
A Appendix

A.1 Standard Bayesian Optimisation

Algorithm 2 Standard Bayesian Optimisation

Input: Set of Observations D̂1:t̂ = {x1:t̂,y1:t̂}
1. for t̂ = 1, 2, · · · , T̂ iterations do
2. Obtain optimised hyperparameters Θ∗ by maximising log marginal likelihood
3. Update Gaussian process model with Θ∗

4. Find xt̂+1 by optimising acquisition function i.e., xt̂+1 = argmaxx∈X u(x)

5. Evaluate the objective function at xt̂+1 i.e., yt̂+1 = f(xt̂+1) + εt̂+1

6. Augment the new observation i.e., D̂1:t̂+1 = D̂1:t̂ ∪ (xt̂+1, yt̂+1)

7. Update Gaussian process statistical model
8. end for

A standard Bayesian optimisation procedure is mentioned in Algorithm 2. Bayes theorem states that,
given the modelM and the data D̂, the posterior probability of the model given data i.e., P(M|D̂) is
proportional to the likelihood of data given model P(D̂|M) multiplied by the prior probability of the
model P(M), mathematically written as

P(M|D̂) ∝ P(D̂|M) P(M)

If yi = f(xi) + ε′i denotes a noisy observation of the unknown objective function for the ith

sample xi corrupted with white Gaussian noise (ε′i), then the observation model D̂ is accumulated
as D̂1:t̂ = {x1:t̂ , y1:t̂}. Bayesian optimisation computes the posterior distribution P(f |D̂1:t̂) by
combining the prior P(f) with the likelihood P(D̂1:t̂| f) as shown below.

P(f |D̂1:t̂) ∝ P(D̂1:t̂| f) P(f)

The obtained posterior distribution represents our updated belief about the unknown objective
function being modelled. There are two main aspects that must be taken into account for the Bayesian
optimisation. First, the selection of priors to express our prior belief about the objective function.
Gaussian Process (GP) is used for defining prior distributions for the unknown objective function.
Second, an acquisition function to determine the next best query point for the function evaluation.
Therefore, a standard Bayesian optimisation procedure consists of two main components: (i) Gaussian
process, and (ii) acquisition functions.

A.1.1 Acquisition Functions

The selection of the next best query point is characterised by an acquisition function. The acquisition
function guides the search by balancing the exploration and exploitation trade-off in the input space.
We have used Gaussian Process Upper Confidence Bound (GP-UCB) acquisition function (Brochu
et al., 2010, Srinivas et al., 2012) in all our experiments at all levels. GP-UCB acquisition function
using the upper confidence bound selection criterion is given by

uGP−UCB(x) = µ(x) +
√
βt̂ σ(x) (8)

where βt̂ is a weight that depends on both the number of iterations t̂ and the number of observations
n̂. Srinivas et al. (2012), Brochu et al. (2010) have discussed the characteristics of βt̂ by setting its

value as βt̂ = 2 log

(
t̂2+

n̂
2 π2

3δ̂

)
, where δ̂ ∈ (0, 1). In our experiments, we have followed Srinivas

et al. (2012), Brochu et al. (2010) to set the value for βt in the inner-loop. The theoretical analysis of
the GP-UCB acquisition function (Brochu et al., 2010, Srinivas et al., 2012) demonstrates the better
convergence rates when compared to the other popular acquisition functions. Alternatively, we can
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use Expected Improvement (EI) acquisition function (Wilson et al., 2018, Močkus, 1975) to guide the
search by taking into account the expected improvement over the current optima. If f(x+) is the best
value observed, then the next best query point is obtained by maximising the EI acquisition function
uEI(x), given by

uEI(x) =

{
(µ(x)− f(x+)) Φ(Z) + σ(x) φ(Z) if σ(x)>0

0 if σ(x)=0

Z =
µ(x)− f(x+)

σ(x)

where Φ(Z) and φ(Z) represents the Cumulative Distribution Function (CDF) and the Probability
Density Function (PDF) of the standard normal distribution, respectively.

A.2 Construction of Matérn Harmonic Hyperkernel

We follow the strategy mentioned in Ong et al. (2003) for the construction of hyperkernels. Let k be a
valid positive definite kernel such that k(·, ·) ≥ 0, and δ̃ : R→ R a function that can be represented
as a power series with positive coefficients i.e., δ̃(ζ) =

∑∞
n=0 cnζ

n, ci ≥ 0 for all n = 0, · · · ,∞. A
valid hyperkernel κ can be constructed using δ̃ functions and a kernel k as shown below.

κ(x̃i, x̃j) := δ̃(k(x̃i)k(x̃j)) =

∞∑
n=0

cn(k(x̃i)k(x̃j))
n (9)

For example, if k(x̃i) is a Matérn class of covariance functions with ν = 3
2 given as

km(x̃) = km(x,x′) =

(
1 +

√
3

l
r

)
exp

(
−
√

3

l
r

)
(10)

where r = ‖x− x′‖, then using the Geometric Maclaurin series expansion of 1
1−x and setting the

Taylor coefficients cn to (1− λh) (λh)n for some λh > 0 in Eq. (9), we obtain Matérn Harmonic
Hyperkernel as

κ(x,x′,x′′,x′′′) =
1− λh

1− λh km(x,x′) km(x′′,x′′′)

κ(x,x′,x′′,x′′′) =
1− λh

1− (λh c1 c2 exp

(
−
√

3
l (r1 + r2)

) (11)

where λh and l correspond to the hyperparameters of the hyperkernel, and r1 = ‖x − x′‖, r2 =

‖x′′ − x′′′‖, c1 = (1 +
√

3
l r1), c2 = (1 +

√
3
l r2).

As per theory, we can use any universal hyperkernel adhering to the guidelines of hyperkernel
framework for defining a Hyper-GP. However, if we have a strong intuition about the properties
present in the input space, then we can make use of the explicit hyperkernel construction mentioned
in Example 7 of Ong et al. (2003).

A.3 Kernel Functional Approximation from Hyper-RKHS

The kernel functions (K) used in the Gaussian process uniquely define an associated Reproducing
Kernel Hilbert Space (RKHS) HK (Aronszajn, 1950). Analogous to the RKHS associated with
the kernel function, a hyperkernel (κ) defines an associated Hyper-Reproducing Kernel Hilbert
Space (Hyper-RKHS)Hκ (Ong et al., 2003). The (hyper) GP distribution GPκ(0, κ) defined by the
hyperkernel κ is a distribution on the space of kernels. Please see Figure 3 to understand the notion
of kernels, hyperkernels, RKHS and Hyper-RKHS.
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Figure 3: Relation between RKHS defined by kernels and Hyper-RKHS defined by Hyperkernels.

We consider an evenly spaced grid G with Ng points {x̃1, x̃2, · · · |x̃i ∈ X̃ := X ×X ,∀i ∈ NNg
} for

the construction of kernel functionals. Using the grid G, the kernel K can be approximated using the
posterior mean of GPκ(0, κ) as

K(x̃) ≈ [κ(x̃, x̃1) κ(x̃, x̃2) κ(x̃, x̃3) · · · ] κ−1 k =
∑
i

αi κ(x̃, x̃i) (12)

where α = κ−1 k. We also note that k ∼ GPκ(0, κ) is essentially a set of noiseless observations of
the kernel K on the grid-points x̃1, x̃2, · · · . We expect that the value chosen for the grid size Ng is
sufficiently large so that the kernel functionals constructed from the grid is capable of capturing the
plentiful properties from the input space. But in practice, it is infeasible to have a very large grid. To
avoid the computational burden arising from the larger kernel matrix κ ∈ RNg×Ng resulting from the
larger grid size Ng , we perform Principal Component Analysis (PCA) (Wold et al., 1987) and choose
N ′ principal components. The Eigen decomposition of the covariance matrix κ is given by

κ Ê = ÊΛ̂

κ = ÊΛ̂Ê
ᵀ

where Ê ∈ RNg×Ng corresponds to the matrix whose ith column êi is the ith eigenvector of κ, and
Λ̂ ∈ RNg×Ng is the diagonal matrix whose ith diagonal element (Λ̂ii) is the eigenvalue corresponding
to the ith eigenvector. Now, we identify top N ′ principal components from Ê and Λ̂ to construct E
and Λ such that

κ ≈ EΛEᵀ

= E
√

Λ(
√

Λ)ᵀEᵀ

κ ≈ E
√

Λ(E
√

Λ)ᵀ

(13)

where E ∈ RNg×N ′ corresponds to the matrix whose ith column ei is the ith principal component
of κ, and Λ ∈ RN ′×N ′ is the diagonal matrix whose ith diagonal element (Λii) is the eigenvalue
corresponding to the ith principal component. Therefore, E

√
Λ can be used as a square root of κ to

construct kernel samples k as

k = E
√

Λβ where β ∼ N (0, IN ′)

Further, with the PCA based approximation of κ given by Eq. (13), we have κ−1 ≈ EΛ−1Eᵀ.
Then, the kernel approximation K(x̃) in Eq. (12) can be simplified as

α ≈ EΛ−1EᵀE
√

Λβ

≈ EΛ
−1
2 β

(14)

As mentioned in the main paper, we fit a GP distribution on the kernel functional observations using
the Squared Exponential (SE) kernel (kSE) given by

kSE(K1,K2) = σ2
f exp

( −1

2Υ
2

∥∥K1 −K2

∥∥2
)

(15)

3



where σ2
f and Υ correspond to the signal variance and the lengthscale hyperparameters of kSE. The

similarity between two kernel functionals (K1 and K2) can be approximated using the RKHS norm
given as

‖K1 −K2‖Hκ′ 6=κ ≈ ‖µ1 − µ2‖Hκ (16)

where µ1 and µ2 are the posterior mean approximations of K1 and K2, respectively. The RKHS
norm of the posterior mean difference (Eq. (16)) can be computed as shown below.

‖µ1 − µ2‖Hκ =
√

(α1 −α2)ᵀ κ (α1 −α2)√
αᵀ1κα1 +αᵀ2κα2 − 2αᵀ1κα2

(17)

On further simplification with the Eigen decomposition provided in Eq. (14), we get

αᵀ1κα1 = (EΛ
−1
2 β1)ᵀEΛEᵀEΛ

−1
2 β1

= βᵀ1Λ
−1
2 ΛΛ

−1
2 β1

= βᵀ1β1

(18)

Similarly,

αᵀ2κα2 = βᵀ2β2, and

2αᵀ1κα2 = 2 · βᵀ1(Λ
−1
2 )ᵀΛΛ

−1
2 β2

= 2 · βᵀ1β2

(19)

Using Eq. (18) and Eq. (19) in the RKHS norm of posterior mean difference (Eq. (17)), we obtain∥∥K1 −K2

∥∥
Hκ′ 6=κ

=
√
βᵀ1β1 + βᵀ2β2 − 2 · βᵀ1β2 (20)

Alternatively, the similarity between kernel functionals mentioned in Eq. (15) can be approximated
using L2−Norm given as∥∥K1 −K2

∥∥
L2
≈
∥∥k1 − k2

∥∥ =
√

kᵀ1k1 + kᵀ2k2 − 2 · kᵀ1k2

where

kᵀ1k1 = (E
√

Λβ1)ᵀE
√

Λβ1

= βᵀ1
√

Λ
ᵀ
EᵀE

√
Λβ1

= βᵀ1Λβ1

kᵀ1k2 = (E
√

Λβ1)ᵀE
√

Λβ2

= βᵀ1
√

Λ
ᵀ
EᵀE

√
Λβ2

= βᵀ1Λβ2

and consequently, ∥∥K1 −K2

∥∥
L2
≈
√
βᵀ1Λβ1 + βᵀ2Λβ2 − 2 · βᵀ1Λβ2 (21)

In all our experiments, we compute the similarity between kernel functionals using the RKHS norm
mentioned in Eq. (16).

A.4 Theoretical Analysis

A.4.1 Proof of Proposition 1

Our proof of Proposition 1 is pivoted on extending the concept of information gain γt (Cover, 1999)
in a standard Euclidean space to a functional space of kernels. Our model in the inner-loop is built
directly on the projections of the variables (λ∗) optimised in the functional space of kernels i.e.,
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k = k# +
∑
i λ

(i)k(i) (we use K and k interchangeably here as both represent the kernel as per
Eq. (12)). For each instantiation s of the outer-loop, the corresponding subspace is constructed as
Ss = k# + span(k(1) + · · · + k(d)), where k# is the optimal kernel found in the previous s − 1
subspace searches. Therefore, ∀K1,K2 ∈ Ss, the RKHS norm ‖K1 − K2‖Hκ′ 6=κ required for
computing the similarity k(K1,K2) between kernel functionals can be written as shown below.

‖K1 −K2‖Hκ′ 6=κ ≈
∥∥∑

i

(λ
(i)
1 − λ

(i)
2 )k(i)

∥∥
Hκ′

= (λ1 − λ2)ᵀM(λ1 − λ2)

(22)

whereM < 0,Mpq = 〈k(p),k(q)〉, having the form of Mahalanobis distance. The new formulation
is identical to the standard Euclidean distance measured on transformed data with appropriate scaling
and rotation. Interestingly, the maximum information gain γt of a kernel at iteration t of the inner-loop
depends only on the number of observations, irrespective of the inherent transformations such as
linear transformation (scaling), rotation, etc. on the datapoints. Thus, the kernel construction using a
translation-invariant covariance allows the kernel k : Ss × Ss → R in functional space to share the
same maximum information gain γt as that of the standard kernel k : X × X → R in the Euclidean
space (see Seeger et al. (2008) and Srinivas et al. (2012) for the maximum information gain of
standard kernels).

�

A.4.2 Proof of Theorem 1
The proof of Theorem 1 builds on deriving the maximum information gain (γt) rate for the ker-
nels in biased subspaces. In the inner-loop, the model for f is constructed using the observa-
tions accumulated from the current subspace s, as well as the previous s − 1 subspaces. There-
fore, the posterior of f in subspace s before proceeding with the inner-loop is f(K)|Ds−1 ∼
N (µDs−1

(K), σ2
Ds−1

(K)), where Ds−1 denotes the set of all observations obtained from the pre-
vious s − 1 subspaces. Further, the posterior of f at iteration t of the inner-loop is given as
f(K)|Ds−1 ∪ D

′

s ∼ N (µDs−1∪D′s(K), σ2
Ds−1∪D′s

(K)). It can be shown that the updated posterior

f(K)|Ds−1 ∪ D
′

s is equivalent to the posterior of the biased GP having the prior covariance k̂Ds−1

i.e., f ∼ GP(µDs−1
, k̂Ds−1

) induced by observations Ds−1 from the previous subspace searches.
The posterior distribution for the function f ∼ GP(0, k̂) given the observations from the current and
the previous subspace searches is given by

µDs−1∪D
′
s
(K) =

[
k̂(Ds−1, K)

k̂(D′s, K)

]ᵀ k̂(Ds−1,Ds−1) + σ2
nI k̂(Ds−1,D

′
s)

k̂(D′s,Ds−1) k̂(D′s,D
′
s) + σ2

nI


−1 [

yDs−1

yD′s

]
(23)

σ
2

Ds−1∪D
′
s
(K) = k̂(K,K)−

[
k̂(Ds−1, K)

k̂(D′s, K)

]ᵀ k̂(Ds−1,Ds−1) + σ2
nI k̂(Ds−1,D

′
s)

k̂(D′s,Ds−1) k̂(D′s,D
′
s) + σ2

nI


−1 [

k̂(Ds−1, K)

k̂(D′s, K)

]
(24)

Similarly, the posterior distribution of f given only the observations from previous subspaces search
is represented as shown below.

µDs−1
(K) = k̂(K,Ds−1) [k̂(Ds−1,Ds−1) + σ2

nI]−1 yDs−1
(25)

σ2
Ds−1

(K) = k̂(K,K)− k̂(K,Ds−1) [k̂(Ds−1,Ds−1) + σ2
nI]−1 k̂(Ds−1,K) (26)

k̂Ds−1
(K,K ′) = k̂(K,K ′)− k̂(K,Ds−1) [k̂(Ds−1,Ds−1) + σ2

nI]−1 k̂(Ds−1,K
′) (27)

It is clearly seen that the posterior distribution mentioned in Eq. (23) and Eq. (24) can be reformulated
in terms of Eq. (25) and Eq. (26) using matrix inversion lemma. Therefore, the final posterior mean
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and variance given the observations from the current and previous subspace searches are computed as

µDs−1∪D′s(K) = µDs−1
(D′s)+k̂Ds−1

(K,D′s)[k̂Ds−1
(D′s,D

′

s)+σ2
nI]−1(yDs−1

−µDs−1
(D′s)) (28)

σ2
Ds−1∪D′s

(K) = k̂Ds−1
(K,K)− k̂Ds−1

(K,D′s)[k̂Ds−1
(D′s,D

′

s) + σ2
nI]−1k̂Ds−1

(D′s,K) (29)

Therefore, the updated posterior f(K)|Ds−1 ∪ D
′

s is equivalent to the posterior of the biased GP
with prior covariance k̂Ds−1

(Eq. (27)) i.e., f ∼ GP(µDs−1
, k̂Ds−1

) induced by observations Ds−1

from the previous subspace searches.

Hence, the inner-loop will have sub-linear regret as per GP-UCB based BO (see Theorem 2 of
Srinivas et al. (2012)), but with prior covariance k̂Ds−1

(as per Eq. (27)). The maximum information
gain for this covariance at any instance of the inner-loop is denoted by γDs−1,t. Therefore, the regret
for the inner-loop with SE kernel grows as O∗(

√
dtγDs−1,t), where O∗ notation corresponds to the

variant of O , but with log factors suppressed. For any subspace s, till the iteration t, the maximum
information gain is γDs−1,t = γsT+t, and hence the regret bounds for the SE kernel (kSE) can be
obtained as γDs−1,t ∈ O((log t)d+1). Consequently, the overall regret bound for the inner-loop is
given by O(

√
dt(log t)d+1). For the other standard kernels, we just need to use their corresponding

maximum information gain rate. The maximum information gain rate for the other standard kernels
is discussed in Seeger et al. (2008), Srinivas et al. (2012). �

A.4.3 Proof of Theorem 2

Our proof of Theorem 2 follows the analysis mentioned in Kirschner et al. (2019), Shilton et al.
(2020), but with a hyperkernel perspective and slight modifications in terms of the number of
effective dimensions and the varying upper bounds. We define some notations for the convenience
of the readers. Let �t� in the subscript of any variable denote “before the iteration t”, whereas
a plain-language t in the subscript denote “for the iteration t”. For example, D�t� denotes the
set of all observations before proceeding with iteration t, whereas Dt is the set of observations
in iteration t. First, we provide some preliminary results to support our theoretical proof. Let
Cκ,d(o) be a distribution of random projections of Hκ spanned by o + span(k(1),k(2), · · · ,k(d))

with fixed origin o and k(1),k(2), · · · ,k(d) ∼ GPκ(0, κ). For each instantiation of the outer-loop
(s) in Algorithm 1 (mentioned in the main paper), the subspace considered for the optimisation is
denoted as Ss ∼ Cκ,d(os). Let S�s� =

⋃
i∈Ns Si, where Ns = {1, · · · , s}. Let x∗s = argmax

x∈Ss
f(x)

and x∗�s� = argmax
x∈S�s�

f(x). First, we prove the following lemma to supplement our results.

Lemma 1: Let S ⊆ V ={p ∈ Rd′ |‖p‖L2
≤ L}, where S is defined by span(s1, s2, · · · , sd) +

b
⋂
V, si ⊥ sj ∀i 6= j ∈ Nd, si ∼ Si ∀i ∈ Nd, b ∼ B for some distributions Si and B ∈ V. Then

the probability that S intersects the d′ ball of radius r = ρL, where ρ ∈ (0, 1], at the origin is at least
Ω(ρd

′−d) if d < d′, 1 otherwise.

Proof: We are reproducing the results here for the sake of completeness. Let Ξd,d′ be the probability
of intersection. We know that ‖si‖2L2

6= 0 ∀i ∈ Nd. Therefore, we assume dim(S) = d. If d = d′

then S = V and Ξd,d′ = 1. Furthermore, if d = 0, then the probability that it intersects is equal
to the probability that a random point chosen from a distribution falls into a d′ ball (of radius ρL),
which is defined as the ratio of the measure of the d′ ball to the measure of V i.e., Ξ0,d′(ρ) = Ω(ρd

′
).

On the other hand, if 0 < d < d′, as both d′ ball with radius r = ρL and V are invariant to the
rotations about origin, we thus assume that si = [δ1,i δ2,i · · · δd,i 0]si,where i ∈ Nd and δi,j is the
Kronecker-delta. Hence, for all si 6= 0, v = [v̂ v̌], v̂ ∈ Rd, v̌ ∈ Rd′−d and v̌ ∼ B̃, we have

Ξd,d′(ρ) = P
(

min
ṽ∈ Rd

∥∥∥∥∥
[

v̂ + ṽ� s
v̌

]∥∥∥∥∥
L2

≤ ρL
)

= P(‖v̌‖L2 ≤ ρL)

(30)
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where � is the Hadamard product. The minimum of the probability mentioned in Eq. (30) is obtained
when ṽi = − v̂i

si
∀i ∈ Nd, which is exactly the case corresponding to d = 0 with decreased d′.

Therefore, Ξd,d′(ρ) = Ξ0,d′−d(ρ) = Ω(ρd
′−d) if 0 < d < d′. �

Note: The orthogonality condition in Lemma 1 is not a necessary condition. The key point here is
that S is a random d-dimensional subspace intersecting a ball of radius L in d′-dimensional space
(d ≤ d′). The vectors s1, s2, . . . sd randomly drawn from a smooth distribution are almost surely
linearly independent and thus define a (non-orthogonal) basis for the subspace S of dimension d.
Starting from such a basis, we can then obtain an orthogonal basis for S using the Gram-Schmidt
procedure, and thus the proof of Lemma 1 holds.

Lemma 2: For any instantiation (s) of the outer-loop, P(f(K∗)−f(K∗�s�) ≤ τ) ≥ 1−exp(−s%(τ)),
where %(τ) is a lower bound: %(τ) ≤ P(∃K ∈ S, f(K∗)− f(K) ≤ τ |S ∈ Cκ,d(o)). Further, if the

first-order minimum condition is met at K∗ then %(τ) = Ω(τ
d′−d

2 ) if d < d′, 1 otherwise.

Proof: We follow the proof of Lemma 2 in Shilton et al. (2020) to theoretically extend our Theorem 2
to the domain of kernel functionals defined by hyperkernel κ. Using the inequality 1− x ≤ e−x,

P(f(K∗)− f(K∗�s�) ≤ τ) = 1− P(f(K∗)− f(K∗�s�) ≥ τ)

≥ 1−
∏
i∈Ns
P(f(K∗)− f(K∗i ) ≥ τ)

≥ 1− (1− %(τ))s

≥ 1− exp(−s%(τ)

(31)

By definition we know that, there exists K1,K2, · · · ,Kd′ ∈ Hκ such that ‖f(K> + K⊥) −
f(K>)‖Hκ = 0 ∀K> ∈ K,∀K⊥ ∈ K⊥, where K = span(K1,K2, · · · ,Kd′) and K⊥ = {K̃ ∈
Hκ | 〈K, K̃〉Hκ = 0,∀K ∈ K}. Further, ∀K ∈ Hκ, K = K> + K⊥, we define the set of
best solutions at a distance τ from the optima as, Vτ = {K ∈ Hκ|f(K∗) − f(K) ≤ τ}. Also,
f(K) = f(K>), therefore Vτ = Vτ>

⊕
K⊥, where Vτ> = {K> ∈ K|f(K∗) − f(K>) ≤ τ} is

said to have d′ dimensions. Thus, bounding the probability that a random d-dimensional subspace
S ∼ Cκ,d(o) projected onto K intersects Vτ> further places a lower bound on %(τ). To achieve this,
we define Ṽτ,η> = {K> ∈ K| η

2L2
max
‖K∗ −K>‖2Hκ ≤ τ} , where η > 0. Since f is twice Frechet-

differentiable, we find that, for small η
2L2

max
‖w‖2Hκ , we have f(K∗ + w) ≥ f(K∗) − η

2L2
max
‖w‖2Hκ .

If w = K> − K∗, we see that f(K∗) − f(K>) ≤ η
2L2

max
‖K> − K∗‖2Hκ , proving Ṽτ,η>⊆Vτ>.

Therefore, a lower bound on %(τ) can be ensured by bounding the probability that a subspace (S>)

with d-dimensions lying in a d′ dimensional subspace intersects a d′ ball with radius r =
√

2τ
η Lmax

at the origin. By the proof provided in Lemma 1, the aforesaid probability is Ω(τ
d′−d

2 ) if d < d′ and
1 otherwise, thereby proving Lemma 2. �

The regret bounds for the inner-loop is established using the results from Proposition 1 and Theorem
1. Further, the regret bounds (εd,δ) for the inner-loop depends on the way in which the inner-loop is
terminated i.e., after a fixed number of iterations or until the accepted solution accuracy is attained
(see discussion in Section 4.3 of our main paper for the overall convergence of the algorithm).

𝑟 = ρ𝐿

d-dimensional hyperplane

Figure 4: d− dimensional hyperplane intersecting d′ ball of radius r = ρL.
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With the aforestated results, our proof of Theorem 2 follows the proof of Proposition 1 provided
in Kirschner et al. (2019), except that our upper bound varies in the order εd,δ, instead of having
a fixed upper bound ε and we have d′ − d instead of d′ − 1 in the overall regret bound. We note
that the proof of Proposition 1 in Kirschner et al. (2019) discusses a special case of our Theorem 2,
where (i) d = 1 (line-search), (ii) the search space is finite-dimensional (ours is infinite-dimensional
(functional) with finite effective dimensions), (iii) it is assumed that the inner-loop runs until err(x)
(Eq. (4) in Kirschner et al. (2019)) drops below a fixed threshold. If we start with the proof of
Proposition 1 in Kirschner et al. (2019), replace their Lemma 2 with ours to address point (i), note
that the effective dimension is the dimension relevant to the proof to address point (ii), and make ε (in
our case) explicitly dependent on d and δ i.e., εd,δ to take care of point (iii) (discussed in Sec. 4.3 of
our main paper), we obtain a proof of our Theorem 2.

A.5 Experimental Setup and Additional Results

A.5.1 Parameter Selection in KFO

The parameter S in Algorithm 1 corresponds to the number of subspace searches and the parameter T
corresponds to the number of iterations in each of those subspaces. In this work, we have considered
a fixed computational budget (S × T ) for the optimisation and set S = 5 and T = 20. If we are not
concerned with the computational budget, we can set up a stopping criterion (following Kirschner
et al. (2019)) based on the quality of the solution achieved i.e., the terminating condition is set with a
measure such as simple regret or cumulative regret to keep track of the optimisation performance. We
have discussed the convergence guarantees of our approach for both the criteria (fixed and variable
T ) in Theoretical Analysis section.

The number of points Ng in the grid G is an important parameter. A very fine resolution grid ensures
that we can capture small-scale patterns in the kernel. However, a large grid size comes with large
computational costs. As a trade-off we set the grid size i.e., Ng ≥ 10× n, where n is the dimension
of the given problem, and we find that this works in practice (specifically, (a) it outperforms the
baselines in majority of the datasets, and (b) we observe that increasing Ng further does not give
significant improvements in performance). Our empirical results justify that the current assumptions
made on the grid is fair enough to arrive at optimal solutions. To avoid the slower training time
arising from the larger grids, we are planning to explore in the direction of Random Fourier Features
for the efficient computation as part of our future line of work.

As we deal with the kernel selection problem, the dataset-specific characteristics will have a minimal
impact on the optimum kernel that can be obtained using Kernel Functional Optimisation (KFO). This
is true for most of the Bayesian optimisation literature, where the convergence is not tightly coupled
with the dataset-specific attributes. In contrast, the convergence heavily depends on the complexity
of the observed search space, in our case the search space is a space of kernels defined by placing
a GP distribution on kernels using hyperkernel κ. Further, our proposed approach KFO treats any
dataset equally and the dataset need not originate from the UCI repository always. Thus, the strategy
to select the computational budget and other parameters remains the same for any class of the dataset.

Hyperparameter Tuning As discussed in the main paper, we fit a GP distribution GP(0, kSE) on
the observed kernel functionals in the inner-loop. Although any kernel is equally valid for fitting a
GP distribution on kernel functional observations, we have considered the commonly used Squared
Exponential (SE) Kernel for our experiments. Further, we provide the convergence guarantees of
our algorithm considering the SE kernel in the inner-loop of our algorithm. The hyperparameter set
θ = {σ2

f ,Υ} of the SE kernel are tuned by maximising the GP log marginal likelihood given as

L = P(y|X,Θ) =

∫
P(y|f) P(|X,Θ) df (32)

The closed-form formulation for GP log marginal likelihood is given as

logL = −1

2
(yᵀ[C + σ2

noiseI]−1y)− 1

2
log |C + σ2

noiseI| −
ň

2
log(2π) (33)

where C corresponds to the covariance matrix constructed for ň observations. The hyperparameters
σ2
f and Υ of the SE kernel in the inner-loop are tuned in the interval (0, 5] and (0, 1], respectively.
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Additionally, to achieve better kernel approximations at Hyper-GP level, the hyperparameters Θ =
{λh, l} of Matérn harmonic hyperkernel κ mentioned in Eq. (11) are tuned using a separate standard
Bayesian optimisation procedure (Algorithm 2). The hyperparameters λh and l are tuned in the
interval (0, 1] and (0, 1], respectively. In this Bayesian optimisation procedure, the observation
model is constructed as D = {(Θ, y′ = Γ(Θ))}, where Γ maps the model performance y′ with the
corresponding hyperparameter set Θ. Then, we fit a GP surrogate model GPH on the observations
D = {(Θ, y′)} using the traditional SE kernel. The hyperparameters of the SE kernel used in GPH
is again tuned by maximising the log-likelihood mentioned in Eq. (33). The signal variance and
the characteristic lengthscale of this SE kernel are tuned in the interval (0, 2] and (0, 1], respectively.
Next, we use standard GP-UCB acquisition function to iteratively search for the best hyperparameter
set Θ that maximises the model performance y′. Therefore, the kernels approximated from such a
tuned Hyper-GP has better generalisation performance.

A.5.2 Synthetic Experiments

In the experiments with synthetic functions, we have compared our results with the following
stationary and non-stationary kernels.

• Squared Exponential (SE) kernel: kSE(x1,x2) = σ2
f exp

( −1

2Υ2

∥∥x1−x2

∥∥2)
, where σ2

f and
Υ correspond to the signal variance and the lengthscale hyperparameter of the SE kernel.

• Matérn Kernel with ν = 3/2:
kMAT(x1,x2) =

(
1 +

√
3

Υ r
)

exp
(
−
√

3
Υ r
)
, where r = ‖x1−x2‖ and Υ corresponds to the

lengthscale hyperparameter.
• Multi-Kernel Learning (MKL) as a weighted combination of SE (kSE), Matérn (kMAT) and

Linear kernels (kLIN = x1x
ᵀ
2 + c3, where c3 ∈ (0, 1)):

kMKL(x1,x2) = w1 kSE(x1,x2) + w2 kMAT(x1,x2) + w3 kLIN(x1,x2)

The hyperparameters σ2
f , Υ and w mentioned in the aforesaid kernels are tuned by maximising the

log marginal likelihood given by Eq. (33). The hyperparameters σ2
f and Υ are tuned in the interval

(0, 2] and (0, 1], respectively and the weights w are tuned in the interval [0, 1].

We have considered the following functions for our synthetic experiments: (i) Triangular wave -
NZ (Triangular wave function with non-zero mean and a single peak in the held-out test region),
(ii) Triangular wave - Z (Triangular wave function with zero mean and two peaks in the held-out
test region), (iii) a mixture of Gaussian distributions ((µ1 = 0.166, σ1 = 0.4), (µ2 = 0.5, σ2 =
0.9), and (µ3 = 0.833, σ3 = 0.6)), and (iv) SINC function given by y(x)= sinc(x+10)+sinc(x)+

sinc(x− 10) + ε, where ε ∼ N (0, 0.001) and sinc(x) = sin(πx)
πx .

The posterior distributions computed for the aforesaid synthetic functions using KFO and other
baselines are as shown in Figure 5. The maximum log-likelihood estimates for the posterior distribu-
tions obtained over 10 repeated runs are provided in Table 4. The poor performance of the Squared
Exponential (SE) kernel in synthetic experiments is better understood when we compare the posterior
distributions of Triangular wave - Z function and Triangular wave - NZ function. The experiment
results for Triangular wave - Z function using the SE kernel revealed that the GP predicted mean in
the held-out test region does not go downwards as in the Triangular wave - NZ function, instead, it
tries to fall back to the y = 0 line from both the sides of X-axis, which is the prior mean, thereby
explaining the poor likelihood estimates. We emphasise our synthetic results in a sense that the kernel
optimised using our proposed approach (KFO) was able to find the correct periodicity in the given
input space even without any explicit enforcement of the spatial properties.

We have conducted another set of experiments to demonstrate the kernel recovering capabilities
of KFO. In this experiment, we try to recover a non-stationary linear kernel. We have considered
a synthetic function - linear function y = 0.5x, and generated evenly spaced observations in the
interval [−1, 1]. Then, we fit a ground truth GP (GPGT) on those observations using a ground truth
kernel (kGT) - a linear kernel in this case, and then we tune the hyperparameters of kGT by maximising
the log-likelihood. Now, we use the same set of observations in the GP (GPKFO) fitted by our KFO
algorithm and run the optimisation procedure to find the optimal kernel. It is evident from Figure 6
that the posterior distributions obtained for GPKFO is very identical to that of GPGT. Further, we have
computed the predictive log-likelihood (PL) over 500 number of points sampled from a much bigger
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range of [−10, 10] for both the GPs. The predictive log-likelihood estimates turned out to be very
close as (i) PLKFO= 2449.045, (ii) PLGT=2045.148, showing that the kernels are also very close.
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Figure 5: Posterior distributions for (i) Triangular wave - NZ, (ii) Triangular wave - Z, (iii) Gmix , and
(iv) SINC functions using KFO and other baselines. The solid blue line shows the true function. The
green shaded area covers 2σ above and below the posterior mean shown by the green dashed line.

Table 4: Log-likelihood computed for the synthetic functions using KFO, SE, Mat3/2 and MKL
kernels. Bold indicates the best performance among all the columns. Higher the better.

KFO SE Kernel Mat3/2 kernel Multi Kernel

Triangular wave - NZ 79 ± 1.19 −229± 0.4 74.04± 2.08 74.5± 0.7
Triangular wave - Z 109.43 ± 0.02 −900± 2.24 92.46± 0.82 91.10± 2.08
Gmix Function 117.60 ± 2.1 −8.58± 1.71 108.36± 1.95 108.89± 1.21
SINC Function 82.91 ± 1.74 11.62± 1.83 74.1± 1.2 74.98± 0.52
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Figure 6: Posterior distributions computed for GPKFO and GPGT.

A.5.3 Real-world Experiments

SVM-Classification The descriptive statistics of the datasets used in the real world experiments are
mentioned in Table 5. We demonstrate the effectiveness of our approach using real-world datasets
having a diverse set of input characteristics. We use publicly available datasets from UCI repository
(Dua and Graff, 2017) in our experiments. In our main paper, we have presented the results comparing
our proposed method with the relevant baselines. In addition to that, we demonstrate the superiority
of our approach by reporting the best test classification error (the last column marked by † in Table 1
of the main paper) obtained by the state-of-the-art classifiers in the literature (Zhang et al., 2017). To
the best of our knowledge, Zhang et al. (2017) is the latest work that surveyed numerous classifiers
on UCI datasets. Although we follow the same train/test splits as that of Zhang et al. (2017) for
the classification experiments, few classifiers listed in Zhang et al. (2017) are out of the scope of
experimental setup we have considered. We just report the results to emphasise on the margin of
improvement achieved with our proposed approach.

Table 5: Descriptive statistics of the real-world datasets used.

Task Dataset Features Instances Classes

Classification

WDBC 30 569 3
Ionosphere 34 351 2

Sonar 60 208 2
Glass 9 214 7
Heart 13 303 2
Seeds 7 210 3
Credit 24 1000 2

Hayes-roth 5 1320 3
Biodeg 41 1056 3
Wine 13 178 3
Ecoli 8 314 8
Car 6 1728 4

Contraceptive 9 1473 3
Phoneme 5 5404 2

Regression

Fertility 9 100 -
Yacht 7 308 -
Slump 10 103 -
Boston 13 506 -
Auto 7 398 -

Airfoil 5 1503 -

We use C−SVM in conjunction with KFO to minimise the test classification error. We perform
10−fold cross-validation on the training data set containing 80% of the total instances and tune
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the cost parameter (C) of the SVM in the exponent space (base 10) of [−3, 3]. In addition to the
SVM classification results provided in the main paper, we further evaluate the performance of our
proposed approach using the additional baselines described here. We construct a new SVM classifier
(KFO-MKL) with its kernel constructed as a weighted combination of KFO tuned kernel and standard
parametric kernels to include exogenous kernels in KFO framework i.e., the kernel kKFO-MKL used in
the C−SVM classifier is constructed as kKFO-MKL = w̃1 kKFO + w̃2 kSE + w̃3 kMAT + w̃4 kLIN. The
weights w̃ are tuned in the interval [0, 1]. Furthermore, we compare with C−parameterised Linear
SVM adhering to the definitions of the hyperkernel optimisation problem using the results mentioned
in Ong and Smola (2003).

To show the robustness of our proposed approach, we also provide SVM classification (KFOα−CLIP)
results obtained when we clip the values of α in Eq. (12) i.e., α = [(αi)+] as an alternative to
spectrum clip transformations performed at Gram matrix levels to ensure positive definiteness (see
discussion in Sec. 3.2 of the main paper). The classification error percentage obtained for the test set
using the aforementioned classifiers averaged over 10 random repeated runs are shown in Table 6.

Table 6: Additional SVM classification results for the real-world datasets using KFO and other
baselines, with the test set consisting of 20% of the total instances. Each cell signifies the mean test
classification error and the standard deviation computed over 10 runs with random initialisations.
Lower the better. Bold indicates the best performance among all the columns.

Dataset KFO-MKL KFOα−CLIP C−SVM

Ionosphere 4.28± 0.79 5.84± 1.66 6.61± 1.82
Glass 8.65± 1.81 13.29± 1.19 6.0± 2.4
Sonar 6.9± 1.66 10.04± 2.37 14.8± 3.7
Heart 11.04± 0.8 14.13± 1.94 19.7± 1.2
Wine 0 0 0
Credit 32.39± 4.6 35.6± 2.77 35.48± 2.2
Biodeg 13.81± 0.49 19.11± 1.63 24.53± 0.8
Hayes-Roth 17.14± 0.85 17.80± 0.79 21.43± 2.8
WDBC 1.96± 0.92 1.85± 1.05 3.3± 1.2
Contraceptive 27.63± 4.5 38.35± 7.81 45.95± 6.2
Car 0 0 8.09± 1.27
Phoneme 29.63± 2.9 29.57± 3.86 21.52± 1.6
Ecoli 1.8± 0.9 2.05± 0.01 15.15± 2.64
Seeds 1.56± 0.4 2.31± 0.78 10.61± 2.4

GP-Regression In the main paper, we have provided an Eigen Value Decomposition (EVD) based
approach to transform the Gram matrix by applying a linear transformation at the Gram matrix level
to ensure positive definiteness. Though this approach works for SVMs, it may get inadequate for
GPs that requires positive definite covariances. Ayhan and Chu (2012) have discussed in detail
the issues of using indefinite kernels in GPs. GPs require the calculation of predictive mean µ(·)
and variance σ2(·) for the test samples. It is almost surely impossible to consistently transform
the kernel matrix to ensure a positive predictive variance. Therefore, we need ways to enforce
positive definiteness before we compute predictive variances. Thus, as an alternative way to ensure
positive definiteness, we clip α = [(αi)+] mentioned in Eq. (4) of the main paper. The fundamental
reason to choose spectrum clipping α = [(αi)+] instead of spectrum flipping α = [|αi|] is that
the magnitude of change observed in the transformed matrix is smaller for spectrum clipping. The
negative log-likelihood estimates (along with its standard deviation) obtained for GP regression using
both clipping (KFOα−CLIP) and flipping (KFOα−FLIP) are listed in Table 7. It is clear from the results
that clipping is always better than flipping and in some cases substantially so.

The code base and the relevant modules used in our experiments are available at https://github.
com/mailtoarunkumarav/KernelFunctionalOptimisation. We have also provided the com-
puting resource requirements of our proposed method.
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Table 7: GP Regression results for the real-world datasets using KFOα−FLIP and KFOα−CLIP. Each
cell signifies the mean negative log-likelihood and the standard deviation computed over 10 random
runs. Lower the better. Bold indicates the best performance among all the columns.

Dataset Fertility Yacht Concrete Slump Boston Auto

KFOα−FLIP 5.28± 2.7 −13.1± 5.4 −2.97± 1.48 −16.6± 7.03 −8.2± 3.6
KFOα−CLIP 5.15± 2.9 −34.6± 1.6 −3.01± 1.7 −24.7± 4.2 −8.7± 1.2

References
N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical Society,

68(3):337–404, 1950.

M. S. Ayhan and C.-H. H. Chu. Towards indefinite Gaussian processes. Technical report, Technical
report, University of Louisiana at Lafayette, 2012.

E. Brochu, V. M. Cora, and N. De Freitas. A tutorial on Bayesian optimisation of expensive cost
functions, with application to active user modeling and hierarchical reinforcement learning. arXiv
preprint arXiv:1012.2599, 2010.

T. M. Cover. Elements of information theory. John Wiley & Sons, 1999.

D. Dua and C. Graff. UCI machine learning repository, 2017. URL http://archive.ics.uci.
edu/ml.
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