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Figure 1: Visual demonstrations of the proposed algorithm with input of (a) single-view, (b) monoc-
ular video, and (c) multi-view (2 views). The middle row refers to the algorithm’s inputs for each
scenario. Please use Adobe Acrobat to display these videos.

ABSTRACT

By harnessing the potent generative capabilities of pre-trained large video dif-
fusion models, we propose a new novel view synthesis paradigm that operates
without the need for training. The proposed method adaptively modulates the
diffusion sampling process with the given views to enable the creation of visu-
ally pleasing results from single or multiple views of static scenes or monocular
videos of dynamic scenes. Specifically, built upon our theoretical modeling, we
iteratively modulate the score function with the given scene priors represented
with warped input views to control the video diffusion process. Moreover, by
theoretically exploring the boundary of the estimation error, we achieve the mod-
ulation in an adaptive fashion according to the view pose and the number of
diffusion steps. Extensive evaluations on both static and dynamic scenes sub-
stantiate the significant superiority of our method over state-of-the-art meth-
ods both quantitatively and qualitatively. The source code can be found on
https://github.com/ZHU-Zhiyu/NVS_Solver.

1 INTRODUCTION

In the realm of computer vision and graphics, novel view synthesis (NVS) from limited visual
data remains a formidable challenge with profound implications across various domains, from
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entertainment (Tewari et al., 2020; Jiang et al., 2024) to autonomous navigation (Adamkiewicz et al.,
2022; Kwon et al., 2023) and beyond (Avidan & Shashua, 1997; Zhou et al., 2016; Riegler & Koltun,
2020; Mildenhall et al., 2021; Kerbl et al., 2023). However, addressing this challenge demands a
sophisticated method capable of extracting meaningful information from sparse visual inputs and
synthesizing coherent representations of unseen viewpoints (Zou et al., 2024; Zhang et al., 2021). In
this context, the emerging field of deep learning has witnessed remarkable strides, particularly with
the advent of advanced generative models (Voleti et al., 2024; Chen et al., 2023; Gu et al., 2023).

Recently, diffusion models (Ho et al., 2020; Song et al., 2020; 2021b) have garnered significant
attention due to their exceptional ability to synthesize visual data. A prominent area of focus within
this domain is video diffusion models (Blattmann et al., 2023; Khachatryan et al., 2023; Ho et al.,
2022; Ni et al., 2023; Karras et al., 2023; Khachatryan et al., 2023; Wu et al., 2023), which have gained
popularity for their remarkable video generation capabilities. In this paper, we explore the problem of
NVS from single or multiple views of static scenes or monocular videos of dynamic scenes, leveraging
the pre-trained large video diffusion model without additional training. Specifically, we theoretically
formulate the NVS-oriented diffusion process as guided sampling, in which the intermediate diffusion
results are modulated with the scene information from the given views. Moreover, we empirically and
theoretically investigate the potential distribution of the error map to achieve adaptive modulation in
the reverse diffusion process, with a reduced estimation error boundary.

In summary, the main contributions of this paper lie in:

• we propose a new training-free novel view synthesis paradigm by leveraging pre-trained video
diffusion models;

• we theoretically formulate the process of adaptively utilizing the given scene information to
control the video diffusion process; and

• we demonstrate the remarkable performance of our paradigm under various scenarios.

2 RELATED WORK

Diffusion Model indicates a kind of deep generative model (Sohl-Dickstein et al., 2015), which
is inspired by non-equilibrium statistical physics by iteratively appending noise into image data
and then reversely removing noise and transferring to noise-free data distribution. (Ho et al., 2020)
proposed a variance preserving (VP) diffusion denoising probabilistic model via progressively
removing noise. (Song et al., 2021b; Song & Ermon, 2019; 2020; Song et al., 2021a) proposed a
score-based image generation model by iteratively calculating the derivative of data distribution and
utilizing the stochastic differential equation (SDE) (Anderson, 1982) or ordinary differential equation
(ODE)-based solvers (Maoutsa et al., 2020; Song et al., 2021b) to reverse the noise-adding process
and derive the clean image distribution. Inspired by the success of image diffusion models, many
works attempted to build video diffusion model to directly achieve video generation prompted by
text (Khachatryan et al., 2023; Wu et al., 2023) or a single image (Blattmann et al., 2023; Karras
et al., 2023).

Diffusion sampling algorithm aims to speed up or control the diffusion process via regularizing
or re-directing the reverse trajectory of diffusion models (Lu et al., 2022a;b; Zheng et al., 2024;
Zhang & Chen, 2022; Wang et al., 2023b; Cao et al., 2024; Chung et al., 2023; 2022a;b). (Song et al.,
2020) proposed denoising diffusion implicit models (DDIM) to accelerate the diffusion sampling
by jumping to the clean image-space at each step. (Dhariwal & Nichol, 2021) utilized the classifier
to guide the sampling process of diffusion model for controlling the results’ categories. (Lu et al.,
2022a;b; Zheng et al., 2024) proposed a series of fast ODE diffusion solvers given an analytic
solution of ODE by its semi-linear nature. Moreover, the integration of non-linear network-related
parts was further approximated by its Taylor series. (Zhang & Chen, 2022) explored the huge
variance of distribution shift and then decoupled an exponential variance component from the score
estimation model, thus reducing the discretization error. (Chung et al., 2023) proposed to regularize
the intermediate derivative from the reconstruction process to achieve image restoration. (Wang et al.,
2023b) decoupled the image restoration into range-null spaces and focused on the reconstruction of
null space, which contains the degraded information.

Novel view synthesis (NVS) targets at generating images of a scene from viewpoints not presented in
the original data and has been a subject of extensive research in computer vision and graphics (Park
et al., 2017; Choi et al., 2019; Tretschk et al., 2021; You et al., 2023; Avidan & Shashua, 1997;

2



Published as a conference paper at ICLR 2025

Riegler & Koltun, 2021; You & Hou, 2024). Early methods in this domain often relied on geometric
approaches, such as multi-view stereo reconstruction (Seitz et al., 2006; Jin et al., 2005) and structure-
from-motion (Schonberger & Frahm, 2016; Özyeşil et al., 2017) techniques, to synthesize novel
viewpoints from multiple images captured from different angles. The advent of deep learning
has revolutionized the field of NVS, enabling the synthesis of realistic images from pre-trained
feature volumes. (Rombach et al., 2021; Ren & Wang, 2022) employed autoregressive Transformer
to synthesize 3D scene from single image. Neural Radiance Fields (NeRF) (Mildenhall et al.,
2021; Pumarola et al., 2021; Barron et al., 2021; Martin-Brualla et al., 2021; Kosiorek et al., 2021)
enabled stunningly detailed renders from 2D images through volumetric rendering. Additionally,
differentiable rendering has allowed gradients of rendering outputs with respect to scene parameters,
facilitating direct optimization of scene geometries, lighting, and materials. Recently, 3D Gaussian
Splatting (Kerbl et al., 2023; Liu et al., 2024) presented an explicit representation of the scene.

While these methods have shown promising results, they often suffer from limitations such as
dependence on dense scene geometry, challenges in handling complex scene dynamics, and being
hard to generalize (Kerbl et al., 2023). Moreover, they require significant computational resources
and suffer from artifacts such as disocclusions and view-dependent effects. More recently, (Charatan
et al., 2024; Chen et al., 2025) introduced the use of feed-forward 3D Gaussians for novel view
interpolation. (Wu et al., 2024b; Watson et al., 2023; Yu et al., 2023; Cai et al., 2023; Tseng et al.,
2023; Chan et al., 2023; Sargent et al., 2024) explored the integration of 3D reconstruction techniques
with diffusion models.

In light of these challenges, our work builds upon the strengths of recent advancements in deep
learning-based NVS, with a focus on leveraging the robust zero-shot view synthesis capabilities of
the video diffusion model. By harnessing latent representations derived from sparse or single-view
inputs, our approach aims to overcome the limitations of existing methods and produce high-quality
novel views with improved realism.

3 PRELIMINARY OF DIFFUSION MODELS

We briefly introduce some preliminary knowledge of diffusion models (Sohl-Dickstein et al., 2015),
which facilitates our subsequent analyses. We also refer readers to (Song & Ermon, 2019; Song et al.,
2021b) for more details. Generally, the forward SDE process of the latent diffusion model can be
formulated as

dx = f(t)xdt+ g(t)dw, (1)
where x is the noised latent state, t for the timestamp of diffusion, and the two scalar functions f(t)
and g(t) output drift and diffusion coefficients, indicating the variation of data and noise components
during the diffusion process, respectively. Naturally, we have the following ODE solution:

dx =

[
f(t)x− 1

2
g2(x)∇x log(qt(x))

]
dt. (2)

Through training a score model Sθ(x, t) parameterized with θ to approximate the ∇x log[q(x)] as
L = γ(t)∥Sθ(x, t)−∇x log[qt(x)]∥22, (3)

with γ(t) > 0, we can calculate the clean image x0 via utilizing the score function Sθ(x, t) to
calculate the data distribution gradient as

dx =

[
f(t)x− 1

2
g2(x)Sθ(x, t)

]
dt. (4)

Moreover, since the noise of the diffusion process is usually parameterized by i.i.d. Gaussian noises
N (ϵt;0, σ(t)I) with a variance of σ(t), the above diffusion process can be calculated as

dx =

[
f(t)x− 1

2
g2(x)

µt − x

σ2(t)

]
dt, (5)

where µt = Xθ(xt, t) is the estimated clean image from the noised image xt at step t by the
denosing U-Net Xθ(·, ·)1. Finally, considering the special case of variance exploding (VE) diffusion
process (Song et al., 2021b) of the stable video diffusion (SVD) (Blattmann et al., 2023), Eq. (5) can
be further simplified as

dx =
x− µt

σ(t)
dσ(t). (6)

1For simplicity, here we combine some parameterizations stemmed from EDM (Karras et al., 2022)
into Xθ(·).
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4 PROPOSED METHOD

Motivated by the powerful generative capability with realistic and consistent frames by large video
diffusion models, we aim to adapt the pre-trained video diffusion model to the task of NVS without
any additional training, leading to a score modulation-based approach. Generally, our method warps
the input image set to the target view and leverages these warped images as prior information to guide
the reverse sampling of a video diffusion process. This not only ensures the accurate generation of the
warped regions but also facilitates the meaningful synthesis of unknown or occluded areas, resulting
in high-quality and visually consistent novel views with enhanced fidelity and coherence. Specifically,
we first theoretically reformulate NVS-oriented reverse diffusion sampling by modulating the score
function with the given views (Sec. 4.1). Based on theoretically exploring the boundary of the
diffusion estimation and depth-based warping errors, we propose to adaptively modulate the prior
of the given view into the diffusion process to reduce the potential boundary of the estimation error
(Sec. 4.2).

In the following, we take the single view-based NVS to illustrate our method, as summarized in
Algorithm 1, which involves from a given view X0,p0

with pose p0, reconstructing N − 1 novel
views at target poses {p1, · · · ,pi, · · · ,pN−1}, denoted as X0,pi

, . Note that our method is suitable
for scenarios involving NVS from multiple views, as well as from monocular videos, as explained in
Sec. 4.3. Also, we consider the pre-trained image-to-video diffusion model SVD (Blattmann et al.,
2023).

Notations. Let Xt ∈ RH×W×N be the spatial-temporal latent of a set of N images/views at the t-th
diffusion step, pi ∈ R5 the pose of the i-th image (0 ≤ i ≤ N − 1), Xθ(Xt, t) a U-Net denoising Xt

to estimate the clean image set µt ∈ RH×W×N , Xt,pi
∈ RH×W a typical latent at step t, time i, and

spatial pose pi, and µt,pi
= Xpi

θ (Xt, t), indicating a intermediate estimation of clean image X0,pi
.

4.1 SCENE PRIOR MODULATED REVERSE DIFFUSION SAMPLING

Based on the formulation of the image reverse diffusion sampling process in Eq. (6), we have

dXt,pi
=

[
Xt,pi

−Xpi

θ (Xt, t)

σ(t)

]
dσ(t). (7)

According to the intensity function (McMillan & Bishop, 1995), we can formulate the relationship
between X0,p0

and X0,pi
through Taylor expansion:

X0,pi
= I(p0) +

dI(p)
dp

∆p+O2(∆p), (8)

where I(·) is the intensity function, ∆p := pi − p0 is the pose variation, and O2(∆p) is the high
order Taylor expansions. Based on the depth-driven image-warping operation, we further have

I(p0) = W (X0,p0 ,ui) , ui = KD∆pK−1u0, (9)
where W(·, ·) denotes the image warping function; u0 and ui are the pixel locations of the views at
poses p0 and pi, respectively; D is the depth map; K is the camera intrinsic matrix. Moreover, since
the ground-truth depth D is usually not available in practice, we can also use the estimated depth
map D̂ by an off-the-shelf depth estimation method to calculate the estimated pixel location, i.e.,
ûi = KD̂∆pK−1u0. By substituting Eq. (9) with an estimated depth map to Eq. (8), we then have

X0,pi = W (X0,p0 , ûi)︸ ︷︷ ︸
X̂0,pi

+
∂W (X0,p0 , ûi)

∂u
∆u+

dI(p)
dp

∆p+O2(∆p)︸ ︷︷ ︸
ET

, ∆u = K∆D∆pK−1u0,

(10)
where ∆D := D− D̂, X̂0,pi

refers to the warped view from p0 to pose pi through D̂, and ET is a
residual term that contains high-order Taylor expansion series and warping error.

Based on the above analysis that the rendered novel view at pose pi is highly correlated with X̂0,pi

and µt,pi , an effective score function for NVS should take advantage of them. Then, we formulate
the score function of NVS-oriented reverse diffusion sampling, which is modulated with the given
scene information as

µ̃t,pi
= argmin

µ
∥µ− µt,pi

∥22 + λ(t,pi)∥µ− X̂0,pi
∥22, (11)
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Algorithm 1 Zero-shot NVS from Single Images

1: Input: given view {Xp0}, estimated depth map D̂p0 , target view poses {p0, · · · ,pN−1}, and
diffusion U-Net Xθ(·).

2: Derive the warping component {X̂0,p0
, · · · , X̂0,pi

, · · · , X̂0,pN−1
}, using the given views,

corresponding poses and depth maps by Eq. (10). ▷ Preparing diffusion guidance images.
3: Initialize XT ∼ N (0, σtI)
4: For t = T, ..., 1 do ▷ Video diffusion reverse sampling steps.
5: Diffusion network forward µt = Xθ(Xt, t).
6: For i = 0, · · · , N − 1 do
7: Calculate weights λ̂(t,p) via Eq. (17) and µ̃t,p via Eq. (12).
8: If Directly guided sampling then
9: Reverse Xt,p to Xt−1,p via Eq. (13).

10: End If
11: End for
12: If Posterior sampling then
13: Derive the optimized X′

t via Eq. (14) and apply a standard reverse step as Eq. (7) to get
the Xt−1.

14: End If
15: End for
16: Return Reconstructed sequence X0.

where λ(t,pi) > 0 balances the two terms. It is obvious the closed-form solution of Eq. (11) is

µ̃t,pi
=

1

1 + λ(t,pi)
µt,pi

+
λ(t,pi)

1 + λ(t,pi)
X̂0,pi

. (12)

With the optimized clean image expectation term µ̃t,pi , we further utilize two ways to guide the
reverse sampling of the pre-trained SVD: (1) Directly Guided Sampling, which is fast with limited
quality; and (2) Posterior Sampling, which is slow but more effective. Specifically, the former directly
replaces the µt,p in 7 with µ̃t,pi as

dXt,pi
=

[
Xt,pi

− µ̃t,pi

σ(t)

]
dσ(t). (13)

While the latter embeds the knowledge of µ̃t into Xt via the backward gradient as

X′
t = Xt − κ∇Xt

∥µt − µ̃t∥2, (14)

where κ > 0 controls the updating rate, which is empirically set to 2e−2
√

σ(t); ∇Xt
∥µt − µ̃t∥2

computes the back-propagated gradient on Xt; X′
t stands for the optimized noised latent Xt. Here,

we also normalize the gradient ∇Xt
∥µt − µ̃t∥2 to stabilize the updating process.

4.2 ADAPTIVE DETERMINATION OF λ(t,pi)

(a) (b)

Figure 2: Experimental observations of the relationship (a)
between the diffusion estimation error ED and the noise level
σt and (b) between the error of warped image ET and the
changed amount of view pose ∥∆p∥2.

Although we have reformulated the
NVS-oriented diffusion process in
the preceding section, the value of
λ(t,pi) in Eq. (11) and Eq. (12),
which is crucial to the quality of syn-
thesized views, has to be appropriately
determined. Here, we theoretically ex-
plore the formulation of λ(t,pi) via
analyzing the upper boundary of the
estimation error of µ̃t,pi

.

Let µ̃∗
t,pi

be the ideal value for the
score function estimation in the NVS-
oriented diffusion process, i.e., the ground-truth view at pi. Based on the formulation of µ̃t,pi in

5



Published as a conference paper at ICLR 2025

Eq. (12) and the triangle inequality, we have

∥µ̃t,pi
− µ̃∗

t,pi
∥2 ≤ 1

1 + λ(t,pi)
∥µt,pi

− µ̃∗
t,pi

∥2 +
λ(t,pi)

1 + λ(t,pi)
∥X̂0,pi

− µ̃∗
t,pi

∥2. (15)

Thus, we propose to minimize the estimation error upper bound to obtain an appropriate and adaptive
λ(t, pi), i.e.,

λ̂(t,pi) = argmin
λ(t,pi)

1

1 + λ(t,pi)
EXt∼P(Xt)(ED)+

λ(t,pi)

1 + λ(t,pi)
EX∼P(X)(EP )+v1| log(λ(t,pi))|,

(16)
where v1 > 0 and the last regularization term prevents the weights from being overfitting on the
empirically estimated errors. In the following, we will provide the explicit formulations of the two
error terms ED = ∥µt,pi − µ̃∗

t,pi
∥2 and EP = ∥X̂0,pi − µ̃∗

t,pi
∥2 2, based on theoretical analyses and

experimental observations.

Diffusion Estimation Error ED. This error is caused due to the fact that the diffusion model
cannot perfectly estimate µ̃∗

t,pi
from the given noised latent Xt, Recent works (Zhang & Chen,

2022; Zheng et al., 2024) indicate that the derivative Sθ(Xt, t) of SDE-based diffusion models varies
intensely when σ(t) is huge. Accordingly, large values of σ would potentially lead to large errors.
Moreover, we experimentally investigated the correlation of ∥ED∥2 with σ(t). As demonstrated in in
Fig. 2 (a). ∥ED∥2 gradually decreases with the diffusion reverse process (decreasing of σ(t)). Thus,
we empirically formulate ∥ED∥2 = v2σ(t), where 0 < v2.

Intensity Truncation Error EP . This error is mainly induced by the truncation of the Taylor series
(here µ̃∗

t,pi
is the same with X), as shown in Eq. (10). If omitting the high-order terms, we have

EP ≈ ∂W(X0,p0
,ûi)

∂u ∆u + dI(p)
dp ∆p. According to the definition of ∆u in Eq. (10), we also have

∥Ep∥2 ≤ v∥∆p∥2. Together with the experimental observation of the relationship between ∥Ep∥2
and ∥∆p∥2 in Fig. 2 (b), we empirically formulate ∥Ep∥2 = v3∥∆p∥2.

Finally, with the explicit formulations of the two error terms, we can rewrite Eq. (16) as

λ̂(t,pi) = argmin
λ(t,pi)

v2σ(t)

1 + λ(t,pi)
+

λ(t,pi)v3∥∆p∥2
1 + λ(t,pi)

+ v1| log(λ(t,pi))|, (17)

whose closed-form solution is (we have visualized λ̂ in Appendix D)

λ̂(t,pi) =
−(2v1 +Q) +

√
Q2 + 4v1Q

2v1
, Q = v3∥∆p∥2 − v2σ(t). (18)

Claim of Novelty. Our method presents a theoretical analysis that links NVS with diffusion processes.
Examining the relationships between different views and assessing their potential error distributions
enable adaptive modulation of the diffusion score function, effectively minimizing errors from
both the warping operator and the diffusion process. This makes our method uniquely suited to
addressing NVS challenges. In contrast, traditional guided sampling algorithms typically rely on
image degradation models, such as blurring and noise, to guide the diffusion process, setting our
approach apart. Moreover, we have theoretically discussed that the proposed method regularizes the
diffusion trajectories towards a more accurate direction in Appendix A.1. We have also proved the
proposed method (DGS) can safely regularize the samples on the data manifolds in Appendix A.2.
We also experimentally compare with inpainting-based methods in Appendix G.

4.3 NVS FROM MULTIVIEWS AND MONOCULAR VIDEOS

We have illustrated the single view-based NVS via the proposed method in Algorithm 1, which can
be further modified for NVS from multiple views or monocular videos. Specifically, given multiple
views of a static scene and target poses, we first estimate the depth map of each of the given views
and derive the warped view at target poses by warping the nearest given views to each target pose.
For a monocular video, we warp each frame of the video sequence to the corresponding target pose
with the same timestamp (See the Appendix E for the detailed warp strategy pipeline). Then, we
sample the novel view via the proposed method as Lines 3-16 of Algorithm 1.

2There is also inherent discretization error as investigated by (Lu et al., 2022a;b; Zhang & Chen, 2022).
However, we could reduce such error terms by enlarging the number of reversing steps.
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Table 1: Quantitative comparison of different methods on view synthesis, where we measure the FID
and the error of view pose. We name our method with Ours (DGS) or (Post) for utilizing directly
guided sampling in Eq. (13) or posterior sampling in Eq. (14), respectively. ”*” indicates incomplete
evaluation, where the corresponding metric cannot output a meaningful value on some sequences by
the method due to the failure of pose estimation. “– –” denotes that the method cannot work on the
condition or the metrics cannot be calculated. For all metrics, the lower, the better.

Methods Overfitting Single view Multi-view
FID ATE RPE-T RPE-R FID ATE RPE-T RPE-R

Sparse Gaussian (Xiong et al., 2023) ✓ 369.19 – – – – – – 324.60 – – – – – –
Sparse Nerf (Wang et al., 2023a) ✓ – – – – – – – – 180.26 6.129 1.711 1.804
Text2Nerf (Zhang et al., 2024) ✓ 187.05 2.223∗ 0.718∗ 0.107∗ – – – – – – – –

Photoconsistent-NVS (Yu et al., 2023) × 193.87 7.64 1.19 1.45 – – – – – – – –
3D-aware (Xiang et al., 2023) × 217.19 2.836 1.258 1.662 211.25 2.159∗ 5.679∗ 2.119 ∗

MotionCtrl (Wang et al., 2024) × 179.24 3.851 0.705 0.835 154.27 37.68 19.61 1.646
Ours (DGS) × 166.50 4.533 0.810 0.742 124.31 22.00 17.34 1.338
Ours (Post) × 165.12 0.767 0.156 0.170 126.44 4.052 2.030 0.330

5 EXPERIMENT

Datasets. For single view-based NVS, we employed a total of nine scenes, with six scenes from the
Tanks and Temples dataset (Knapitsch et al., 2017), containing both outdoor and indoor environments.
The other three additional scenes are randomly chosen from the Internet. For multiview-based NVS,
we used three scenes from the Tanks and Temples dataset (Knapitsch et al., 2017), including both
outdoor and indoor settings, as well as six scenes from the DTU dataset (Jensen et al., 2014), which
feature indoor objects. For each scene, we selected two images as input to perform view interpolation.
For monocular video-based NVS, we downloaded nine videos from YouTube, each comprising 25
frames and capturing complex scenes in both urban and natural settings.

Implementation Details. We conducted all the experiments with PyTorch using a single NVIDIA
GeForce RTX A6000 GPU-48G. We adopted the point-based warping (Somraj, 2020) to achieve
W(·) and employed Depth Anything (?) to estimate the maps of the input views (See the Appendix F
for more results with different depth estimation methods). We simultaneously rendered 24 novel views
and set the reverse steps as 100 for high-quality sample generation. For the implementation of Eq. (11),
since applying directly weighted sum usually results in blurry, we ordered the feature pixels by the
∥µt,pi

−X̂0,pi
∥2 and take the ratio of λ(t,pi)

1+λ(t,pi)
smaller pixels from X̂0,p0i

and the others from µt,pi

to modulate µ̃t,pi . We choose the values (v1, v2, v3) as (1e−6, 9e−1, 5e−2), (1e−6, 7e−1, 1e−2), and
(1e−6, 1.75, 3e−2) for single, sparse, dynamic scene view synthesis.

Metrics. We utilized four metrics to measure the reconstruction performance, i.e., Fréchet Inception
Distance (FID) (Heusel et al., 2017) evaluating the quality and diversity of synthesized views;
Absolute trajectory error (ATE) (Goel et al., 1999) measuring the difference between the estimated
trajectory of a camera or robot and the ground truth trajectory; Relative pose error (RPE) (Goel et al.,
1999) measuring the drift, where we separately calculated the transition and rotation as RPE-T and
RPE-R, respectively. We utilize Particle-SFM (Zhao et al., 2022) to estimate the camera trajectory
and assess the pose metrics. Since current depth estimation algorithms struggle to derive absolute
depth from a single view or monocular video, resulting in a scale gap between the synthesized and
ground truth images, we only compare the paired metrics in Appendix I, such as LPIPS.

5.1 RESULTS OF NVS FROM SINGLE OR MULTIPLE VIEWS OF STATIC SCENES

Fig. 3 visualizes synthesized novel views of two scenes by different methods from single views,
where we can see that our method can consistently generate high-quality novel views with visually
pleasing geometry and textures. The quantitative results listed in Table 1 also validate the significant
superiority of our method over state-of-the-art methods. Although MontionCtrl (Wang et al., 2024)
can generate high-quality images reflected by the FID value, its results have significantly large view
pose errors reflected by the higher ATE and RPE values. For Text2Nerf (Zhang et al., 2024), only 7
out of the total 9 sequences can be calculated metrics, which may be induced by the inherent errors
of the learned geometric structure.

Fig. 4 shows the synthesized views by different methods from two given views, where it can be seen
that our method outperforms state-of-the-art methods by clearer views, especially for the 2nd and 3rd
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Figure 3: Visual comparison of single view-based NVS results by (a) Text2Nerf (Zhang et al., 2024),
(b) 3D-aware (Xiang et al., 2023), (c) MotionCtrl (Wang et al., 2024), (d) Ours (Post). The middle
view of each scene highlighted with the red rectangle refers to the input view. Here, we only show
the results of the best two of all compared methods. We also refer reviewers to the Appendix B and
video demo contained in the supplementary file for more impressive results and comparisons.

Figure 4: (a) The two input views of each scene highlighted with the red rectangle. Visual results of
multiview-based NVS by (b) 3D-aware (Xiang et al., 2023), (c) MotionCtrl (Wang et al., 2024), (d)
Ours (Post).

scenes. In addition, it is worth noting that the lower ATE of 3D-aware (Xiang et al., 2023) is due to
the incomplete evaluation (See the Appendix C for more results).

Note that our method can also achieve 360° NVS through iterative execution of the proposed algorithm.
Fig. 5 shows the synthesized 360° NVS from both single-view and multi-view inputs, demonstrating
the capability of the proposed method to effectively handle the NVS task (See the Appendix H for the
detailed strategy).

5.2 RESULTS OF NVS FROM MONOCULAR VIDEOS OF DYNAMIC SCENES

Table 2: Quantitative comparison of different meth-
ods on NVS from monocular videos of dynamic
scenes. For all metrics, the lower, the better.

Methods Train FID ATE RPE-T RPE-R
Deformable-Gaussian (Yang et al., 2024c) ✓ 115.82 1.813 ∗ 0.678 ∗ 0.613 ∗

4D-Gaussian (Wu et al., 2024a) ✓ 74.34 2.087 0.625 0.825
3D-aware (Xiang et al., 2023) × 159.03 3.100 1.343 1.368
MotionCtrl (Wang et al., 2024) × 70.35 3.384 ∗ 1.069 ∗ 0.653 ∗

Ours (DGS) × 37.973 2.236 0.691 0.446
Ours (Post) × 39.86 2.308 0.725 0.400

The non-generative Gaussian-based methods
Deformable-Gaussian (Yang et al., 2024c) and
4D-Gaussian (Wu et al., 2024a) usually can-
not handle the marginal area, as illustrated in
2nd, 4th and 6th columns of Fig. 6 (b) and (c).
Although the SVD-based method MotionCtrl
can generate the boundary region as shown in
Fig. 6 (e), the synthesized views are blurry and
the poses of generated samples cannot follow
the prompt, especially on the 3rd sample. However, our method consistently generates high-quality
novel views with lower pose errors, indicating its strong potential.
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Figure 5: The input views of each scene highlighted with the red rectangle. Visual results of
synthesized 360° NVS from (a) single view and (b) multi-view input.

Figure 6: Visual comparison on dynamic scene view synthesis of (a) input frames in the corresponding
time of generated images, (b) Deformable-Gaussian (Yang et al., 2024c), (c) 4D-Gaussian (Wu et al.,
2024a), (d) 3D-aware (Xiang et al., 2023), (e) MotionCtrl (Wang et al., 2024), (f) Ours (Post).

5.3 ABLATION STUDY

Reverse Inference Steps. The quantitative results in Table 3 show that the synthesized image quality
of our method does not improve intensely with the number of inference steps increasing. However,
the pose error decreases significantly, indicating the necessity of a sufficient number of inference
steps for accurately rendering novel views.

Table 3: Quantitative comparison
of different numbers of inference
steps. For all metrics, the lower, the
better.
Inference step FID ATE RPE-T RPE-R

25 175.432 5.317 0.691 0.847
50 168.938 2.275 0.428 0.402
100 165.12 0.767 0.156 0.170

Posterior Sampling vs. Directly Guided Sampling. The
quantitative results listed in Tables 1 and 2 show that both the
Ours (DGS) and Ours (Post) can generate high-quality images
with comparable FID. However, the view pose of Ours (Post)
is much more accurate than Ours (DGS), which is also visually
verified by the results in Figs. 7 (c) and (d). Besides, Ours
(DGS) takes 6 minutes to render 25 views, while Ours (Post)
uses 1 hour.

Table 4: Quantitative comparison
of ablating updating rate κ and
the normalization schemes on Ours
(Post). For all metrics, the lower,
the better.

κ Normalization FID ATE RPE-T RPE-R
2e−2

√
σ(t) Y 165.12 0.767 0.156 0.170

0.5 Y 268.17 1.92 0.318 0.399
2e−2

√
σ(t) N 176.00 4.71 0.568 1.05

Effectiveness of Back-propagation in Posterior Sampling.
We performed ablation studies on the updating rate κ and the
normalization schemes in Eq. (14). The experimental results
shown in Tab. 4 empirically guarantee that the back-propagation
brings the latent space closer to the inherent low-dimensional
manifold structure during each update step, further validating
the performance of the proposed score-modulation schemes.
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Figure 7: Ablation studies of the proposed weight strategy of λ̂(t,pi) and embedding strategy. Visual
comparison of (a) warped input image X̂0,pi

, (b) results without our proposed weight strategy, (c)
results of Ours (DGS), and (d) results of Ours (Post).

v
v

v

v v

v

vv

Figure 8: NVS results of Ours (Post) with different
trajectories, where the given view is bounded by a blue
circle. We draw the pose at the right bottom corner of
each sub-figure.

Effectiveness of Adaptive λ̂(t,pi). Here,
we illustrate the effectiveness of adaptively
adjusting λ̂(t,pi) via setting it to +∞, i.e.,
µ̃t,pi = X̂0,pi . Visual comparison re-
sults in Fig. 7 indicates that the proposed
method significantly correct the warping
errors (1st, 2nd and 4th samples in Fig. 7)
and non-Lambert reflection (3rd sample in
Fig. 7) as indicated in ET of Eq. (10).

Different Trajectories. We detailedly visu-
alize the result of the proposed method on
different trajectories. We apply transitions
in eight different directions. The results
are shown in Fig. 8. The proposed method
can consistently render high-quality novel
views.

6 CONCLUSION & DISCUSSION

We have presented a training-free novel view synthesis paradigm. The proposed method achieves
remarkable performance compared with state-of-the-art methods. The advantages are credited to the
powerful generative capacity of the pre-trained large stable video diffusion model and our elegant
designs of the adaptive modulation of the diffusion score function through comprehensive theoretical
and empirical analyses.

Although our method takes longer than existing methods, the promising generative capacity inherent
in the large pre-trained diffusion model may attract improvements in the future. Since the proposed
method can synthesize views more accurate poses, we believe it may be a potential solution for the
distillation of a pose controllable video diffusion model. In the age of generative intelligence, the
authors expect the proposed algorithm would inspire future work to unify computer graphics pipelines
with generative models. Finally, the authors sincerely appreciate Stability AI for the open-sourced
SVD (Blattmann et al., 2023).
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ETHICS & REPRODUCIBILITY STATEMENTS

The proposed method is specifically designed for novel view synthesis through video diffusion. As
such, no additional information regarding human subjects or potentially harmful insights is introduced
during the process. This approach prioritizes privacy and ethical considerations by relying solely
on the data available from the input images or videos, without requiring any sensitive or external
information. Furthermore, all of our experiments are conducted in a training-free manner, which not
only simplifies implementation but also ensures reproducibility. More importantly, the source code
can be found on the webpage: https://github.com/ZHU-Zhiyu/NVS_Solver.
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A SCENE PRIOR-BASED SCORE-MODULATION PRESERVES DATA MANIFOLD

A.1 MODULATED SCORE IS MORE ACCURATE

In this section, we first illustrate that the proposed modulation is more accurate than guided sampling
in an inpainting-like manner. Denote by X̂0,pi

the warping content for scene’s prior on pose pi. Then,
the vanilla guided sampling methods, especially the inpainting-based method, directly utilize X̂0,pi

as the guidance prior. Thus, its score estimation error E is shown as

EP =
∥∥µ̂t,pi

− µ̂∗
t,pi

∥∥
2
=

∥∥∥X̂0,pi
− µ̂∗

t,pi

∥∥∥
2
= v3 ∥∆pi∥2 , (19)
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where ∆pi indicates the variations of camera pose between the given and target views. However, for
our modulated score, its score estimation error EM is shown as

EM =

∥∥∥∥ 1

1 + λ(t,pi)
µt,pi +

λ(t,pi)

1 + λ(t,pi)
X̂0,pi − µ̂∗

t,pi

∥∥∥∥
2

(20)

=

∥∥∥∥ 1

1 + λ(t,pi)
(µt,pi

− µ̂∗
t,pi

) +
λ(t,pi)

1 + λ(t,pi)
(X̂0,pi

− µ̂∗
t,pi

)

∥∥∥∥
2

(21)

≤ 1

1 + λ(t,pi)

∥∥µt,pi
− µ̂∗

t,pi

∥∥
2
+

λ(t,pi)

1 + λ(t,pi)

∥∥∥X̂0,pi
− µ̂∗

t,pi

∥∥∥
2

(22)

=
v2σ(t)

1 + λ(t,pi)
+

λ(t,pi)

1 + λ(t,pi)
v3∥∆p∥2 (23)

By substituting the utilized solution of λ̂(t,pi) from Eq. (18), with Q = v3∥∆p∥2 − v2σ(t), we can
derive that

EM ≤ 2v1v2σ(t)

−Q+
√

Q2 + 4v1Q
+

−(2v1 +Q) +
√
Q2 + 4v1Q

−Q+
√
Q2 + 4v1Q

v3∥∆p∥2, (24)

=
2v1v2σ(t)

−Q+
√

Q2 + 4v1Q
+

−2v1

−Q+
√

Q2 + 4v1Q
v3∥∆p∥2 + EP , (25)

=
−2v1Q

−Q+
√

Q2 + 4v1Q
+ EP . (26)

since v1 is a small value we make further approximation that

EP ≤ lim
v1→0

−2v1Q

−Q+
√
Q2 + 4v1Q

+ EP , (27)

1⃝
≈ lim

v1→0

−2v1Q

−Q+Q+ 1

2
√

Q2+4v1Q

+ EP , (28)

= lim
v1→0

−2v1Q

−Q+Q+ 1

2
√

Q2+4v1Q

+ EP , (29)

= lim
v1→0

−4v1Q
2 + EP , (30)

≈ EP , (31)

where 1⃝ indicates to apply Taylor series of
√
Q2 + 4v1Q.Thus, EM ≲ EP indicates that the proposed

method modulates a more accurate target score function with less error.

A.2 GUIDED POSTERIOR SAMPLING OF MODULATED SCORE IS ON DATA MANIFOLD

According to Chung et al. (2023); Huang et al. (2022), we define a local tangent space as TxM for a
local orthogonal projection onto manifold M, with a transition process

Qt : Rd → Rd,xt → µt = Xθ(xt, t) (32)

∂

∂x
∥µt − µ̃t∥22 = 2

∂µt

∂x
(µt − µ̃t). (33)

Since for the Jacobin matrix JQt
= ∂µt

∂x denotes a transition which maps a vector to the tangent
space of function Qt. Thus, we have
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∂

∂x
∥µt − µ̃t∥22 = JQt

(2(µt − µ̃t)) ∈ TQi
M, (34)

The aforementioned proof indicates that our introduced regularization, especially (DGS), only
advocates moving the latent in the orthogonal manifold direction. Moreover, considering that the
updating step size is relatively small as 2e−2

√
σ(t) compared to the noised latent of

√
σ2(t) + 1,

we have

2e−2
√
σ(t)√

σ2(t) + 1
=

2e−2√
σ(t) + 1

σ(t)

≤ 2e−2

√
2

=
√
2e−2. (35)

Thus, both the orthogonal regularization direction and small updating step make the proposed method
to be safely moving on the data manifold.

B VISUAL COMPARISON DETAILS

In this section, we visually demonstrate the results as shown in Figs. B-1, B-2, and B-3. The visual
result demonstrates the superiority of the proposed method.
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Figure B-1: Visual comparison of single view-based NVS results by (a) Text2Nerf (Zhang et al.,
2024), (b) 3D-aware (Xiang et al., 2023), (c) MotionCtrl (Wang et al., 2024), (d) Ours (Post). The
middle view of each scene highlighted with the red rectangle refers to the input view.
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Figure B-2: (a) The two input views of each scene highlighted with the red rectangle. Visual results
of multiview-based NVS by (b) 3D-aware (Xiang et al., 2023), (c) MotionCtrl (Wang et al., 2024),
(d) Ours (Post).
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Figure B-3: Visual comparison on dynamic scene view synthesis of (a) input frames in the correspond-
ing time of generated images, (b) Deformable-Gaussian (Yang et al., 2024c), (c) 4D-Gaussian (Wu
et al., 2024a), (d) 3D-aware (Xiang et al., 2023), (e) MotionCtrl (Wang et al., 2024), (f) Ours (Post).
’Failed’ refers to the method cannot work on the condition.
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C QUANTITATIVE COMPARISON DETAILS

We give detailed quantitative comparisons of different methods as shown in Tables C-1, C-2 and
C-3. The results demonstrate that the proposed methods, Ours (DGS) and (Post) outperform SOTA
methods in most scenes.

Table C-1: Quantitative comparison of different methods on single view synthesis. For all metrics,
the lower, the better.

Scene Metric Sparse Gaussian Sparse Nerf Text2Nerf 3D-aware MotionCtrl Ours (DGS) Ours (Post)

Auditorium
ATE – – – – 4.424 2.850 7.111 17.160 1.261

RPE-T – – – – 2.020 3.398 1.448 2.669 0.265
RPE-R – – – – 0.266 2.609 1.320 1.192 0.144

Barn
ATE – – – – 1.133 2.832 3.217 2.638 0.430

RPE-T – – – – 0.307 0.868 0.369 0.533 0.104
RPE-R – – – – 0.064 2.336 1.074 0.632 0.197

Castle
ATE – – – – – – 2.831 3.045 3.038 0.883

RPE-T – – – – – – 1.425 0.716 0.634 0.171
RPE-R – – – – – – 1.036 0.483 0.983 0.039

Church
ATE – – – – 2.167 2.830 3.256 3.017 0.664

RPE-T – – – – 0.486 0.860 0.798 0.636 0.107
RPE-R – – – – 0.093 2.476 1.553 1.000 0.176

Family
ATE – – – – 1.264 2.830 1.941 0.944 1.023

RPE-T – – – – 0.377 0.867 0.378 0.212 0.191
RPE-R – – – – 0.050 2.295 0.890 0.461 0.514

Ignatius
ATE – – – – 1.561 2.831 3.431 1.226 0.408

RPE-T – – – – 0.365 0.866 0.495 0.342 0.129
RPE-R – – – – 0.050 2.298 1.043 0.894 0.243

Palace
ATE – – – – – – 2.835 3.903 0.959 1.062

RPE-T – – – – – – 0.904 0.517 0.221 0.192
RPE-R – – – – – – 0.578 0.363 0.313 0.101

Seaside
ATE – – – – 2.385 2.830 4.007 5.292 0.395

RPE-T – – – – 0.754 0.717 0.522 0.639 0.090
RPE-R – – – – 0.073 0.473 0.283 0.311 0.040

Trees
ATE – – – – 2.628 2.854 4.740 6.521 0.776

RPE-T – – – – 0.718 1.420 1.098 1.399 0.155
RPE-R – – – – 0.151 0.859 0.506 0.894 0.079

Table C-2: Quantitative comparison of different methods on sparse view synthesis. For all metrics,
the lower, the better.

Scene Metric Sparse Gaussian Sparse Nerf Text2Nerf 3D-aware MotionCtrl Ours (DGS) Ours (Post)

caterpillar
ATE – – 1.697 – – – – 2.826 2.250 0.330

RPE-T – – 0.046 – – – – 0.040 0.010 0.002
RPE-R – – 2.337 – – – – 0.680 0.305 0.032

playground
ATE – – 2.813 – – 0.721 1.918 0.597 0.033

RPE-T – – 0.058 – – 0.059 0.029 0.008 0.001
RPE-R – – 0.156 – – 3.534 0.524 0.201 0.113

truck
ATE – – 2.556 – – – – 2.718 0.058 0.068

RPE-T – – 0.142 – – – – 0.088 0.010 0.002
RPE-R – – 11.96 – – – – 0.954 0.287 0.048

scan1
ATE – – 7.980 – – 2.872 – – 33.29 7.069

RPE-T – – 2.518 – – 8.477 – – 31.02 3.918
RPE-R – – 0.302 – – 1.411 – – 2.995 0.592

scan2
ATE – – 8.318 – – – – 48.00 6.556 4.480

RPE-T – – 2.609 – – – – 31.60 5.902 2.211
RPE-R – – 0.307 – – – – 1.614 0.648 0.324

scan3
ATE – – 8.795 – – – – 46.22 8.660 7.617

RPE-T – – 2.633 – – – – 31.20 6.104 3.976
RPE-R – – 0.269 – – – – 1.656 0.940 0.564

scan5
ATE – – 7.902 – – 2.886 53.38 59.03 3.436

RPE-T – – 2.510 – – 8.495 16.13 32.65 2.270
RPE-R – – 0.297 – – 1.413 1.526 2.551 0.326

scan15
ATE – 7.072 – – – – 48.75 55.68 6.504

RPE-T – 2.394 – – – – 30.57 42.98 2.796
RPE-R – 0.327 – – – – 1.692 1.690 0.352

scan55
ATE – 8.025 – – – – 97.60 31.86 6.936

RPE-T – 2.487 – – – – 47.21 37.41 3.098
RPE-R – 0.275 – – – – 4.520 2.422 0.618
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Table C-3: Quantitative comparison of different methods on dynamic view synthesis. ’ 1/ 2’ means
that we synthesize novel views by moving the camera on the right/left circle trajectory. For all metrics,
the lower, the better.

Scene Metric Deformable-Gaussian 4D-Gaussian 3D-aware MotionCtrl Ours (DGS) Ours (Post)

Street 1
ATE 2.834 2.817 2.847 2.746 0.619 0.619

RPE-T 1.463 1.342 1.383 0.811 0.306 0.307
RPE-R 1.009 1.322 1.0340 0.906 0.217 0.218

Street 2
ATE 0.486 0.819 1.470 – – 2.842 2.842

RPE-T 0.169 0.163 0.235 – – 0.647 0.647
RPE-R 0.439 0.800 0.528 – – 0.604 0.602

Kangaroo 1
ATE – – 3.546 4.193 1.396 3.421 3.131

RPE-T – – 0.979 1.347 0.778 1.501 1.482
RPE-R – – 0.361 2.637 0.606 0.574 0.444

Kangaroo 2
ATE 3.302 2.438 4.099 5.681 5.922 4.248

RPE-T 1.672 0.852 2.489 1.973 2.065 1.608
RPE-R 0.639 0.372 0.954 0.303 0.791 0.353

Train3 1
ATE 1.658 1.187 4.667 5.626 3.744 1.130

RPE-T 0.698 0.650 2.642 1.501 0.999 0.402
RPE-R 0.468 0.588 1.494 0.471 0.455 0.245

Train3 2
ATE 1.144 2.880 4.031 2.186 1.026 1.315

RPE-T 0.968 1.108 1.748 0.908 0.448 0.476
RPE-R 0.785 1.483 2.266 0.574 0.567 0.529

Train5 1
ATE 2.838 1.600 3.011 3.274 0.624 0.815

RPE-T 0.313 0.252 1.537 0.880 0.196 0.165
RPE-R 0.546 0.699 1.523 1.042 0.453 0.629

Train5 2
ATE 1.046 2.3516 2.708 3.3222 0.851 2.874

RPE-T 0.335 0.377 0.513 0.719 0.1916 0.991
RPE-R 0.734 1.686 1.347 0.666 0.599 0.653

Road 1
ATE 0.521 0.548 1.195 2.783 0.774 3.328

RPE-T 0.219 0.251 0.667 1.061 0.326 1.016
RPE-R 0.330 0.363 0.679 0.479 0.100 0.239

Road 2
ATE 2.492 2.679 2.775 3.445 2.534 2.781

RPE-T 0.260 0.275 0.867 0.991 0.230 0.158
RPE-R 0.564 0.579 1.214 0.828 0.099 0.091

D VISUALIZATION OF λ̂(t,pi)

In Fig. D-4, we visualize the λ̂(t,pi) of certain sequences in different NVS conditions.

(a) (b) (c)

Figure D-4: Visualization of λ̂(t,pi) for (a) single view synthesis, (b) sparse view synthesis (c)
dynamic view synthesis.

E WARPING STRATEGY

We illustrated the warping strategies for different NVS conditions in Fig. E-5.
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Single Input Forward 
warp

Diffusion Dynamic input Multiview inputForward 
warp

Diffusion Forward
warp

Diffusion

Figure E-5: Illustration of different warping patterns. From left to right, there are single-view,
monocular video, and multi-view-based NVS.

F PERFORMANCE OF OUR METHOD ACROSS DIFFERENT DEPTH ESTIMATION
METHODS

We conducted experiments on our method using various depth estimation approaches, including
DINOV2 (Oquab et al., 2023) and DepthAnything V2 (Yang et al., 2024b). The results, shown in
Table F-4, clearly demonstrate that our method consistently performs well across different depth
estimation techniques, surpassing the state-of-the-art NVS method, MotionCtrl (Wang et al., 2024).
As expected, better depth maps indeed lead to more accurate NVS, as evidenced by the comparison
between DepthAnythingV1 (Yang et al., 2024a) and DINOV2 Oquab et al. (2023). Furthermore, the
performance of DepthAnythingV2 is only comparable to DepthAnythingV1 due to one scene that
appears to be an outlier. Upon removing this scene (marked with *), DepthAnythingV2 significantly
outperforms DepthAnythingV1. Additionally, DINOV2 achieves a lower FID due to the amplification
of rendering pose errors, which facilitates easier reconstruction. Fig. F-6 visualizes the results of our
method with DepthAnything V1, V2, and DINOV2. These comparisons confirm the robustness of
our method with respect to depth estimation techniques, consistently delivering high performance
across different depth estimation modules, including DINOV2, DepthAnything V1, and V2.

Table F-4: Quantitative comparison of our method with DepthAnythingv1 DepthAnythingv2, and
DinoV2.For all metrics, the lower, the better.

Methods FID ATE RPE-T RPE-R
MotionCtrl (SOTA) 179.24 3.851 0.705 0.835

Ours + DepthAnythingv1 165.12 0.767 0.156 0.170
Ours + DepthAnythingv2 162.896 0.831 0.110 0.170

Ours + DepthAnythingv2* 163.93 0.243 0.056 0.056
Ours + DinoV2 158.24 2.395 0.454 0.674

(a) (b) (c)

Figure F-6: Visual results of our method with (a) DepthAnythingv1, (b) DepthAnythingv2,(c)
DinoV2.

G COMPARISONS WITH IMAGE INPAINTING RESULTS

Fig. G-7 visualizes the comparison between using an image inpainting method and our approach.
Here, we use SDEdit (Meng et al., 2022) as the image inpainting method. When per-view inpainting
is used to render novel views, it becomes difficult to ensure that the synthesized views are naturally
consistent. As expected, the visual comparisons show that consistency across different views cannot
be guaranteed when solving NVS as a per-view inpainting task with SDEdit.
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(a) (b)

Figure G-7: Visual comparisons of a synthesized video sequence by (a) image inpainting method,
and (b) our method.
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H 360° NVS STRATEGY

For a single view input, we first apply the proposed method to rotate 120° to the left and right
sides. Moreover, to achieve consistency from different directions, we further process the remaining
120° in a multi-view prompt manner, i.e., we warp both side views to the central as prompt images.
Note that in the first two 120° rendering processes, it’s also difficult to directly achieve such a large
range NVS. Thus, we first reconstruct 30° NVS with 24 frames. Then, we sample 12 frames from
the reconstructions as the first 12 prompt images for 60° NVS. Next, we can achieve 24 frames of
120° NVS by sampling 12 prompts from 60° NVS reconstruction. When given multiple views, the
proposed method achieves 360° NVS by treating two neighboring images as side views of a pair,
warping them towards the central as prompt images.

I QUANTITATIVE COMPARISON ON LPIPS

We give detailed quantitative comparisons on LPIPS of different methods as shown in Tables I-5. The
results demonstrate that the proposed methods, Ours (DGS) and (Post) outperform SOTA methods in
most scenes.

Table I-5: Quantitative comparison on LPIPS of different methods on single view synthesis. For all
metrics, the lower, the better.

Scene Metric Sparse Gaussian Sparse Nerf Text2Nerf 3D-aware MotionCtrl Ours (DGS) Ours (Post)
Auditorium LPIPS – – – – 0.622 0.707 0.598 0.563 0.567

Barn LPIPS – – – – 0.428 0.643 0.443 0.427 0.438
Church LPIPS – – – – 0.642 0.714 0.627 0.623 0.634
Family LPIPS – – – – 0.647 0.794 0.540 0.523 0.525
Ignatius LPIPS – – – – 0.634 0.853 0.586 0.542 0.536
Palace LPIPS – – – – 0.765 0.627 0.577 0.554 0.549

J MESH RECONSTRUCTION

We have applied 2D Gaussian Splatting to reconstruct the mesh on the generated 360° scene. As
demonstrated in Fig.J-8, our method successfully maintains geometric consistency across the gener-
ated images.

Figure J-8: Mesh reconstruction of synthesized 360° NVS.

K COMPARISON RESULT ON DYCHECK

We conducted comparison experiments on three scenes from the Dycheck dataset. Table. K-6
illustrates the results of our method alongside two Gaussian-based methods. The three scenes from
Dycheck were captured using two cameras, each positioned at a considerable distance from the other.
In our experiments, we used a monocular video from one camera as input and generated a video
following the trajectory of the other camera. This setup introduces a significant content unoverlap
challenge, as the input and target videos capture substantially different perspectives of the scene,
making the task particularly difficult. To address potential scale inconsistencies, we utilized the
depth maps provided in the dataset. Our method outperformed the 4D-Gaussian approach across all
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three metrics.The Deformable-Gaussian method failed to produce viable results in this challenging
scenario.

Table K-6: Quantitative comparison of our method with 4D-Gaussian, Deformable-Gaussian on
Dycheck. ↑ (resp. ↓) means the larger (resp. smaller), the better.

Methods PSNR ↑ SSIM ↑ LPIPS ↓
Deformable-Gaussian – – –

4D-Gaussian 12.68 0.346 0.737
Ours 15.84 0.385 0.410

L ABLATION ON DIFFERENT WEIGHT FUNCTION

We conducted ablation experiments to evaluate different weight function choices, including (1) a
constant value of 0.5

λ̂(t,pi) = 0.5, (36)
(2) a linear function

λ̂(t,pi) = t, (37)
(3) an exponential function

λ̂(t,pi) = e(t+1). (38)
The results are presented in Table. L-7 and Figure. L-9. These results highlight the superiority of our
weight design, as all three simple weight functions lead to decreased performance in generated image
quality and trajectory accuracy, particularly when using a constant value for weighting.

Table L-7: Quantitative comparison of different weight functions. For all metrics, the lower, the
better.

Methods FID ATE RPE-T RPE-R
Constant (0.5) 175.68 6.09 1.06 0.864

Linear 174.23 1.04 0.210 0.199
Exponential 174.60 1.363 0.312 0.330

Ours 165.12 0.767 0.156 0.170

(a) (b) (c) (d)

Figure L-9: Visual comparison of single view-based NVS results utilizing weight function as (a)
constant, (b) Linear, (c) Exponential, (d) Ours (Post).

M COMPARISON WITH ZERONVS

We present a comparison of 360-degree NVS comparison results in Figure M-10. The results highlight
significant differences between the approaches. ZeroNVS generates videos by adhering to a specific
and relatively constrained pattern, which limits the diversity and complexity of the generated scenes.
In contrast, our method demonstrates the ability to produce videos with more intricate and realistic
background geometry.
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(a)

(b)

Figure M-10: Comparison on 360° NVS results between (a) Ours and (b) ZeroNVS (Sargent et al.,
2024).

N COMPARISON WITH PHOTOCONSISTENT-NVS

We conducted a comparative experiment on Photoconsistent-NVS, and the quantitative results are
presented in Figure N-11.

（a）

（b）

Figure N-11: Visual comparison between (a) Ours and (b) Photoconsistent-NVS (Yu et al., 2023).

O COMPARISON WITH SPARSE GAUSSIAN ON EXTREME ZOOM IN AND OUT

We conducted a comparative experiment by performing extreme zoom-in and zoom-out operations
on Sparse Gaussian (Xiong et al., 2023), as illustrated in Figure O-12.

Barn -- 1 input view

Ignatius -- 1 input view

(a)

(b)

(a)

(b)

Garden -- (a)1 input view  (b) 12 input views 

(a)

(b)

Figure O-12: Visual comparison between (a) Ours and (b) Sparse Gaussian (Xiong et al., 2023),
where for the first two scenes both methods are inputted with the same one view. Moreover, we also
input the 12 views to Sparse Gaussian on the third scene and keep ours with 1 scene, which is “unfair”
to our method. Experimental results demonstrate the robustness and consistency of our method with
large camera pose changes.
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