndvlog(T) n¢dB nBL ndC, ndlog(T) +/mB>Llog(T)
;/ Ly, &y = I{Tl/4 T3/4 K\/T T1/4 /{T1/4 KT1/4

When p2 > 0, combing and rearranging the terms, we have

* T+1
E D Z;,T;

1eEN
<0 nvlog(T) N n¢B N nBL L nd? XT: BLlog(T)
- knrT nrT3? kT T 77TT knrT penrT )
Take n; = Zdt%/z, we have
Z D, (z, 27| <0 <ndu log(T) nd(B n nBL n ndC, n ndlog(T) BL log(T)> '
= kT T T T kT urNT

O

14
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C PROOF OF THEOREM[3.3]

1 1

L — 0

Theorem 5.3. Take n, = 4 2dt*/* L0 = {tl/“ H . For a fixed w; € X;, a fixed
Up {M11/2 o> 0 t 1 > 07 ﬁ ﬁ

sequence of {x' YL, and with Algorzthml we have
T O (vdT**10g(T) + GVT + zi\/ﬁBTS/‘*) ©=0
Z]E [ei (27, 2%;) — ci (wi,2ly)] = BUNT :
po O (vdVTlog(T) + GVT + T) >0

Proof. Define the smoothed version of ¢; as ¢;(x) = E,,wpa [¢; (x; + 6Ajw;, x_;)]. Then, we
decompose as

T T T
Zci (ﬁcf,xt_l) —¢ wz, Z wz, + Z é; (vaxt ))
t=1 t=1 t=1
T
Cz

T
+ Z (67 (wiv xt—z wl? —z + Z
t=1

t=1

t t
) — e (ataty)) .

For the first term, recall that by the update rule, we have,
Dy (wi, ™) + et + 1) Dy (wi, 2} )
= Dy, (wi, x7) 4 et + 1) Dy (wis 7)) 4+ me (Vs (') ywi — x) + e (65 — Vs (2') ,wi — xf)

+ uiz <gz7xz - xt+1>
= Dy, (wi, @}) + mr(t +1)Dy (wi, xt) + 1 (VE; (') — £Vp(a}),w; — xb) + me (9 — V& (%) + kVp(al),w; — at)
+ e (gf, alb — it

By Lemma([J.3] for any w; € X;, we have
E [<§f - V¢ (xt) + kVp(ah), w; — xf> | xt] = [<Véi( B = Ve (z t) + KkVp(ah), w; — xf> | xt]
E [r (Vp()),wi —a7) | 2']
=E [rp(wi) — rp(z}) — kDp(ws, ) | 2'] |
where the last equality follows from the definition of Bregman divergence.
Therefore,
E [Dh (w,;, zf'H) +mk(t +1)Dy (wl,xf"'l)}
=E [Dy, (wi, x}) + mrtDy (wi, xt) +me (VE (2') — kVp(al),w; — at)] + mE [kp(w;) — kp(a})]
+ B [ (g5 o — 2]

By the monotonicity of ¢; (z*) — kp(z!), we have
(Véi (2') — kVp(a}),w; — xf) < (& (wi, a';) — rp(wi)) — (& (2}, 2%;) — kp(al)) .
Hence
E [éz (Jn1F xt ) — ¢ (wi,xt )]
(Dh (Wu 2) Dy, (Wu §+1))
n

<E

+ £ (tDy (wi, 27) — (t+1)D, (Wzv$§+1))+<g“x§—xt“>1 '

When p1 = 0, by Lemma [J.2} we have E [(g?, 2 — 2!T1)] < nE ||| Atg? Taking expecta-
12 y il i g exp
<

tion conditioned on x?, we have E [||Aigz|\ | @ } = %E (27228 | @ } < d—Z and therefore

B [(gh. ot~ )] < 2.
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Taking summation over 7', and take 7, = th%/“ 5, = /4 we have
T T
N E (¢ (af,at,) — & (wial,)] < dT¥'E [Dy (wia})] + <E [Dy (wi o)) Z”T
=1 et

< O (dT*E [Dy (wi,})] + KC, + T4
as we assumed D), (z;, x}) is bounded for any z;, z.

When p > 0, taking expectation conditioned on z‘, we have E [HAﬁgf”Q | 1:1 =
d?E [c;(2)?[|2¢]|? | 2] < d?. By Lemma and the choice 7; =

> E[ghat— o] < Yon Y B |4ld)

1
savi We have

T
2] < nd? Znt =nd*VT.
t=1

t=14ieN t=1 ieN
Taking summation over 7', and take 7, = th%/z, we have
T
ZE e (a},2;) — & (wi,aty)] < dTY?E [Dh (wi, 27)] + KE [Dy (wi, z7)] +nd*VT,
=1

as we assumed D), (z;, «}) is bounded for any z;, z;.

Define 7, (y) = inf {¢t > 0: 2+ $(y — x) € X;}. Notice that z} (z) = argmin, cy, h(z;), so
Dp(wi,z}) = h(w;) — h(z}).

3

e If To(w) <1 - ﬁ, then by Lemma Dp(w;,z}t) = vlog(T), and

tT=1 E [¢ (2f,2t,) — & (wi,2t;)] = O (vdT3/*log(T)).

* Otherwise, we find a point w/ such that ||w] — w;|| = O(1/VT) and 71 (w]) < 1 —
Then Dy, (w}, z}) = vlog(T),

%

max, [|V;e; (2) ||

G (wz'.,xf;i) — & (wi,xii) < <Viéi (w;,xiz) Wi — wi> <||Viéi (w;,xiz) wi — wil| < Nii

Therefore, Y1 E [¢; (%, 2L,) — ¢ (wi,2%,)] = O (VdT3/4 log(T) + max,, ||V;c; (z) ||\/T)

For the second term, by Jensen’s inequality, we have

¢i (zh, 2t ) By t B [ci (@ + 6 AMw}, x* ;)] > ¢; (waNdeﬁ + (5,5A§wf,a:t_i> = ¢ (2f,2";) .

79

Therefore, we have S, (¢; (¢f,2%,) — & (2%, 2%,)) = 0.
When p = 0, by the definition of ¢; and the smoothness of ¢;,
IViéi(z') = Viei (2') || = ||Bu,npaBy_ o, ise [Vici (2] + 0 Afw;, 2° ;) — Vies (27)]|

2 2
<l |BuynpiBy om0 |02 10 Awil|” + 62> 1 4;%])
J#i

Since p is convex, V2p(z) is positive semi-definite, and A? < (V2h(2;))~ /2. For #t = 2t 4+ Alw!.
Define ||v||, = /v V2h(z)v, we have ||z} — zt||., < ||wt|| < 1,and 7} € W(z!), where W (z) =
{o} € R ||zt — 24|, < 1} is the Dikin ellipsoid. Since W (z;) C XZ,VLL'Z € int(X;), we can upper
bound || A;w;||* by B2, the diameter of the set X;. Hence || V;é;(z!) — Vic; (') || < £:6¢/nB.
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Therefore, for the third term, we have

T
ZIE & (wi,a";) — ¢ (wiaty)] <O (ZE 5t\fB>

Similarly, for the fourth term, we have ./ El[¢; (dt,2%,) —¢; (al,2t,)] <
O (1, tidn/nB).
When 1 > 0, by Lemma[J.3] for any w; € &;, we have

0
Vlél(a:t) - ViCL < f Umax At = L .
|| I b3 (rme (4)°) < 5

where the second inequality is by V2h(x) being positive definite, and V2p(z) > ul.

Therefore, for the third term, we have

S E (& (winaty) — ¢ (winat,)] <O <M> _

t=1 K

Similarly, for the fourth term, we have 3, E [¢; (&4, a%,) — ¢; (2f,2%,)] <O (”Be“ﬁ).

When p = 0, with §; =

we have the regret as

T
Z]E e (8,22;) — ¢ (wir2';)] = O (VdT3/4 log(T) 4 max ||V,¢; (z) |VT + Zi\/ﬁBT?’M‘) .

t=1

When p > 0, we have the regret as

T
SUE[e (#hal,) i (wihat )] = O (ml/z log(T) + max | V.ci (a) [ VT + “25 f)

Combining the terms yields the final result. O
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D PROOF OF THEOREM [D.1]

We now consider the case where every player receive ¢;(x!) = ¢;(z!) + !, where E[¢! | 2] = 0,
and ||e!||? < o. The following theorem describes the last-iterate convergence rate (in expectation)
for monotone and strongly monotone games under noisy bandit feedback.

Theorem D.1. Withn, = W, 0 = t11/4

D, (+F.2T+) < O nvd*(1+o0)log(T)  n¢d*(1+0)B  nd*(1+0)C,
sz\:/ p \Ti» Ty ) KT1/4 T3/4 + T1/4

vnB?Llog(T) ndlog(T)
KT1/4 k(14 0)2T1/4

Proof. Similar to Theorem[5.1] with Lemma[J.1] we have

ZD o) T_H)_O<m/log(T)Jr n(B >+O<”BZieN&+ n )ZtT_lntJrO(nCp)

= knrT nrT3/2 KT3/2 KT3/2 nr nrT
nB2L Y, 0
$ T LR 0 Sttt
nre(T + 1) nTn T+1 zeNt 1
Taking expectation conditioned on z!, we have E [||At P } = ‘;zIE (G (22|28 | 2] <

3(2 + 20). By Lemma and the choice 1, = m, we have

T L T n? nlog(T)
At t+1 2 tat T _
S ¥ B - o) = Yook SO )] <oy D)
t=1 ieN t=1 ieN t=1
Combining everything, we have
Z D T+1)
'L7 Z
€N
<0 nvd?(1+o0)log(T) nCd*(14+0)B  nd*(1+0)C, +/nB*Llog(T) ndlog(T)
= wT1/4 T3/4 T1/4 wT1/4 k(1 +0)2TV4 )

O

18
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E PROOF OF THEOREM

Theorem 5.2. With a probability of at least 1 — log(T)o, )
e 1 and with Algorithm we have Ziex\/D (:c zT'H)

ndvlog(T) | nd(B | nBL |, ndCp | ndlog(T) , dBLlog(T) an210g2(1/6)Zlog(ZT)>
O( ot Tttt T T mmtvamr )

ININA

Proof. Lemma[J.I] we have

> Dy (), ™)

iEN

nvlog(T) n¢B nBY il n Zt 1 nCy
<0 0 j @
- < knrT + T]TT3/2 + KT3/2 + KT3/2 nr + nrl

ey Y Gt ot +

zENt 1

T+1 Zntz —Vici(xt),wi—xD.

K
77T t=1 ieN

By Lemma([J.2] we have

T

T
S > (gt =ty < ST > Al

t=1 ieN t=1 ieEN

T

< nd? Z n?.
t=1

We then decompose the last term as

Doy (9= Vies (&) swi —af) = > me Y (gf — éi(a)), + Zm (Vici(a!

t=1 ieN t=1 ieN ieN t=1

By Lemma [E-T] we have

a oAbty ot Bdlog2(1/5)log(T)
2ot e mgo( min{ /7L, 1} )

with a probability of at least 1 — log(7)4, 5 < e~ !
By Lemma([I.3] for any w; € X;, we have

5 S (Vi) - Vi (o) o) < 3B ZN(amax )') 1

o IIMH

iEN t=1 ieEN
<) BL) oy
ieEN t=1 plt+1)
BYonli~ 1
< iEN T Z
poo =+
_ BLlog(T)
1
where the third inequality is by V2h(z) being positive definite, and V?p(z) > ul.
Therefore,
T 2
BLlog(T Bdl 1/6) log(T
Zntz<§f—vici(ﬂﬁt>7wi—$$>§0< og( )+n o.g(/)og( ))
t=1 ieN K min{/p, p}

19
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Combining the terms, and with n; = we have

Z D * T+1
1EN
<0 <nd1/ log(T) nd¢B nBL n ndC, ndlog(T) dBLlog(T) nBd?log*(1/4) log(T)>

VT T T T kT kT - xmin{ /1, pINT

O

1
2d/t’

Lemma E.1. With a probability of at least 1 —log(T)6, § < e~ 1, we have

)i — Bdlog?(1/6) log(T)
Zm (), Z>§O( min{/7i, j1} )

Proof. Define Z; = n, (gt — ¢t(at),w; — at). Var[Z,] < n*(w; — 2t) "E[gt(g¢) T](wi — 2t). Then,
with e = #\/{,

Bd Bd
max | Z;| < max ||n: (g — éi(a})) || [Jwi — @} <O <Bdmax||nt (AH~* tH) < O | max <O|—,
t t t u(t+1) I
where the third inequality is by the definition of A?.

By the definition of gradient estimator, we have

d2
DT gt < d? ((A At <Y
(95)T gt < d® ((AD 720 (A7) < PENCESY
: _ 1
Therefore, with 1, = 3077
d?||w; — 2t d*>B? dB?
(wi - a!)TElgH(g]) (e —t) < L H <

pne(t+1) = pme(t+1) T u/t
‘We have

T

T . B2 By/log(T)
Z::n i — ) TE[gf (g)) T (wi — @) < ;dﬂt3/2 <0 <\/@> )

Then, by Lemma 2 of [Bartlett et al. (2008), with a probability of at least 1 — log(7")d, 6 < e,

T

Znt — él(ah),w; — af) < 2max | 2 ZVar[Zt] max|Zt|log 1/6)
t=1

B+/log(T) Bdlog(1/4)
gmaX{O< NG ),O( )} log(1/4)

Bdlog?(1/6) log(T)
<o( min{ /7. 1} ).

20
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F PROOF OF THEOREM 3.4

Theorem 5.4. With n, = T= ﬁ, Gp = sup,, [|Vp(x)|| and Algorithm we have

_1
2dv/t’

E Z (Vie; (27) 2] — )
1EN
<[ BGnt VA(BL + G)(nv + nBL +nd?) \/dBL(BL+G) +/dnC,(BL+G)
- T1/6 + \/ﬁTl/G \/ﬁT1/4 :

Proof. We consider a regularized game with operator F'(z) = [Fj(z)];enr, where F(z) = Ve (z)+
TVp(:), Vp(z) = [Vip(z:i)]ien-

Similar to Lemma[J.T} we have

T T+1
§ D Liy Ty

iEN
T
<0 <n1/10g(T) N nuB > L0 (nBZieN& L Y oieq M Lo (nC’p>

nptT nTTT3/2 TT3/2 TT3/2 nr nrT
T
1 .
¢ trl ot N Tt
ui gzvx - Z; T un <i7Fi T axifzi>
b oD ;; ) F e 2 2 (9 B )
1 -
+7Zm Z <gf—Fi(:vt),£i—m§>.

(T +1) = FEN\M

Taking expectation conditioned on z*, we have E {HAfngQ | xt} = d°E [¢;(&")2||20]? | 2] < d2
By Lemma and the choice 1y = ﬁ we have

S S E[(ghat -t < S S E||

t=1 ieN t=1 iEN

T
2] < nd? Z nt.
t=1
By Lemma([J.3] for any w; € X;, we have

Z ZntE ({9} — Vici (2") ,w; — al) | '] = Z ZmE [(Viéi(a") = Vic; (2) ,w; — af) | 2']

ieN t=1 ie/\/tﬂ
< ZZmE [ Vi) = Vies (&) || [|ws — 23| | 2]
iEN t=1
T
< ZB&ZﬂtE Z (Jmax (A§)2> |xt
€N t=1 JEN
1
< BY;
ZGZN ; u(t+1)

BZleNﬁ Z 1

1 t+1)

where the third inequality is by V2h(z) being positive definite, and V2p(z) > ul.
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Combing and rearranging the terms, we have

T T+1
E:D LTy

1EN

. 2 T ) )
§O<nV10g(T)+ n¢B >+O<nBZieN&+ n >+O<Zcp>+0<"d Zn?JrleeN&

np7T nprT3/2

T /T

Take n; = ﬁ, we have

7' T+1
E:D LTy

1EN
<0 (ndu log(T) N nd¢B N nBY ol Ly ndC, n ndlog(T) ~ dBlog(T) ) ,cn £i>
B T 7T T T vT T TuvT .

We can decompose as
(F(ah),2" —a7)
= (F ("), >+<F( 1)t =)

§GH$ —x H—|— 27)+7Vp(aT), 2" —z*) +(F (27) — F (27) 2" — 2*) + 7B||Vp(z")|
< Z(Bfi + Q) sz — a:TH +7B||VpaT)] .
iEN

Since V2p(x) = ul, we have |27 — 27| < \/Dp(a7,2]). Let G, = sup, |[Vp(z)|, L =
> ien Li» we have

Z <Vici (acT) ,JiiT — xf>

iEN

E

<0(BG) + <\/d BL+G)(w +nBL+n®)\ | 5 (VABLBL+G)\ , , (/dnCy(BL+G)
> P

le/‘l FT1/4 \/ﬁTl/‘l
-5 BG, + \/d(BL + G)(nv + nBL + nd?) VABL(BL + G) O dnC,(BL + G)
- T1/6 le/G \/ﬁTl/zl ’
where the last inequality is by taking 7 = ﬁ O

22
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G PROOF OF PROPOSITION[3.1]

Proposition 5.1. With n, = th%/u 0y = tl% and suppose every player employ Algorithm |I} we
T N nvdlog(T VB Y o i
have % 51, EISW(2)] = O (G958 + qaoith + “aocsidn )

Proof. By Theorem[5.3] we have

SN Elai(@d5,)] <> Bl (widt,)] +0 (nudT3/4 log(T) + vVRBT*/* " &)

t=14ieN t=14ieEN 1EN
T

<COPT-T+Cy» E[SW(2)] 40 (nudT3/4 log(T') + vnBT3/* >~ &) .

t=1 1EN

As S v E e (2,38,)] = E[SW ()], we solve for E [SW ()] and obtain

—1i

1z L C,0PT nvdlog(T) VB Y i oa i
T ;E [SW(J?)] =0 <(1 — CZ) + (1 — 02)T1/4 (1 _ 02)T1/4 )
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H PROOF OF THEOREM

Theorem 6.1. With Zthl Sienmaxy [Vici(x) — Vid(x)lle = T% ke 1 =
M%M, 0y = tl% and under Algorithm we have E [Zie/\/D (x xT+1)] <
ndv lo n n ndC), nd lo nB2L lo
ET TR Rt T )
Proof. Similar to Theorem[5.1] we have
> Dy (wisal™)
iEN
T
<0 nvlog(T) N n¢B Lo nBY il L Y oieq L0 nC,
nrrT nTT3/2 KT3/2 KT3/2 nr nrT
T
1
+izzm<gwﬁwt“>+7zm > (9f = Vick (') a7 o)
KV'T]T(T—"_ ZENt 1 HnT(T—i_l) t=1 ieEM
Z’I]t Z J; —Vicﬁ(mt),@-—mf)—l—BZAt,
/‘”7T T+ t—=1 iEN\M t=1

where A" =37\ max, ||Vci(z) — Ve (z)|2.

We now upper bound the remaining terms by discussing them by cases.

When p = 0, taking expectation conditioned on !, we have E {HAﬁngQ | xt} =
2 A .

g—%E [ch(@")2| 282 | =] < d2 By Lemma | and the choice 7; = ﬁ, we have

T T

T 2
Som 3 B9 et —al™)] < Sont Yo [ aia|] <na? Y%
t=1 ieN t=1 ieN t=1 ¢

By the definition of ¢;,
T
ZZmE [<§]f — Vct (xt) , Wi — X > | z ]
iEN t=1
T
= > > mE[(Viéi(a") - Vid} (a') ,wi — a}) | 2']
iEN t=1
T
= Z ZmE []EwiNBdEz_iNH#iSd <Vic§ (xf + (StAﬁwhfcii) - Vicﬁ (wt) Wi — xf> | xt]
ieEN t=1

T

<BY Y B [BypeBy o, s | Vich (¢ + 8, AJws, 345) — Vid) (27) || | 2]
iEN t=1

By the smoothness of ¢!,

Ewi~BdEz—i~Ha‘¢iSd [Hvch (xﬁ + 5tA§wi"%tfi) - ViCE (xt) H]

2 2
S éiEwadEz,wH#iSd \/5752 ||A1U)1H + 6t2 Z ||A]Z]||
J#i

Since p is convex, V?p(z) is positive semi-definite, and A* < (V2h(z;))~ /2. For zt = 2t 4+ Alw!
Define ||v||, = /v V2h(z)v, we have | z! —zt||,,, < ||wt|\ < 1,and ! € W (z!), where W(xl) =
{x} € RY, ||z} —z4||2, < 1} is the Dikin ellipsoid. Since W (z;) C XZ,VxZ € int(X;), we can upper
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bound || A;w;||? by B2, the diameter of the set X;. Hence ||V (z') — Vyc; (21) || < £:6,y/nB. By
Lemmal(L3

SN mE[(gf - Vicl () ywi — 2ty | 2] = YD B [(Viél (2') = Vich (2') ,wi — ) | 2]

€N t=1 iEN t=1

T
< D2 B [[[Viei (o) = Vic] (2) | [Jws = ]| | 2]

ieEN t=1

T
<VAB?Y iy mdr.

ieEN t=1

Let L = ) ;.\ ¢i- When p = 0, combing and rearranging the terms, we have

* T+1
E D Ly Ly

ieN
<o™ log(T) n n¢B n nBL L+ nCp n nd> VnB? th 1 N0t Bzz;l At
- knrT nrT3/2 kT kT 01T T = 53 knrT nrT '
Take m = 2dt3/4’ 5t = t O (Zthl %) = O(lOg(T)), and 2;1;1 ntét =

O (E;‘F:l ;) = O(log(T )) Hence, we have

2, T ndvlog(T) n¢dB nBL ndC, ndlog(T) +/nB*Llog(T) BA
ng TisTy <0 KT1/4 T3/4 H\/T T1/4 + KT1/4 KT1/4 + T1/4 ) >
where A = Y1 S max, | Vici(z) — Viek(z)]|o. 0O
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I PROOF OF THEOREM[6.2]

Theorem 6.2. Assume Vi(T) < T%, ¢ € [0,1]. Take n, = ——y, 6 = 773, and un-
2dt 3

; 1T t (st st At tx\ _ A d+Ln*/2B?+nG
derAlgorlthm we have £ >, 1 > .cn (Vich (21, 8%;) & —ap™) = O(W +

n
9 _ (49452 )°
T8 72

Proof. We first fix a player ¢ decomposes
T T T
D (Vidh (& ah,) 2 —ap) = > (Vi (3,2",) 3l —wi) + > (V Jw; — 2
t=1 t=1 t=1
For the second term, we partition the horizon of play T into m batches Ty, k € [m], each of length

|Tx| = T, q € [0, 1]. We will determine g later. Note that the number of batches is thus m = T 74.
For the batch T}, we pick w; to be the Nash equilibrium of the first game. Then

> (Vieh (@h2h) wi = ai") < 0 [|Viel (@1, 8 | [l = 27

te[Th] te[Th]
< GTY max le xh*
te[Tx]
< GTY Z H:EEH’* — mi*
te(Ty]

< GTVi(Tk),
where the third inequality is by the definition of w;.

Therefore, we have

T m
D A(Vic) (#,a1,) @ —ap) = >0 > (Vi (#],2%,) &) — wi) + GTVA(T).

t=1 k=1t€[T}]
Define the smoothed version of ¢; as ¢} (z) = E,,,pa [¢! (z; + dA;w;, z_;)]. Then, for batch T},
we decompose Y1, (Ve; (&4, 41,) &t — w;) as
> (Viei (31,2",) @t — w;)
tG[Tk]
= Z <Vzéz (ff,fciz),fcf—w»—i— Z <Vzcl( ) ch( f,;f;t _),:ﬁf—wi>
te [Ty tE€[Ty]
< Z (Vié; (2,28 ‘)75%§_wi>+BZ |Vici (8, 2%,) — Viei (2F,2",) Hz
t€[Tk] tE[Ty]

For the first term, recall that by the update rule, we have,
Dy, (wi, 207) = Dy, (wy, 81) 4+ ne (VEE (8Y) ,w; — 21) +me (9F — Vel (27) ,wi — 21)
+ne (9,2t — 21T

By Lemma([J.3] for any w; € X;, we have
E[(§ — Ve (#) ,wi — 21) | '] = E [(Viel(#') — Vicl (') ,w; — 1) | 8] = 0.

Therefore,

E (D (w1, 3451)] = E [Dy () + i (VL (&) o — 80)] + i [(al, 34— 31)]
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Rearranging the terms yields

E[(Vé (21) ! — wi)] < |(Pn02) = D (w5 7))

Mt

+77t <§wmt _zgt+1>‘| i

By Lemma we have E [(gf,2! — &/T")] < nE {HA’?A?HQ}. Taking expectation condi-
tioned on 7%, we have ]E[HAgg,tH |aﬂ = LE[a@h?)=? | 4] <

52 and therefore
E [(3t,8! — a1+1)] < 2L

d2
g,

Taking summation over 7', and take n; = ﬁ, 0y = tr we have
3 E[(vé ( w;)] < dTPE [Dy, (wi, z}) ’“
te[Ty] tG[Tk]

< O (dT7E [Dy, (wi, a})] + 17020
as we assumed D, (z;, x}) is bounded for any z;, .

Define 7,(y) = inf {t > 0: 2+ 1(y — z) € X;}. Notice that z}(z) = argmin, ¢, h(z;), s0
Dp(ws, z}) = h(w;) — h(z}).

?

o If mu(w) <1 - \/%, then by Lemma Dp(w;,z}) = wvlog(T9), and
S E[e; (21, 2;) — & (wi,2';)] = O (vdT'~Plog(T9)).
* Otherwise, we find a point w; such that [|w; — w;|| = O(1/vT?) and 7,1 (w;) < 1 — \/1T7

Then Dy, (w}, z}) = vlog(T9),
) R G
<V¢Ci (wé,:rt_i) Wi — Wi> <|IVig; (w;’xt—z) Il = will < ﬁ'
Therefore, Zte[T [ (xt zt ) — ¢ (W%mt—i)] =
O (vdT?log(T?) + GT9/? + Tq< ).

By the definition of ¢; and the smoothness of c¢;,
IViéi(#") = Vici (2°) | = ||Bu,opaBa_om, 50 [Vici (8] + 6:Afwi, 3L,) — Vie; (2°)]]]

2 2
<t |EynmiBs_ o, 50 |07 10:Aiwi| +5EZ [ A5z

J#i
Since p is convex, V?p(z) is positive semi-definite, and A* < (V2h(2;))~ /2. For zt = &% 4 Alw!.
Define ||v]|, = v/v V2h(z)v, we have ||z} — 2|, < ||wt|| < 1,and zt € W(&!), where W (x) =

{x} € RY, ||zt —z4||2, < 1} is the Dikin ellipsoid. Since W (z;) C Xl,V:cZ € int(X;), we can upper
bound HszHz by B2, the diameter of the set X;. Hence ||V;¢;(2%) — V¢, (21) || < £:6:+/nB.

With 6t tr y

> E[(Viei (&,4",) ,2f —wi)] = O (udTp log(T?) + GTY? + T9P=27) 4 &\/HBQT‘J“"')> :
te Tk]

we have

Combining, as m = T 7 we have

T
D E[(Viel (#1,3%,) &) - 27)]
t=1
=O(GTW(T) + 3 O (vdT' ™7 + GTY? + 79020 4, /nBPT10-7))
j€lm]

=0 (ydTO*Q)JFP + Gr-9+e/2 L p-a)+ale=2r) 4 g\ /pB2r1-0)+a(l=r) 4 GT‘?V,»(T)) )
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When Vi(T) = T%, ¢ € [0,1], we set ¢ = 202 1 = U22) o —

T
SCE[(Vich (i4,3,) a2t — ai™)] = O ((vd+ G + /B T 4 7555
t=1

Divided by 7', we have

T
1 oy e A (vd+ G /B |
! ZH E[(Vict (i,3L,) 3¢ —ab")] = O ( Tt ) .

Sum over ¢ € N and we have the claimed result.
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J  AUXILIARY LEMMAS

Lemma J.1. With the update rule equation|[l}

T+1
D Dy (a,a!

1EN

SO(nulog<T>+ n(B )+O(nBzieN&+ n )Ztlmtw(ncp)

nreT 7)TT3/2 T3/2 KT3/2 nr nrT
T
¢4l 1 ¢ 0 okt
— [l — — i — ViCi y Ty — Xy
e B A ey v -

m7TT+ Zﬂt Z (9 = Vici (2') ;2 — 27)

t=1 {eN\M
where T; is a point such that ||z; — || = O(1/v/T) and inf {t>0:2} +1(z —2l) e X} <
1-1/VT.

Proof. By the update rule equation[I] we have
negt +mer(t+1) (Vp (2i7) = Vp (2})) + (VA (2iT) = VR (2))) = 0.
For a fixed point w;, by the three-point equality of Bregman divergence, we have
Dy (wi ;™)
=Dy, (ws,zt) — Dy, (2, 28) + (VA (z}) — VR (z}T) ,w; — )
=Dy, (wi, 2}) — Dy (z AR at) + e (9, wi — xt+1> + st + 1) (Vp (2 t“) Vp (2}) ,w; — xt+1>
= D (wi, @5) = D (237 a7) + e (95, wi = 2371) + mers(t + 1) (D (wi, 27) = Dy (wi, ™) = Dy (a7, 27)) -

Rearranging and by the non-negativity of Bregman divergence, we have,

Dy, (wl, x; ) + mk(t+1)D) (w“xiﬂ)
< Dy, (wy, t) + mes(t + 1) Dy (wy, 2t) + e (gF,wi — 2t +ne (g1, 2f — 2l)
=Dy (w,,xf) + mk(t +1)D, (wi,xf) + <V¢ci ( ) , Wi — 1> + ny <97: — Ve (zt) , Wi > + <gz,zf — zt+1> .

By Lemma and the assumption that ¢;(x) — xp(z;) is convex, we have
m Y (Vi (2%) ;wi —ab) < —mr Y (D (2}, wi) + Dy (wi, ) +me > (Viei (w) ,wi — ) -

1EN iEN iEN
Therefore,
ZDh Wi, T 7, +77t/§ t+1 ZD Wi, T f+1)
ieEN iEN
< ZDh Wi, T; +nt’§tZD Wi, T; +ntz zcz +ntz VC’L ,wi—a:§>
ieEN ieN ieEN ieN
+ Y (9haf - aft)
iEN

Summing over 7', by the non-negativity of Bregman divergence, we have
nre(T + 1) Z D, wz, ZT'H)

1EN
< ZDh Wi, T; —I—HZD Wi, T; —I—ZZnt Vici(w),w; — ! +ZZnt Vcl ),wi—x§>
ieEN ieEN t=14ieN t=14ieN
T
DD m g et -t

t=14ieN
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Define 7, (y) = inf {¢t > 0: 2 + $(y — z) € X;}, let us consider z7, the equilibrium of the game.

e Ifmp(a}) <1- 1/V/T, we set w; = z. Let this set of player be M

* Otherwise, we find Z; € X; such that ||Z; — || = O(1/v/T) and 7,1 (%;) <1 —1/V/T.
We set w; = ;.

By Lemma and initializing =} to minimize h, thus Dy, (w;, 1) = h(w;) — h(z}) < vlog(T).

Therefore, we have

nre(T + 1) (ZD z, 1T+1 Z D, gc“ Z“ﬂ)

ieM ieEN\M

< nvlog(T —l—HZD x;, l Z .’L’“ E +Zntz Vici(@hg, Tanm)s T Z*—xf>

ieM ’LGN\M =1 =y
T
+ Zﬁt Z (Vici(@h, Tanm), T Y+ m Z Z (9t — Vici (a1) ,zf — o)
=1 {eN\M iy
T
SO WL AT EEED 3 AU
=1 ieN\M iEN t=1

By the three-point inequality and the non-negativity of Bregman divergence, we have

Z D xza ?+1 = Z D;D(:fia 1, Z D 1; ;T+1 Z <I’L xzavp( T+1) Vp(fz)>

1EN\M 1EN\M 1EN\M 1EN\M
> Z D, (x;‘,xiT'H) - Z <z xz,Vp( T'H) Vp (a_:,)> .
1EN\M 1EN\M

By Cauchy-Schwarz and the smoothness of p, we have

S (wi—a, Vp (el ™) = Vp@)) < > @i —2|||Ve (&) = Vp ()]

1EN\M JENM
<C D0 la =l -
1EN\M
n(B
<0 | ==
<o(\7)
As z7 is a Nash equilibrium, we have ), \- (Vici(2*), 2} — xt) = 0, therefore,
ntz <V Cz(:EM7$N\M) >+77t Z <V Cl(vaxN\M) 7xt>
iemM iEN\M
= Z <V7Cz(x*),:17;k - Scf> + Z <Vici($jv17f/\/\/v1) — Viei(z*), ) — xf>
ieN ieN
+ e Z <vici($j\m§3/\/\/\4),§ri—xf>
1EN\M
N iEN\M IEN\M
mnB 3 ien bi 77t71>
<o (MnB 2ien i | WY
e
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Hence, as Dy (z;, 2;) < Cp,V;, 2,

> Dy (i, ™)

iEN

SO<nulog<T>+ n¢B )+O<nBzieN&+ n )Zf_lntw(ncp)

T TT?’/2 KT3/2 KT3/2 nr nrT

T
fﬂ?TT+ Zznf@“z 7mt+1> :‘€77TT+12:: Z *vici(xt)vxffxf

zej\/t 1

m7T T+ Zm > (gt Viei (af) @ — al)

t=1 {eN\M

we have

(gt =ty =me || Algl]”

Lemma J.2. Take n; < 2d,

Proof. Define
f@i) = ne (i, i) +me(t + 1) Dp(s, 27) + Dp (i, a7) -

As adding the linear term (z;, g!) does not affect the self-concordant barrier property, and p is
strongly convex, f(z) is a self-concordant barrier.

Define the local norm [|h||,, := v/h T V2 f(z)h, by Holder’s inequality, we have

2t — 2t

Notice that
V(@) = megi , V2 f () = ne(t + 1) V2p(ai) + V2h(as) .
Therefore, by our assumption that ¢;(z) € [0, 1],

|72 @)~ v

ot e ||A§§f||
< mdlei(2')] < ned
By Lemma , take 1y < 5 d, we have

t t+1 _
a1, = |

ol —argmin f(e)| | < 2[|(V2GD) T OAGD)|, < oAt

Therefore, we have

(gt =ty =me || Algl]”

O
Lemma J.3. [Proposition 1\ Bauschke et al.|(2017)] For an operator G that G —Vp(x) is monotone,
(G(a) = Ga'),a’ —a) < = Y (Dy (@i, 2f) + Dy (), 21)) -
1N
Proof. By the monotonicity of G — Vp(x), we have
(G(z) = G(a),2" — x) < (Vp(z) — Vp(a'), 2’ — )
< =Y (Dy (@i, @) + Dy (], 23))

ieN
where the second inequality is due to the definition of Bregman divergence. [

31



Under review as a conference paper at ICLR 2025

Lemma J.4 (Lemma 3 Lin et al|(2021)). For any self-concordant function g and let \(x,g)
-1

5@ 9) = V9@ e = || (P29(2) ™ V(o)

2X\(z, g), where || - || is the local norm given by ||h||, := \/hTV2g(x)h.

Lemma J.5 (Lemma 7 of [Lin et al.| (2021)). Suppose that c; is a convex function and A; € R4*?
is an invertible matrix for each 1 € N, we define the smoothed version of c; with respect to A; by
Ci(w) = By, npalBy_ o, 50 [0i (20 + Ajwi, £-)] where S% is a d-dimensional unit sphere, B is a
d-dimensional unit ball and 3; = x; + A;z; for all i € N. Then, the following statements hold true:

<
, we have ||z— argmingcx g (') |l. <
xr

e Viti(x) =E |d- ¢ (25,8-3) (A) " 2 | 21,20, 2|

o If V¢, is U;-Lipschitz continuous and we let oyax(A) be the largest eigenvalue of A, we
have | Viéi(w) = Vics(@) | < i/ Sjen (Gmax (47))*
Lemma J.6 (Lemma 2 Lin et al.|(2021)). Suppose that X is a closed, convex and compact set, R is
a v-self-concordant barrier function for X and T = argmingecy R(x) is a center. Then, we have
R(z) — R(Z) < vlog (ﬁ) For any € € (0,1] and x € X, we have z(x) < 1«1& and
R(z) — R(z) < vlog (1+1).
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K MORE EXPERIMENTAL RESULTS

In Figure 2] and 3] we supplement more experiment results for zero-sum matrix games and Cournot
competition. Note that in Figure[3] the curve of OMD with gradient coincides exactly with the curve
GD with gradient. We found similar observations that our algorithm attains comparable performance
to OMD and GD with full information gradient.

Zero-sum matrix game

Zero-sum matrix game

Zero-sum matrix game

i

— ours
OMD with gradient

—— GD with estimated gradient

—— GD with gradient

Payoff for min player
|

L
&

Payoff for min player

B

— ours
OMD with gradient

—— GD with estimated gradient

—— GD with gradient

Payoff for min player

°

s

— ours
OMD with gradient

L
L

—— GD with estimated gradient
— GD with gradient

0 25 50 75 100 125
Timesteps

150

175

200

0 25 50 75 100 125
Timesteps

150 175 200

0 25 50 75 100 125
Timesteps

150

175 200

Figure 2: More examples on the zero-sum matrix game, with A being [[2,1], 1, 3]], [[3, 0], [0, 1]],

and [[1, 2], [2,0]].

Cournot competition

Cournot competition

Cournot competition

— aurs

—— OMD with gradient
— GD with gradient

Average cost
s

Average cost

—— OMD with gradient
— GD with gradient

Average cost

— aurs

—— OMD with gradient
— GD with gradient

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Timesteps Timesteps Timesteps
Figure 3: More examples on the Cournot competition, with the marginal cost being 50, 60, 70.
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