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1 INTRODUCTION

We complement our main text with supplementary materials encompassing the following components:

1. Theoretical Insights: This section contains main theoretical results, along with an explana-
tion of the rationale behind choosing Padé approximants over more commonly used Taylor
approximation, as discussed in Lemma 1.

2. Rationale for Enhanced Performance: This section elucidates the superior performance
of the KD(C) framework, attributing it to three key factors: (a) insights from penultimate
visualizations, (b) considerations of inter-class semantic similarities, and (c) the careful
design of calibrators for the teacher model.

3. Illustration of Generality: Included is Fig. S5, which provides a visual demonstration
of KD(C)’s versatility by comparing direct calibration with the KD(C) framework. It also
presents an example featuring the Hebbalaguppe et al. (2022) regularizer.

4. Expanded Experimental Scope: We strengthen the KD(C) methodology with additional
experiments, covering various scenarios, including large-to-small, small-to-large, self-
distillation, and iterative self-distillation. These experiments involve different descriptors
and datasets.

5. Additional Results: We provide supplementary results that encompass calibration per-
formance in the presence of dataset drift and reliability diagrams featuring confidence
histograms, as elaborated in Sec. 5.1.

6. Hyperparameter Analysis: A detailed study explores how calibration and accuracy are
influenced by various hyperparameters in the KD(C) framework, as depicted in Fig. S8.

7. Source Code: The supplementary materials include the source code along with a
readme.md file, enclosed within the provided zip file.

8. Training and Compute Details: We furnish comprehensive information on the specifics of
training and compute resources employed in our experiments.

9. Limitations and Broader Impact: This section delves into the limitations of our research
and contemplates its broader impact on the field.

These supplementary materials serve to enrich and provide a deeper understanding of our main
findings and contributions.

2 THEORETICAL SUPPORT: ADDITIONAL DETAILS

2.1 PROOF OF THEOREM 1

The proof of Theorem 1 is contingent on several essential Lemmas, which will be introduced
beforehand. Lemma 1 and Lemma 2 capture the effect of quadratic temperature scaling in the KD
loss function, LKD. In particular, it is shown that the partial derivative of LKD w.r.t. student’s logit
for a given sample is equal to the difference in predicted probabilities of the student and teacher
classifiers for that sample. These results are leveraged to characterize the first-order condition of
optimality for the total loss function Ltot w.r.t. parameters of the student classifier.

Lemma 1. Let zi,s := W⊤
s xi and zi,t := W⊤

t xi with p̃i,s, p̃i,t be defined as above. Then
lim

T→∞
T (p̃i,s − p̃i,t) ≈ pi,s − pi,t.

Proof. The result follows as a consequence of Padé approximation. Recall that from definition,

p̃i,s − p̃i,t =
1

1 + e−zi,s/T
− 1

1 + e−zi,t/T
≈ 1

1 +
1− zi,s

2T

1 +
zi,s
2T

− 1

1 +
1− zi,t

2T

1 +
zi,t
2T

, (S1)

where the last approximation follows from Padé approximation of the exponential when T is large.

2



Under review as a conference paper at ICLR 2024

Thus, Eq. (S1) can be re-written as:

p̃i,s − p̃i,t =
1 + zi,s

/
2T

2
−

1 + zi,t
/
2T

2
=⇒ T (ỹi,s − ỹi,t) =

zi,s − zi,t
4

. (S2)

On the other hand, a similar analysis following the Padé approximation yields:

pi,s − pi,t ≈ (zi,s − zi,t)/4. (S3)

Thus, Lemma 1 follows directly from Eq. (S2) and Eq. (S3).

Remark: Padé approximants have a wider range of convergence than the corresponding Taylor series,
and can even converge where the Taylor series does not. For a detailed exposition, please refer to
Sec. 2.3 and Fig. S1.

The following result shows that the quadratic temperature scaling in the KD loss function ensures
that the gradients used to update the network weights are independent of the smoothed labels.
Lemma 2 (Quadratic temperature scaling). Let LKD be defined as in Eq. (2). Then,

lim
T→∞

∂LKD

∂zi,s
= pi,s − pi,t.

Proof. Recall that by definition p̃i,s =
1

1 + e−zi,s/T
. The partial derivative of p̃i,s w.r.t. zi,s reads:

∂p̃i,s
∂zi,s

=
1

T
p̃i,s(1− p̃i,s). (S4)

On the other hand,

∂LKD

∂zi,s
= −T 2

(
p̃i,t
p̃i,s

− 1− p̃i,t
1− p̃i,s

)
∂p̃i,s
∂zi,s

= T 2 (p̃i,s − p̃i,t)

p̃i,s(1− p̃i,s)

∂p̃i,s
∂zi,s

. (S5)

Thus, from Eq. (S4), Lemma 1 and for large T , Eq. (S5) reduces to:

lim
T→∞

∂LKD

∂zi,s
= pi,s − pi,t,

which completes the proof.

Lemma 3. The derivative of the total loss function Ltot w.r.t. the parameters Ws of the student
network lies in the span of X, and is given by:

∂Ltot

∂Ws
=

N∑
i=1

(pi,s − {αpi,t + (1− α)yi})xi.

Proof. The proof follows directly from Lemma 2.

Theorem 1. Let X ∈ Rd×N be a data matrix satisfying Assumption 1, and Ws and Wt represent
the parameters of the student and the teacher networks, respectively. Then, under Assumption 2 and
using the gradient-descent algorithm, the parameters Ws of the student network converge to:

Ws ≈ αWt + 4(1− α)X(X⊤X)−1Y1/2,

where Y1/2 :=
[
yi − 1

2

]N
i=1

is an N -dimensional vector.

Proof. First observe that the minimum value of the total loss function in Eq. (2) is finite. Moreover,
the total loss function is convex in the parameters of the student network. Thus, any gradient-based
descent algorithm with suitable step-size will converge to the optimizer asymptotically fast.

We now characterize the set of optimizers. Recall that the first-order condition of optimality implies:

∂Ltot

∂Ws
= 0 =⇒

∑N

i=1
(pi,s − {αpi,t + (1− α)yi})xi = 0,
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where the last equality follows from Lemma 3. Since the vectors {xi} are linearly independent (see
Remark 1), the above equality holds if:

pi,s − {αpi,t + (1− α)yi} = 0, ∀i ∈ {1, . . . , N}. (S6)

Expanding Eq. (S6) in terms of logits zi,s leads to:

1

1 + e−zi,s
= α

1

1 + e−zi,t
+ (1− α)yi =⇒ 1

1 +
1−

zi,s
2

1+
zi,s
2

≈ α
1

1 +
1−

zi,t
2

1+
zi,t
2

+ (1− α)yi, (S7)

where the last equation follows from Padé approximation. Rearranging the terms in Eq. (S7), and
using the fact that zi,s = W⊤

s xi and zi,t = W⊤
t xi, one obtains:

(Ws − αWt)
⊤
xi = 4(1− α) (yi − 1/2) .

Since the above condition holds for every i ∈ {1, . . . , N}, the vector form of it can be written as:

X⊤(Ws − αWt) = 4(1− α)Y1/2, (S8)

which is an underdetermined system of linear equations whose least-norm solution is given by:

Ws = αWt + 4(1− α)X(X⊤X)−1Y1/2, (S9)

which completes the proof.

2.2 PROOF OF THEOREM 2

Theorem 2. Let Assumptions 1-2 hold. Let tc and tuc be two teacher classifiers with output prob-
abilities {pi,tc} and {pi,tuc

}, respectively. Also, let sc, suc depict two student classifiers trained
independently from the corresponding teacher classifiers tc and tuc through KD, with output proba-
bilities {pi,sc} and {pi,suc

}, respectively. Furthermore, assume that the teacher classifier tc is well
calibrated, then the student classifier sc is also well calibrated. Conversely, if the teacher classifier
tuc is uncalibrated, the corresponding student classifier suc mimics a similar behavior, i.e.,∑N

i=1
pi,sc =

∑N

i=1
yi, and

∑N

i=1
pi,suc

̸=
∑N

i=1
yi.

Proof. From Eq. (S6), the first-order condition for optimality for a student s trained from a teacher t
through KD reads: ∑N

i=1
pi,s = α

∑N

i=1
pi,t + (1− α)

∑N

i=1
yi,

which can be rewritten as
N∑
i=1

(pi,s − yi) = α

N∑
i=1

(pi,t − yi).

Thus for the same value of α ∈ (0, 1), if the teacher classifier sc is well calibrated, then

N∑
i=1

(pi,sc−yi)=α

(
N∑
i=1

(pi,tc−yi)

)
= 0,

where, the last equality follows from well calibration of the teacher classifier. On the other hand,∑N

i=1
(pi,suc−yi)=α

∑N

i=1
(pi,tuc−yi) ̸= 0 =⇒

∑N

i=1
pi,suc ̸=

∑N

i=1
yi,

which completes the proof.
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Figure S1: Padé vs Taylor for a simple exponential function. Note that Padé approximants offer
superior reliability compared to the extensively used Taylor approximants.

2.3 PADÉ VS TAYLOR APPROXIMANTS

Employing approximants to derive theoretical outcomes in DNNs is commonplace due to the intri-
cacies of dealing with highly nonlinear equations. We illustrate the difference between Padé and
Taylor’s approximation as follows: Padé approximants have a wider range of convergence than the
corresponding Taylor series, and can even converge where the Taylor series does not. A simple exam-
ple of Padé approximant is, ex = e0.5x

e−0.5x ≈ (1+0.5x)
(1−0.5x) = (1 + 0.5x)(1− 0.5x)−1, which for |x| < 2

can further be expanded to ex ≈ (1 + 0.5x)(1− 0.5x)−1 = (1 + 0.5x)(1 + 0.5x+ 0.25x2 + . . . ).
Thus, despite using first-order approximations for both the numerator and denominator terms, the
above Padé approximant very closely follows the original exponential function. This is in contrast
to Taylor’s expansion, and even a second-order Taylor’s expansion does not mimic the exponential
function, except for a very small interval around the origin. Please refer to Figure S1 for further
details.

This is precisely why we restrict using Padé approximants in our theoretical exploration since they
are still potentially non-divergent in regimes even when zi,t and zi,s are not vanishingly small. It
must also be remarked that exact characterization of weights of student network is a theoretically
hard problem, and such practical approximations are useful to obtain important theoretical insights.

3 RATIONALE ON THE SUPERIOR PERFORMANCE OF OUR KD(C) FRAMEWORK

The essence of Theorem 2 lies in its assertion that uncalibrated teachers can only transfer their lack
of calibration to their student counterparts, whereas calibrated teachers enable the distillation of
calibrated students. This theorem underscores the crucial significance of utilizing calibrated teachers
in the knowledge distillation process. In light of this observation, we advocate for a novel approach
to achieving accurate and calibrated models: calibrating a model through distillation from another
model that is already calibrated. To validate the efficacy of this approach, we conducted an extensive
series of experiments, showcasing the capabilities of our framework, KD(C). Our experimental results
provide compelling evidence that KD(C) yields student models characterized by two key attributes:
dynamic calibration at the sample level and semantic calibration. These findings substantiate the
effectiveness of our proposed framework in achieving both sample-level and semantic calibration in
student models.

3.1 CLASSIFICATION OF LABEL SMOOTHING

Standard/static label smoothing. Label Smoothing (LS) serves as a regularization technique de-
signed to address potential inaccuracies within datasets. It recognizes that maximizing the likelihood
directly, denoted as P (y|x), may be detrimental due to the possibility of errors in the training labels.
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To mitigate this issue, LS introduces controlled noise into the labeling process. In essence, LS
operates as follows: Given a small constant value ϵ, it considers the training label y to be correct
with a probability of (1− ϵ) and incorrect otherwise. Specifically, in the context of a softmax model
with k outputs, it replaces the traditional binary classification targets of 0 and 1 with modified targets.
These modified targets consist of ϵ

(k−1) for incorrect labels and (1− ϵ) for correct labels Szegedy
et al. (2015); Müller et al. (2019). This approach ensures that all output probabilities undergo uniform
regularization, thereby helping to combat overfitting and improve model generalization.

Adaptive Label Smoothing. In this method the level of regularization applied to training labels,
which are typically one-hot encoded, is dynamically adjusted based on the network’s output prob-
abilities for different classes Cheng & Vasconcelos (2022); Hebbalaguppe et al. (2022); Park et al.
(2023). This method is found to be more beneficial than conventional static label smoothing (LS)
proposed in Szegedy et al. (2015).

Conditional Label Smoothing. In this method the training labels go through selective modifications
based on specific criteria, such as the application of margin-based penalties Liu et al. (2022). This
approach places its emphasis on and applies regularization solely to the probabilities that exhibit
miscalibration, thereby demonstrating enhanced calibration capabilities.

3.2 VISUALIZATION OF PENULTIMATE LAYER’S ACTIVATIONS REVEAL KD(C) USING
DYNAMIC REGULARIZATION WORKS BETTER THAN STATIC REGULARIZATION

Figure S2: Visualization of penultimate layer’s activations (Teacher = ResNet56,
Student = ResNet8, Dataset = CIFAR100). We train ResNet8 using calibration tech-
niques: KD with LS (Left column) and KD with MDCA(Right Column). We follow
the same setup and procedure used in papers [Müller et al. (2019); Shen et al. (2021)] We use two se-
mantically similar classes (bowl, plate) and one semantically dissimilar class (willow_tree).
A ‘*’ in the plot for each cluster represents its cluster’s centroid. A well-calibrated teacher can
effectively capture the inter-class relationships and serve as a reliable dynamic label smoothing prior
such as MDCA Hebbalaguppe et al. (2022). Observe that the classes: bowl and plate are visually
similar and hence the penultimate visualizations of these classes should be closer than the dissimilar
class: willow_tree. As the temperature T is increased the similar classes diffuse into one in
the case of KD with LS while KD with MDCA offers better separation, retaining the semantic
similarity while being well separated from the dissimilar class.

Penultimate Visualization. Müller et al. (2019) introduced this visualization technique wherein they
projected the penultimate activations onto the hyperplane defined by the template vectors (weight
vectors) corresponding to the selected classes (three classes) for visualization.

Systematic diffusion. The concept of “systematic diffusion," introduced by Chandrasegaran et al.
(2022), was developed to address discrepancies observed in prior studies, particularly the contra-
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Figure S3: Visualization of penultimate layer’s activations (Teacher = ResNet56,
Student = ResNet8, Dataset = CIFAR100). We train ResNet8 using calibration tech-
niques: KD with LS (Left column) and KD with MDCA(Right Column). We follow
the same setup and procedure used in papers [Müller et al. (2019); Shen et al. (2021)] We use
two semantically similar classes (man, boy) and one semantically dissimilar class (crab). A ‘*’
for each cluster represents its cluster’s centroid. A well-calibrated teacher can effectively capture
the inter-class relationships and serve as a reliable dynamic label smoothing prior such as MDCA
Hebbalaguppe et al. (2022). Observe that the classes: man and boy are visually similar and hence the
penultimate visualizations of these classes should be closer than the dissimilar class: crab. As the
temperature T is increased the similar classes diffuse into one in the case of KD with LS while KD
with MDCA offers better separation, retaining the semantic similarity while being well separated
from the dissimilar class.

dictions between Shen et al. (2021) and the insights presented in LS literature Müller et al. (2019).
This concept aims to elucidate the compatibility of label smoothing with knowledge distillation. The
findings from Chandrasegaran et al. (2022)’s work indicate that when KD is conducted at elevated
temperatures from a teacher model trained with LS, it results in a systematic shift in the relationships
between classes. Specifically, for semantically similar classes, the inter-cluster distance decreases,
while for the remaining classes, it increases relatively. Importantly, this diffusion of classes is not
random; rather, it follows a systematic pattern.

In Fig. S2 and Fig. S3, we provide visual evidence of the limitations associated with LS-trained
teachers compared to MDCA teachers Hebbalaguppe et al. (2022). These Penultimate layer visualiza-
tions, inspired by the work of Shen et al. (2021), reveal that semantically similar classes experience
systematic diffusion when using LS, whereas this phenomenon is not observed with MDCA calibration.
This observation substantiates our recommendation to opt for dynamic smoothing regularization
techniques such as MDCA.

Notably, we notice a trend where distilled student models are most calibrated when the distillation
temperature (T ) is approximately 1. We hypothesize that increasing T leads to the destruction of
discriminating features, as outlined by Chandrasegaran et al. (2022), due to systematic diffusion
among highly similar classes as seen in the penultimate representations. These discriminating
features are crucial for achieving calibration by resolving confusion among similar classes. However,
as T increases further, we simultaneously amplify the relationships between somewhat related
classes Tang et al. (2020), while diminishing the relationships between very similar classes. This
nuanced understanding highlights the intricate interplay between temperature, class relationships,
and calibration, shedding light on the optimal conditions for achieving calibration in KD scenarios.

7
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Figure S4: [Study of ECE variablity in case of KD(C), specifically we consider KD with LS and
KD with MDCA and study variation of accuracy and calibration as a function of temperature]:
Comparison of Top 1% accuracy and ECE when train-time calibration method is changed from Label
Smoothing Szegedy et al. (2015) and MDCA Hebbalaguppe et al. (2022): We use ResNet56 teacher
on CIFAR100 and distill to ResNet8. Note that MDCA-based students have lower accuracy than
NLL, however, ECE is largely stable when temperature T is varied.

4 ILLUSTRATION OF THE GENERALITY OF KD(C) FRAMEWORK

Fig. S5 presents a novel framework KD(C) that leverages calibrated teachers through KD to produce
DNNs with the least calibration error. This comprehensive framework encompasses the full spectrum,
enabling models with varying capacity (smaller/larger) to distill student models with the least
calibration error and better accuracy compared to the SOTA post-hoc/train-time calibration methods.
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ResNet-110 ResNet-56 ResNet-32 ResNet-8

Cal   (73.9, 1.1)

Uncal (75.9, 9.8)

Trained from Scratch Trained from Scratch Trained from Scratch Trained from Scratch

KD Trained KD Trained KD Trained

KD-C  (74.7↑, 1.3↑)

KD-UC (76.4↑, 9.6↓)

KD-C  (71.3↑, 1.3↑)

KD-UC (72.6↑, 6.6↓)

KD-C  (71.5↑, 0.8↑)

KD-UC (71.4↑, 1.0↑)

KD-C  (69.8↑, 1.4↑)

KD-UC (70.7↑, 7.2↓)

KD-C  (61.1↑, 1.1↑)

KD-UC (61.1↑, 5.8↓)

Cal   (69.2, 3.2)

Uncal (71.7, 10.9)

Cal   (66.8, 1.6)

Uncal (67.8, 13.4)

Cal   (58.3, 1.3)

Uncal (59.8, 8.0)

Big to Small KD

Self KD

Small to Big KD

Legend

(Top1(%), ECE(%))

Improvement over Cal↑

↓ Degradation over Cal

* High values of  Top1 and low values of  ECE are better

*

Figure S5: An illustration of KD(C) framework’s generality using calibration method as MDCA.
We can distill a calibrated student from a large teacher and vice-versa yielding SOTA calibration
without any trade-offs in accuracy. “Uncal” and “Cal” mean uncalibrated and calibrated teachers
trained using NLL and a recent SOTA calibration technique Hebbalaguppe et al. (2022) respectively.
KD(UC) and KD(C) refer to students distilled using “Uncal” and “Cal” teachers respectively. Going
from a large calibrated teacher to a smaller student yields SOTA calibrated student, with an additional
boost in accuracy (E.g., compare ResNet56 “Trained from scratch” with ResNet56 “KD-trained”
student from ResNet110). Self-distillation and going from a smaller teacher to a bigger student also
have a similar effect on calibration, however, the gains in accuracy are comparable to respective
models trained from scratch. The above results are on CIFAR100.

5 ADDITIONAL RESULTS

5.1 RELIABILITY DIAGRAMS AND CONFIDENCE HISTOGRAMS

Reliability diagrams serve as effective visual aids for assessing the calibration of DNNs. They involve
partitioning the predicted probabilities generated by DNNs into a predetermined number of bins along
the x-axis. The y-axis represents the normalized count of events (e.g., class = “dog") within each bin.
A well-calibrated model will exhibit points that closely align with the main diagonal, spanning from
the bottom left to the top right of the plot. Reliability diagrams corresponding to Fig. S6 are included
to show that KD(C) variants obtain near SOTA results.

5.2 EFFECT OF HYPER-PARAMETERS LIKE T (TEMPERATURE) AND α

We investigate the influence of hyperparameters T and α on both calibrated and uncalibrated teacher
models, as visually depicted in Fig. S7 (big-to-small) and Fig. S8 (small-to-big).

(a) Big teacher, Small student: In this scenario as we increase the value of α, we witness an
intuitive rise in calibration. However, this effect is predominantly noticeable for small values of T
(depicted in the bottom-right region of Fig. S7). Generally, the calibration errors (ECE) incurred by
distilling students from a calibrated teacher tend to be markedly lower than those distilled from an
uncalibrated teacher, as evident from the bottom row in Fig. S7. (b) Small teacher, Big student:
Initially, we observe an expected trend: as α increases (signifying a higher dependence on the teacher),
accuracy experiences a decrease. This outcome arises from the process of distillation from a weaker
teacher. However, when distilling from a calibrated teacher, we discern that elevating α results in
enhanced calibration. Nevertheless, this improvement in calibration is accompanied by a trade-off
with accuracy.

Notably, we find that optimal calibration is generally achieved when T ≈ 1, regardless of the size
of the teacher model employed. This observation aligns with the findings presented in Stanton et al.
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Figure S6: Reliability Plots for top-5 KD with (Ours) techniques on WideResNet-40-1 on
CIFAR100. Teacher used: WideResNet-40-2. KD(C) framework achieves competitive calibration
results for KD with MDCA, KD with AdaFocal and KD with MixUp.

(2021), which suggest that maximizing fidelity with the teacher model yields the best transfer of
properties.

5.3 CALIBRATION PERFORMANCE UNDER DATASET DRIFT

DNNs are found to be over-confident and highly uncalibrated under dataset/domain shift Tomani
et al. (2020). We investigate the robustness of our method KD(C) by examining the degradation in
calibration under natural/non-semantic shift (images with the same label but different distribution).
We carry out this study for ResNet56 pre-trained on the CIFAR100 dataset along with various
calibration techniques and report the evaluation results on CIFAR100-C Hendrycks & Gimpel
(2016) in Fig. S9. We used ResNet56 models that were trained with ResNet110 as teacher

10
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Calibration Method Top1 (%) ECE (%) SCE (%) AECE (%)
↑ ↓ ↓ ↓

NLL 50.43 13.72 0.24 13.72
LS Szegedy et al. (2015) 51.20 3.84 0.19 3.88
CE with TS Guo et al. (2017) 50.43 13.72 0.24 13.72
MMCE Kumar et al. (2018) 50.30 11.32 0.21 11.32
MixUp Thulasidasan et al. (2019) 52.02 4.74 0.19 4.73
PSKD Kim et al. (2021) 53.66 13.27 0.21 13.27
MDCA Hebbalaguppe et al. (2022) 46.81 1.52 0.19 1.11
CPC Cheng & Vasconcelos (2022) 51.27 12.01 0.21 12.01
MbLS Liu et al. (2022) 50.11 8.87 0.20 8.87
KD(UC) 49.31 4.20 0.20 4.20

Ours (KD with MDCA) 45.79 0.85 0.21 1.17
Ours (KD with LS) 49.69 2.69 0.19 2.68
Ours (KD with MbLS) 49.33 2.86 0.20 2.89

Table T1: [Self-distillation] using MobileNetV2 feature extractor on Tiny-ImageNet dataset.
Note that the main paper reported self-distillation results using the MobileNetV2 feature extractor
on the CIFAR10 dataset. Top3 best KD(C) variants are reported. KD with MDCA variant of

KD(C) achieve competitive calibration results with SOTA.

Students from Uncalibrated Teacher Students from Calibrated Teacher

Figure S7: We study the effect of varying temperature, T and distillation weight α, on ECE and
top 1% accurracy when ResNet56 teacher model is used and ResNet8 as student on CIFAR100
dataset. Observe the optimal values of ECE and top 1% accuracy when T is set around 1. For
calibration KD with MDCA was used.

for KD(UC) and KD(C). We observe KD(UC) and KD(C) achieve the highest accuracy across all
severities, with the latter achieving close to the best ECE (LS achieves best ECE), however, KD(C)
achieves the best AUROC score in comparison to any other calibration technique. This indicates,
KD(C) is better across all metrics measuring reliability (be it calibration or refinement, while also
giving an additional boost in accuracy).
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Students from Uncalibrated Teacher Students from Calibrated Teacher

Figure S8: We study the effect of varying temperature, T and distillation weight α, on ECE and top
1% accuracy when ResNet32 teacher model is used and ResNet56 as student on CIFAR100
dataset. KD with MDCA was used for calibration.

KD(C)

KD(UC)

PSKD

LS

MDCA

NLL

KD(C)

KD(UC)

PSKD

LS

MDCA

NLL

KD(C)

KD(UC)

PSKD

LS

MDCA

NLL

Figure S9: Robustness to corruption, tested on CIFAR100-C dataset Hendrycks & Gimpel (2016)
using ResNet-56. KD(UC) and KD(C) were trained using ResNet-110 as a Teacher. Note that
KD(C) provides a good trade-off between accuracy and calibration, at the same time achieving the
highest AUROC (even though LS outperforms KD(C) by a tiny margin in terms of calibration, KD(C)
has significantly better AUROC and accuracy. AUROC indicates better inter-class separability in
classifiers thereby enhancing trustworthiness in addition to calibration benefits. KD(C) uses KD
with MDCA variant.

6 TRAINING DETAILS

In this section, we provide a detailed summary of the hyperparameters and training techniques used,
in order to ensure reproducibility. All models have been trained on 40GB Nvidia A100 GPUs.
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Dataset Teacher Teacher Top1 ECE SCE ACE Student Top1 ECE SCE ACE
Calibration (%) (%) (%) (%) (%) (%) (%) (%)

C
IF

A
R

10
0

NLL

WRN-40-2

74.10 13.42 0.32 13.42

WRN-40-1

69.60 15.18 0.37 15.18
LS 74.67 2.44 0.21 2.21 70.54 1.22 0.21 1.20
CE+TS 74.10 2.18 0.20 2.15 70.07 4.00 0.21 4.00
MMCE 73.04 5.21 0.21 5.14 72.08 2.02 0.19 1.95
MixUp 77.46 1.50 0.19 1.43 72.48 1.21 0.20 1.17
CRL 70.71 12.20 0.32 12.11 69.76 7.21 0.23 7.04
MDCA 73.74 1.36 0.19 1.26 71.07 0.98 0.20 1.10
AdaFocal 73.24 2.43 0.20 2.31 71.70 1.19 0.19 1.34
CPC 75.09 11.06 0.28 10.99 70.00 9.02 0.26 9.01
MbLS 73.54 5.53 0.22 5.50 71.44 3.70 0.22 3.41

NLL

RNXT-18x4

63.69 17.20 0.41 17.20

MNV2

66.82 5.40 0.22 5.36
LS 63.89 5.00 0.25 5.37 66.63 2.48 0.24 2.50
CE+TS 63.69 2.73 0.23 2.74 67.22 1.63 0.19 1.58
MMCE 62.40 6.53 0.24 6.56 66.24 1.47 0.19 1.64
MixUp 65.57 3.15 0.24 3.17 69.92 2.17 0.24 2.10
CRL 52.98 20.21 0.51 20.21 64.17 2.89 0.23 2.79
MDCA 63.70 2.14 0.22 2.23 67.17 1.10 0.20 1.17
AdaFocal 64.55 6.19 0.24 6.15 66.64 1.55 0.20 1.43
CPC 63.20 8.98 0.28 8.97 67.83 0.88 0.19 0.95
MbLS 64.42 12.89 0.32 12.88 67.50 3.21 0.20 3.22

C
IF

A
R

10

NLL

MNV2

89.87 3.30 0.75 3.28

DN

90.2 2.17 0.60 2.13
LS 89.60 7.10 1.78 6.75 92.65 4.27 1.23 4.13
CE+TS 89.90 0.98 0.40 0.77 93.25 0.62 0.43 0.54
MMCE 89.38 1.20 0.51 0.94 92.13 0.81 0.45 0.69
MixUp 89.57 9.42 2.07 9.41 91.19 5.20 1.33 5.01
CRL 90.31 2.92 0.72 2.81 92.24 2.58 0.68 2.54
MDCA 88.74 0.99 0.46 0.80 90.90 0.53 0.45 0.51
AdaFocal 88.98 0.79 0.44 0.86 91.68 0.54 0.34 0.61
CPC 89.26 3.47 0.79 3.44 93.14 0.74 0.43 0.85
MbLS 89.86 2.83 0.69 2.78 93.1 0.61 0.38 0.40

Table T3: Comparison of evaluation metrics of Teacher-Student pairs. Observe that calibration
transfer takes place from a calibrated teacher more or less to a student. The minor differences of
calibration values can be attributed to the capacity gap between the teacher and student. WRN:
WideResNet, RNXT: ResNeXt, DN: DenseNet. Number of parameters: WRN-40-1: 0.56M ; WRN-
40-2: 2.24M ; MNV2: 2.25M ; RNXT-18x4: 25.46M ; DN: 6.95M

The code was written using the PyTorch framework. We make use of automatic mixed precision
training in order to reduce training time. We borrow some code from the official implementation of
Hebbalaguppe et al. (2022); Mukhoti et al. (2020); Yuan et al. (2021).

For CIFAR10/100 datasets, we train all ResNets / WideResNets / ResNeXt-18x4
models using a learning rate of 0.1 for 160 epochs. The learning rate is decayed by a factor of
10 at epoch 80 and 120. We use SGD optimizer with momentum 0.9 and weight decay of 5e− 4. We
use a batch size of 128. For the larger models like ResNet-110, we train them using a learning
rate of 0.05 for 240 epochs. The learning rate is decayed by a factor of 10 at epoch 150, 180 and 210.
We use SGD optimizer with momentum 0.9 and weight decay of 5e− 4. We use a batch size of 64.
ConvNet2 model has been trained just like all other models, except for the learning rate which is set
to 0.01, without a learning rate decay scheduler.

For Tiny-ImageNet dataset, all models are trained using a maximum learning rate of 0.1 with a
cosine annealing learning rate with a warmup of 1000 steps with minimum learning rate 1e− 5. The
weight decay and momentum are 5e− 4 and 0.9 respectively. We train the models for 100 epochs
with a batch size of 128.

For training students using KD, we use the same hyper-parameters for the respective datasets.
For big-to-small KD (e.g. WideResNet-40-2→ WideResNet-40-1), we grid search T
(temperature) and α (distillation weight) in the ranges {1, 1.5, 2, 3, 4, 5, 10, 20} and {0.9, 1.0} re-
spectively. For small-to-big KD and self-distillation (e.g. MobileNetV2 ↓ DenseNet-121,
MobileNetV2 → MobileNetV2), we grid search T and α in the ranges {1, 1.5, 2, 3, 4} and
{0.1, 0.3, 0.5, 0.7, 0.9, 1.0} respectively.

For baselines, we use the recommended hyperparameters as suggested by the respective authors
Hebbalaguppe et al. (2022); Szegedy et al. (2015); Kim et al. (2021); Kumar et al. (2019); Cheng &
Vasconcelos (2022); Thulasidasan et al. (2019); Liu et al. (2022); Moon et al. (2020); Ghosh et al.
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Dataset Teacher Model Student Model Temperature Top1 (%) ECE (%) SCE (%) ACE (%)

C
IF

A
R

10
0

WRN-40-2 WRN-40-1

0.10 71.06 26.40 0.55 26.39
0.20 71.06 23.79 0.52 23.79
0.50 71.06 15.74 0.38 15.74
0.75 71.07 8.44 0.27 8.44
1.00 71.06 0.98 0.20 1.10
1.25 71.06 8.60 0.27 8.60
1.50 71.06 18.00 0.42 18.00
1.75 71.06 27.11 0.58 27.11
2.00 71.06 35.22 0.74 35.22
2.25 71.06 41.99 0.88 41.99
2.50 71.06 47.39 0.99 47.39
2.75 71.06 51.60 1.07 51.60
3.00 71.06 54.86 1.12 54.86
3.25 71.06 57.37 1.13 57.37
3.50 71.06 59.32 1.11 59.32
3.75 71.06 60.86 1.07 60.86
4.00 71.06 62.08 1.00 62.08
4.25 71.06 63.06 0.92 63.06
4.50 71.06 63.86 0.81 63.86
4.75 71.06 64.52 0.69 64.52
5.00 71.06 65.07 0.56 65.07

RNXT-18x4 MNV2

0.10 67.17 29.85 0.63 29.85
0.20 67.17 26.81 0.58 26.80
0.50 67.17 17.33 0.41 17.33
0.75 67.17 8.96 0.28 8.96
1.00 67.17 1.10 0.20 1.17
1.25 67.18 9.60 0.28 9.60
1.50 67.18 19.24 0.44 19.24
1.75 67.17 28.23 0.62 28.23
2.00 67.17 35.97 0.78 35.97
2.25 67.17 42.21 0.91 42.21
2.50 67.17 47.04 1.00 47.04
2.75 67.17 50.70 1.05 50.70
3.00 67.18 53.48 1.06 53.48
3.25 67.18 55.59 1.05 55.59
3.50 67.17 57.20 1.01 57.20
3.75 67.17 58.47 0.94 58.47
4.00 67.17 59.47 0.85 59.47
4.25 67.17 60.27 0.75 60.27
4.50 67.17 60.92 0.64 60.92
4.75 67.17 61.46 0.52 61.47
5.00 67.17 61.92 0.40 61.92

Table T4: [Effect of TS on KD(C)]:The student is calibrated by distilling from an MDCA calibrated
teacher KD with MDCA (a variant of KD(C)). The table shows that further temperature scaling
(TS) does not impact the models trained with KD with MDCA as they are calibrated to start with.
Parameters: WRN-40-1: 0.56M ; WRN-40-2: 2.24M ; MNV2: 2.25M ; RNXT-18x4: 25.46M

(2022), i.e. for LS Szegedy et al. (2015), we use smoothing of 0.1; for PSKD Kim et al. (2021) we
use α = 0.8; for MixUp Zhang et al. (2018) the mixup hyperaparameter was taken as 0.4 as it was
reported to be the best by the authors, for MDCA Hebbalaguppe et al. (2022), we grid search for
the best performing β ∈ {1, 5, 10} and γ ∈ {1, 2, 3, 4, 5}; For MMCE, we grid search for the best
performing β ∈ {1, 2, 3, 4, 5}.

We provide the metrics for various teachers trained from scratch and used throughout the paper in
Tab. T3. These teachers have been used to train various student models for KD(UC) and KD(C)
variants mentioned in the paper.

7 REPRODUCIBILITY

In the spirit of reproducible research, we intend to make the source code available post-acceptance.
To aid reviewers, the source code for our approach is attached along with the supplemental material.
Details of our setup and implementation of the baselines can be found at: Code/README.md folder.
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Figure S7: Comparative study of accuracy vs. calibration trade-offs associated with existing
calibration techniques and ours (Top-left is most preferred): The mean and one standard scatter
error bars for Top1, ECE and SCE of WideResNet-40-1 trained on CIFAR100 using SOTA
calibration techniques. WideResNet-40-2 was used as Teacher for KD(UC) and the proposed,
KD(C) variants. Note: KD(C) variants (magenta, cyan, and green) achieve the best results in terms
of ECE, ACE and SCE, along with slight boosts in Top1 (an inherent KD-property). Further, the
lower variances emphasize the reliability of KD(C) variants. All plots were generated by training
WideResNet-40-1 models through every calibration technique on 3 runs.

8 LIMITATIONS

While our work paves way to create optimal lightweight models that are both accurate and calibrated,
it is important to acknowledge three potential limitations that we plan to address in future research
- (a) principled approach to select hyperparameters, such as the temperature T , distillation weight
α, calibration regularization coefficient β, and characterization of optimal student-teacher capacity
difference for best calibration, (b) extending theoretical insights to general nonlinear networks, (c)
benchmarking KD(C) on natural language processing (NLP) tasks, particularly when the teacher
networks belong to the family of large language models (LLMs). This is particularly challenging due
to the unavailability of adequate computational resources.

9 BROADER IMPACT

Bigger DNN models aren’t necessarily better models. From a deployment standpoint, the size of
the weights affects the inference time and storage constraints on edge devices which is crucial in
applications such as augmented reality and robotics. Our proposed algorithm has the potential to
be employed in trustworthy lightweight models on the edge. In our endeavor to deploy lightweight
models that are also reliable, we delve into the realm of knowledge distillation, extending its
traditional function of transferring accuracy from teacher networks to student networks. Through
this exploration, we have discovered a novel approach to calibrating models effectively. We present,
arguably for the first time, compelling evidence that model calibration can be achieved without
sacrificing accuracy through knowledge distillation. Notably, our implementation of knowledge
distillation not only guarantees enhanced model calibration but also outperforms the accuracy obtained
through conventional training from scratch in specific cases. This innovative approach enables us to
simultaneously accomplish the dual objectives of optimal calibration and improved accuracy.

Towards this end, we provide extensive theoretical findings that extend beyond the realms of accuracy
transfer and calibration alone. We show, through optics of linear teacher and student networks,
that the optimization of student network weights through knowledge distillation enables them to
exhibit similar behavior and performance as their respective teachers (see Theorem 1 in the main
text). Subsequently, the scope of producing trustworthy models can also be extended to incorporate
characteristics, such as fairness and refinement. On a more specific note, Theorem 2 in our work
shows that there is a definite advantage of working with calibrated teachers over uncalibrated teachers,
i.e., calibrated teachers tend to produce calibrated students without compromising on accuracy. Hence
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our approach, KD(C), centers around train-time calibration of teacher models, enabling them to
generate accurate and optimally calibrated students through knowledge distillation. Significantly,
based on our empirical evaluations, it is evident that the transfer of calibration operates bidirectionally.
This means that larger calibrated models can be utilized to create smaller calibrated models, and
conversely, smaller calibrated models can also serve as a foundation for generating larger calibrated
models.

Overall, the research contributes to the advancement of model calibration, accuracy, trustworthiness,
and scalability, which can have significant implications in various fields relying on the deployment of
reliable and lightweight models.
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