
A Notation summary540

n Number of steps of the streaming linear query (SGD steps or FL
rounds)

m Total number of records (examples or users) in the database/dataset

b Minimum separation between participations; b = 1 allows participa-
tion in every step

k The maximum number of times any user might participate in training

d Dimension of per-step user contributions (e.g., model size)

xi ∈ R or Rd Sum of per-example gradients (or per-user model updates) on step i

x ∈ Rn×d Stream of inputs xi, equiv. matrix with rows xi (so xi = x[i,:])

ζ Clipping norm that limits the size of per-example contributions to
xi

π ⊆ [n] Participation pattern, the set of steps that an example participates in

Π Participation schema, set of sets of steps (set of all π) an example
could participate in

D = {x− x̃ | (x, x̃) ∈ N}, the set of deltas between neighboring
input streams x, x̃.

D Corners of D when assumed to be a polytope, D = conv(D).

(k, b)-participation participation schema Π with at most k participations, separated by
exactly b.

b-min-sep-participation Relaxation of of (k, b)-participation where participations have sepa-
ration at least b

A ∈ Rn×n Lower-triangular linear query matrix to be factorized as A = BC

M† Moore-Penrose pseudoinverse of matrix M

M> Transpose of M

M[i,j] The (i, j)th entry of matrix A

M[i,:] and M[:,j] The ith row and jth column of M (numpy-style indexing)

conv (S) Convex hull of the set S

[n] = {1, . . . , n}
‖X‖F The Frobenius norm of a matrix X

Table 1: Summary of notation

B Empirical evaluation of banded matrices541

Table 2 compares the matrix mechanisms studied under different participation patterns but normalized542

to have sensitivity sens(C) = 1 under (k=6, b=342)-participation. The sensitivity under single543

participation k = 1 is lowest as expected. With column normalization, sensitivity is also 1 under544

b≥342-min-sep-participation. We make the following observations:545

• For the MF mechanisms, column normalization hurts RMSE for (k, b)-participation (as it is546

an additional constraint), but actually improves RMSE under b-min-sep-participation.547

• We conjecture that the (k, b)-participation optimized matrices (MF without column normal-548

ization) are optimal for the prefix-sum workload6; With this in mind, we see there is at most549

6This conjecture is not trivially true, as we enforce a non-negativity or orthogonality constraint; see Choquette-
Choo et al. [15, Appendix I.3]. Hence the conjecture is that these constraints are already satisfied by the optimal
matrix for this workload.
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OPTIMAL TREEAGG [29, 34] - F 0.32 1.00 1.00 1.53 1.53

DP-SGD [1] 1 T 0.41 1.00 1.00 9.63 9.63

MF (b=128) (Ours) 128 F 0.52 1.00 1.04 1.23 1.29

MF (b=128) (Ours) 128 T 0.41 1.00 1.00 1.27 1.27

MF (b=342) (Ours) 342 F 0.52 1.00 1.04 1.04 1.08

MF (b=342) (Ours) 342 T 0.41 1.00 1.00 1.05 1.05
MF [15] - F 0.50 1.00 ≤1.15 1.00 1.15

MF [15] - T 0.41 1.00 ≤1.13 1.01 1.14

Table 2: A comparison of matrix mechanisms for n = 2052 under different participation pat-
terns. Banded matrices are near-optimal under (k, b)-participation and best under b-min-sep-
participation. Each error is computed under the indicated measure of sensitivity. Thus, the error in
column (B) can be obtained by multiplying the error in column (A) by the corresponding entry under
b≥342 sensitivity.

a small increase in RMSE for switching to the more challenging b-min-sep-participation550

schema (1.00→ 1.05) . If (as we further conjecture) the optimal matrices for prefix-sum in551

fact are k-banded, the gap is even smaller (at most 1.04 → 1.05). Hence, at least for the552

prefix-sum workload A, there is limited room for improvement in developing optimization553

procedures that directly exploit b-min-sep-participation.554

• Using fewer than b bands does degrade performance on the RMSE metric, with DP-SGD555

being the extreme case, yielding prefix sum estimates almost 10× worse than the MF556

mechanisms.557

• The results of Denisov et al. [17] imply that the binary-tree C matrix can in fact be used558

in the online setting, with the Moore-Penrose pseudo-inverse giving the optimal decoder559

for RMSE [15], corresponding to the ‘full’ estimator of Honaker [29]. We include this in560

the table as a baseline, and see that it is in general outperformed by our MF mechanisms by561

about 1.5× in RMSE.562

C Example structures of MF563

Figs. 6 and 7 show the structure of some of the key matrix factorization approaches considered in this564

work. One can immediately see the impact of the k-participation schema in the optimal matrices,565

in particular for the non-banded MULTI-EPOCH MF matrices (the two top-right matrices), where566

C contains diagonals of negative entries separated by b steps. In the bottom two rows, we see that567

requiring equal column norms (“EN-” for equal norms) has a relatively minor impact on the structure568

of the matrices.569
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Figure 6: Factorizations for n = 64 of the prefix-sum workload (A taken to be the lower-triangular
matrix of 1s). For each factorization A = BC, we show C and its inverse C−1, as the inverse is
the matrix used in noise generation. Single-epoch is the approach of Denisov et al. [17], SGD is
simply the identity matrix I (shown for completeness), and (k=8)-epoch MF and (k=4)-epoch are
the MULTI-EPOCH MF approach of Choquette-Choo et al. [15] for 8 and 4 epochs, respectively. For
our banded matrices (3rd and 4th rows), we fix 4 epochs (b = 16), and show b̂=8 and b̂=16 bands,
with column normalization (“EN-”) and without.
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Figure 7: The transpose of binary-tree encoder matrix CT , and its pseudoinverse C†T , which
corresponds to the “full” or optimal decoder of Honaker [29]. This is the matrix used in OPTIMAL
TREEAGG in Fig. 5[a].
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D Algorithms and Analysis for Sec. 3570

D.1 Algorithms571

Algorithm 2 (VECSENS): Maximum of 〈v,u〉 where u is a vector in the `∞ unit ball satisfying Πb.
Inputs: min-separation b, vector v, max participations k
Initialize F ∈ Rn×k
for m = 1, . . . , k do

for i = n, . . . , 1 do . We use the convention that F [s, t] = 0 if s, t are out-of-bounds.
F [i,m] = max

(
vi + F [i+ b,m− 1], F [i+ 1,m]

)
return

√
F [1, k]

Algorithm 3 Efficient sensitivity upper bound for b-min-sep-participation
Inputs: min-separation b, matrix X, max participations k
Initialize F ∈ Rn×k, v ∈ Rn.
for j = 1, . . . , n do

vi = VECSENS(b, |X[i,:]|, k)
return VECSENS(b,v, k)

Algorithm 4 Efficient sensitivity calculation for b-min-sep-participation, assuming X is b-banded.
Inputs: min-separation b, b-banded matrix X, max participations k.
return VECSENS(b,diag(X), k)

D.2 Analysis572

Proposition D.1. The sensitivity of C for a given participation schema Π may be expressed as:573

sensΠ (C)
2

= max
π∈Π

sup
u∈D

tr
([
PπC

>CPπ
] [

uu>
])
, (6)

where Pπ represent the axis-aligned projection onto the set of rows indexed by π; that is, Pπ[i, i] = 1574

for i ∈ π, and 0 otherwise. Assuming that D represents a set of matrices with rows bounded by `2575

norm 1, this can be upper bounded by:576

max
π∈Π

∑
i,j∈π

|X[i,j]|.

where X = C>C. This upper bound is tight when PπC
>CPπ ≥ 0∀π ∈ Π, and is independent of577

the dimension d of the rows of u.578

Proof. Recall that Π determines the rows of u which may be nonzero in the definition Eq. (2). Take579

some u ∈ D, an element of Rn×d, which therefore has nonzero rows only at some set of indices580

π ∈ Π.Note, clearly u = Pπu, P>π = Pπ , and Pπ = PπPπ .581

Therefore582

‖Cu‖2F = tr
(

[CPπu]
>
CPπu

)
= tr

(
u>P>πC

>CPπu
)

= tr
(
PπPπC

>CPπPπuu
>) = tr

([
PπC

>CPπ
] [

Pπuu
>Pπ

])
= tr

([
PπC

>CPπ
] [
uu>

])
.

(7)

This implies the statement Eq. (6) by the definition of sensitivity and neighboring in our setting.583
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Now, let Xπ := PπC
>CPπ be the matrix formed by zeroing out the rows and columns not indexed

by π from X. Assume that every u ∈ D has row norms bounded by 1. Expanding the trace in Eq. (6),
writing xij for the elements of Xπ and u[j,:] for the jth row of u, we have

tr
(
Xπuu

>) =

k∑
i=1

k∑
j=1

xij〈u[i,:],u[j,:]〉 ≤
k∑
i=1

k∑
j=1

|xij |

which yields the claimed bound. When Xπ is elementwise nonnegative, taking u[i,:] = u[j,:] for any584

unit vector shows the claimed tightness in this case.585

586

Remark. This statement can be viewed as a partial extension of [15, Theorem G.1]. It does not587

imply every case handled there, but also implies results which cannot be derived from that Theorem.588

Proof of Thm. 2. Conclusion (1) is implied by (2), noting that the conditions on C imply that Algo-589

rithm 4 will return a value at most κ
√
k′ in this setting.590

For (2), let c ∈ Rn with entries ci = ‖C[:,i]‖2 for i ∈ {0, . . . , n− 1}. We have591

sens1
Π(C) = max

π∈Πb

‖Cu(π)‖ = max
π∈Πb

‖
∑
i∈π

C[:,i]‖ = max
π∈Πb

√∑
i∈π

ci (8)

where u(π) ∈ {0, 1}n is given by u(π)i = 1 if i ∈ π and 0 otherwise. The last equality follows from592

the orthogonality condition on sufficiently separated columns of C trivially implied by bandedness.593

It is straightforward to verify the dynamic program of Algorithm 2 constructs a feasible π which594

attains the maximum.595

Proof of Thm. 3. Via Prop. D.1, the result follows from showing that Algorithm 3 outputs a value at596

least as large as
∑

(i,j)∈π |Xij | for any π ∈ Πb. So let π̂ be an element of Πb. Note that VECSENS is597

monotonically increasing in values of the vector v if v is nonnegative, and therefore Algorithm 3 is598

monotonically increasing in absolute values of X. Therefore we will have our conclusion (3) if we599

can show that, for Xπ̂ the matrix formed by zeroing out all rows and columns of X not indexed by600

π̂, Algorithm 3 returns the value
∑

(i,j)∈π |Xij |. Yet this is straightforward by the characterization601

of VECSENS as an oracle for computing the maximum of 〈v,u〉, where u is a vector in the `∞ unit602

ball.603

E Additional Analysis for Sec. 5604

Recall that we use b instead of b̂ in this appendix since our sampling scheme enforces (k, b)-605

participation. Throughout this section, we slightly abuse notation by letting i (mod b) = b instead606

of 0 if i/b is integer.607

E.1 Algorithms for Sampling608

Algorithm 5 Sampling scheme for banded DP-MF

Inputs: Dataset D, sampling distribution S over (2[m̌])k, noise standard deviation σ.
D1, . . . , Db ← arbitrary partition of D such that ∀j : |Dj | = m̌.
Let Dj = {dj,1, dj,2, . . . , dj,m̌} for each j.
for j = 1, 2, . . . , b do

Sample k sets to index Dj as (Sj , Sb+j , . . . , S(k−1)b+j) ∼ S, with Sj ⊆ [m̌].
for i = 1, 2, . . . , n do

Let j = i (mod b); compute xi by querying {dj,` : ` ∈ Si}.
Let x = [x1, . . . ,xn]> ∈ Rn×d, release Cx + z with each entry of z[i,j] ∼ N (0, σ2).
. If C is lower-triangular, results can also be released in streaming fashion
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Algorithm 6 Sequence of queries that bounds privacy of Algorithm 5

Inputs: Dataset D̃ = {d1, d2, . . . , dm̌}, sampling distribution S over (2[m̌])k.
Sample (S1, S2, . . . , Sk) ∼ S.
for i = 1, 2, . . . , k do

D̃i ← {dj : j ∈ Si}.
Perform (adaptively chosen) sensitivity ∆ query on D̃i with noise N (0, σ2).

E.2 Proof for Thm. 4609

Proof. Consider two datasets D,D′ that differ by an example contained in the partition subset Dj .610

We argue about the privacy of Cx + z. For simplicity we assume j is such that (k − 1)b+ j ≤ n;611

elements in Dj such that j does not satisfy this condition can potentially participate k − 1 times612

instead of k, and in turn the privacy guarantee we can prove for these elements can only be stronger.613

Since C is b-banded, we can partition the rows of C into k + 1 subsets614

Rj , Rb+j , R2b+j . . . R(k−1)b+j , R∅,

where Rj (resp. Rb+j , R2b+j . . . R(k−1)b+j) denotes the set of rows in C for which the jth entry is615

non-zero, and R∅ = [n] \ (Rj ∪Rb+j ∪ . . .), i.e., R∅ are the rows not included in any of these sets,616

i.e., rows of C where entries j, b+ j, . . . are all zero. The fact that C is lower-triangular and b-banded617

ensures that these subsets do not overlap, i.e., this is a valid partition as can be observed in Fig. 3.618

Let CR denote C restricted to the set of rows in R. From the perspective of an adversary dis-619

tinguishing D from D′, each row of (Cx + z)R∅ = CR∅x + zR∅ has a distribution indepen-620

dent of whether D or D′ was used. So it suffices to give privacy guarantees for outputting only621

(Cx + z)Rj , (Cx + z)Rb+j
, . . . , (Cx + z)R(k−1)b+j

.622

We can decompose rows Rj of Cx + z as follows:623

(Cx + z)Rj = CRjx + zRj = CRjxj + CRjx−j + zRj . (9)

Where xj denotes x with all rows except j zeroed out, and x−j denotes x− xj , i.e., x with row j624

zeroed out. By the b-banded property of C, CRjx−j has 0 sensitivity to the examples in D \Dj .625

Then, by Eq. (9), for i ∈ Rj , we observe that the ith row of (Cx + z)Rj
corresponds to an (adaptive)626

query made with `2-sensitivity e>i Cej to the examples used in round j, i.e., those given by Dj627

and Sj , and noise N(0, σ2)d. So (Cx + z)Rj corresponds to a sequence of adaptive queries on the628

examples used in round j, and answering this sequence of queries satisfies any standard privacy629

guarantee satisfied by answering a single (scalar, adaptively chosen) query with sensitivity ‖Cej‖2630

to the example chosen in round j and noise N(0, σ2) by Claim D.1 in [17].631

The same logic applies to each of (Cx + z)Rb+j
, . . . , (Cx + z)R(k−1)b+j

. Putting it all together632

and taking a max over the sensitivity of the individual queries, releasing Cx + z satisfies any633

standard privacy guarantee satisfied by answering k adaptively chosen queries, with sensitivity634

maxi∈[n] ‖Cei‖2 to the examples used in rounds j, b + j, . . . , (k − 1)b + j respectively. This is635

exactly Algorithm 6 with the specified choice of ∆,S.636

E.3 Corollaries of Thm. 4637

We give here several corollaries of Thm. 4 that are of interest.638

Equivalence to DP-SGD: Note that when b = 1, the partition contains a single subset, i.e., is the639

the entire dataset. In particular, in this setting Thm. 4 recovers the privacy guarantees of amplified640

DP-SGD under any amplification scheme, e.g. including the ones discussed below.641

Amplification via sampling: Take the distribution over 2[m̌] given by including each element of642

[m̌] independently with probability q, and let S be the product of this distribution with itself k times.643

This is equivalent to the following: in round i, we include each element of Di (mod b) independently644

with probability q. In particular, within each Dj , we are just using sampling with replacement to645
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choose which elements to include in each round. From this we get the following corollary, which646

allows us to reduce to a setting whose privacy guarantees are well-understood:647

Corollary E.1. Suppose the examples participating in round i of matrix factorization are chosen by648

including each element of Di (mod b) independently with probability q. Then the matrix factorization649

mechanism satisfies any standard privacy guarantee satisfied by k adaptive scalar queries with650

sensitivity maxi∈[n] ‖Cei‖2 and noise N(0, σ2), with the ith query run on a batch given by sampling651

each element of a m̌-element database with probability q.652

We next make this explicit in terms of the dp_accounting Python library [18]. Given n,m, b653

and a target per-round batch size B, we could write a dp_accounting.DpEvent capturing the654

privacy guarantees of the matrix factorization mechanism as follows:655

gaussian_event = dp_accounting.GaussianDpEvent(noise_multiplier)656

q = B / math.floor(n / b)657

sampled_event = dp_accounting.PoissonSampledDpEvent(658

q, gaussian_event659

)660

composed_event = dp_accounting.SelfComposedDpEvent(661

sampled_event, math.ceil(m / b)662

)663

Example E.1. To give an example of the amplification guarantee, for simplicity assume n/b,m/b664

are integer. If all column norms in C are 1, each row of x has sensitivity 1, and each entry of z has665

standard deviation σ, then outputting Cx + z satisfies (α, αn
2σ2b )-RDP.666

Using Theorem 11 of [43] and Cor. E.1, for appropriate choice of α and q, this improves to (α, q2 ·667
2αn
σ2b )-RDP with amplification by sampling. In particular, if we have a target per-round batch size B,668

then we should choose q = Bb
m , and if this choice of q satisfies the conditions in [43] plugging this in669

gives (α, 2αB2bn
σ2m2 )-RDP. Notice that b = 1 recovers the privacy guarantees of DP-SGD with Poisson670

sampling, and this privacy guarantee weakens as b increases.671

Amplification via shuffling: Fix a per-round batch size B. Then, suppose we shuffle the list of672

examples, and cyclically iterate over batches of size B in this list as the sets of examples to use in673

each round of matrix factorization. That is, we shuffle D into an ordered list d1, d2, . . ., and in round674

i use examples d(i−1)B+1 (mod m), d(i−1)B+2 (mod m), . . . , diB (mod m).675

For simplicity let’s consider the case where m/(Bb) is integer. In particular, this means in this676

shuffling scheme, each example appears once every m/B rounds, and for each of these rounds i, i677

(mod b) is the same. Then this shuffling scheme is equivalent to the following: First, rather than678

choose an arbitrary partition to apply Thm. 4, we choose a uniformly random partition into b subsets679

of size m/b. Then, we choose S to be the distribution giving by shuffling [m/b] and then cyclically680

iterating over the shuffled list in batches of size B. Given this equivalence, we get the following:681

Corollary E.2. Suppose the examples in matrix factorization are chosen by shuffling D and then682

iterating over batches of size B. If n/(Bb) is integer, then the matrix factorization mechanism683

satisfies any standard privacy guarantee satisfied by k adaptive scalar queries with sensitivity684

maxi∈[n] ‖Cei‖2 and noise N(0, σ2), with the examples in each query given by shuffling a dataset685

of size m/b and cyclically iterating over this list in batches of size B.686

Example E.2. Consider the simplified case wherem = n, we choose a random permutation π, and in687

round i query example dπ(i). In this case, if all the column norms of C are 1, x’s rows have sensitivity688

1, and z’s entries have standard deviation σ = O
(√

ln(1/δ)

ε

)
, we get that Cx+z satisfies (ε, δ)-DP.689

With e.g., the amplification for shuffled (ε, δ)-DP mechanisms given by Theorem 5.1 of [6] and Cor. E.2,690

if ε is a constant, we instead get that Cx+ z satisfies
(
ε · O

(√
b log(1/δ)

n

)
, δ · O

(
n ln(1/δ)

b

))
-DP.691
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E.4 Additional Figures692

Figure 8: A visualization of how we can decompose a banded matrix mechanism into independent
queries on Dj (as in Algorithm 6) under our sampling scheme.

F Additional RMSE Experiment Details693

In this section, we provide more discussion and supplementary experiments surrounding the RMSE694

experiments in Fig. 4. Table 3 shows the optimal number of bands for each (ε, k) pair considered in695

the RMSE experiments. It shows the general trend that as ε decreases, or k increases, the optimal696

number of bands decreases.697

ε/k 1 2 4 8 16 32 64 128 256 512 1024

0.03125 2 2 1 1 1 1 1 1 1 1 1
0.0625 4 2 1 1 1 1 1 1 1 1 1
0.125 8 4 2 1 1 1 1 1 1 1 1
0.25 8 4 4 2 1 1 1 1 1 1 1
0.5 16 8 4 4 2 1 1 1 1 1 1
1.0 32 16 8 4 2 2 1 1 1 1 1
2.0 64 32 16 8 4 2 2 1 1 1 1
4.0 128 64 32 16 8 4 2 2 1 1 1
8.0 1024 512 256 32 16 8 4 2 2 1 1
16.0 1024 512 256 128 64 32 8 4 4 2 1

Table 3: Optimal number of bands for each (ε, k) pair, when n = 1024 and δ = 10−6.

G Additional CIFAR-10 Experiment Details698

G.1 Setup and Tuning699

We tune all jobs on a learning rate grid of coefficients in [1, 2, 5] on powers in [-2, 3]. We find that no700

momentum works best for DP-SGD and momentum=0.95 works best for MF-DP-FTRL mechanisms701

on average in tuning; though initial tuning found that tuning momentum as well could lead to slightly702
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better results at some ε budgets, we found that a more refined grid of learning rates nearly always led703

to a fixed momentum being optimal, and so we fix this parameter. We also found that a learning rate704

cooldown to 0.05× the initial learning rate over the last 500 steps of training improved all runs and705

so we fix this parameter. All models trained for 20 epochs on CIFAR10 with a batch size of 500. We706

repeat each setting 12 times and show 95% bootstrapped confidence intervals.707

G.2 Additional Figures708
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Figure 9: BANDMF is at least as good as DP-SGD across all ε, and often significantly better.
BANDMF is better than the prior MF-DP-FTRL from Choquette-Choo et al. [15] up to ε ≈ 5. We
compare the ratio of the total error (see Sec. 4) of BANDMF with either mechanism. Lower values
indicate that BANDMF is better. The yellow markers indicate the best BANDMF mechanism that
was better for that ε budget if one existed. Note that we only optimize the Band MF over b̂ ∈ [0, n/k]
which leads to a regime around ε > 5 where the it performs worse than the Multi-epoch MF
of Choquette-Choo et al. [15]; b̂ = n is equivalent to this approach modulo the sensitivity definition
which we exclude to emphasize the regime we improve on.
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Figure 10: Our banded matrices consistently perform at least as well as the best prior method
in each range of ε. Around ε ≈ 1, we observe significant utility benefits from the banded mechanism
around 2 − 3 percentage points over DP-SGD. Note that we only optimize the Band MF over
b̂ ∈ [0, n/k] which leads to a regime around ε > 5 where the it performs worse than the Multi-epoch
MF of Choquette-Choo et al. [15]; b̂ = n is equivalent to this approach modulo the sensitivity
definition which we exclude to emphasize the regime we improve on. Empirical setup is in App. G.

H Additional StackOverflow Next-Word-Prediction Experiment Details709

We follow the experimental setup for StackOverflow NWP from Denisov et al. [17] and Choquette-710

Choo et al. [15]. Except for SINGLE-EPOCH MF (which uses B = 167 clients/round for 1 epoch),711
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all privacy guarantees and accuracy results are for 6 epochs of training using B = 1000 clients/round712

for 2052 rounds (also 1 epoch). The matrices used in these experiments are included in Table 2.713

For computational efficiency in estimating model accuracy at a given privacy guarantee, we actually714

compute in simulation updates from only 100 clients/round, and scale the noise multiplier by a715

corresponding factor ( 100
1000 for 6 epoch experiments, 100

167 for SINGLE-EPOCH MF). This approach716

has been used previously [34, 41], and we independently verified it has a negligible impact on the717

estimates of accuracy figures we report. Tables 4 and 5 include the unscaled noise multipliers σ for718

our experiments.719

Optimizer and learning-rate tuning For all SO NWP experiments we use the FedSGDM opti-720

mizer [47]. This optimization approach first takes multiple local SGD steps (with learning rate 1.0721

in our experiments) on the training data of each user in the batch (cohort) before clipping to ζ = 1,722

summing, and passing the result xi into the DP mechanism which adds noise [C†z][i,:] ∈ Rd on each723

iteration i. The resulting privatized sum is then divided by the batch size B and passed to the “server”724

(post-aggregation) optimizer, in our case SGDM with momentum parameter β = 0.95 and learning725

rate ηs. We find tuning ηs depending on the noise level is critical. By using the computationally726

efficient approach mentioned above, we were able to conduct rigorous tuning over a learning rate727

grid of 1.7i for powers i in {−9, . . . , 4}, estimating good initial guesses based on prior work. Table 6728

gives the full set of results, and Fig. 12 shows convergence as a function of the number of rounds729

(iters).730

Learning rate warmup and cooldown Denisov et al. [17] found learning rate cooldown was731

effective, and Choquette-Choo et al. [15] found that zeroing-out client updates with large `∞ norms732

was critical to stability in early training. We find that additionally introduing a learning-rate warmup733

schedule reduces the need for this zeroing-out (though we still enable it), and generally decreases the734

variance in training results. Hence, all of our experiments (for all algorithms) using a linear learning735

rate warmup from 0.05ηs to 1.0ηs over the first 15% of rounds (309), and a linear decay from 1.0ηs736

to 0.05ηs over the last 25% of rounds (513).737

Using RMSE to tune select optimal server learning rates Fig. 11 plots the server learning rates738

ηs from Table 6 on the y-axis (with the optimal rates shown as larger symbols, and sub-optimal rates739

as small symbols, versus two different measures of the error for the DP mechanism on the x-axis:740

The left plot gives uses the effective prefix-sum RMSE (the objective we use for optimizing (banded)741

matrices C),742

(Mechanism error)× noise-multiplier/(clients-per-round) =
√
L(SC−1,C)/n× σ/B, (10)

where S is the prefix-sum workload (lower-triangular matrix of ones) and σ and B are as given in743

Table 4. The right plot uses the RMSE in error of individual gradients, computed by replacing the L744

term in the above with L(IC−1,C) where we take the workload A to be the identity matrix I rather745

than the prefix sum matrix S.746

We see a strong linear correlation between the prefix-sum RMSE and optimal learning rate in the left747

plot; this does not hold for individual gradient errors (right plot). Based on this, we use the following748

linear regression to choose learning rates for the non-federated (amplified) SO NWP experiments749

(still rounding to the nearest 1.7i for consistency):750

log(ηs) = −0.95 · log(Le)− 4.64

This allowed us to estimate learning rates for the amplified experiments with a high degree of751

accuracy; Table 7 gives the final selected learning rates.752
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Figure 11: Correlation between optimal server learning rates ηs and the effective RMSE during
training, see Eq. (10).
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Figure 12: Convergence plots for all cross-device federated learning simulation experiments.
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Mechanism clients per
round B

ε noise
mult. σ

server
lr ηs

Eval Accuracy
(%, Smoothed)

Test Accuracy
(%)

DP-SGD 1000 1 4.22468 0.0244 16.82 16.69

Single-epoch MF 167 1 4.22468 0.1197 20.29 20.44

Optimal TreeAgg 1000 1 4.22468 0.2035 21.15 21.25

Multi-epoch MF 1000 1 4.76079 0.2035 21.96 21.92

Band MF (Ours) 1000 1 4.22468 0.2035 22.12 22.05

DP-SGD 1000 2 2.23048 0.0414 18.70 18.42

Single-epoch MF 167 2 2.23048 0.2035 21.66 21.70

Optimal TreeAgg 1000 2 2.23048 0.3460 22.52 22.59

Multi-epoch MF 1000 2 2.51352 0.3460 23.15 23.04

Band MF (Ours) 1000 2 2.23048 0.5882 23.31 23.19

DP-SGD 1000 4 1.19352 0.0704 20.07 19.81

Single-epoch MF 167 4 1.19352 0.3460 22.94 22.90

Optimal TreeAgg 1000 4 1.19352 0.5882 23.66 23.62

Multi-epoch MF 1000 4 1.34498 0.5882 24.19 24.02

Band MF (Ours) 1000 4 1.19352 1.0000 24.35 24.16

DP-SGD 1000 8 0.65294 0.1197 21.26 21.08

Single-epoch MF 167 8 0.65293 0.5882 24.03 23.88

Optimal TreeAgg 1000 8 0.65294 1.0000 24.54 24.45

Multi-epoch MF 1000 8 0.73579 1.0000 24.95 -

Band MF (Ours) 1000 8 0.65294 1.0000 25.06 24.88

DP-SGD 1000 16 0.36861 0.3460 22.51 22.26

Single-epoch MF 167 16 0.36861 1.0000 24.80 24.62

Optimal TreeAgg 1000 16 0.36861 1.7000 25.15 25.14

Multi-epoch MF 1000 16 0.41539 1.7000 25.50 25.33

Band MF (Ours) 1000 16 0.36861 1.7000 25.59 25.41

Table 4: Parameters and metrics for Fig. 5[a]. The noise multipliers are calibrated to achieve
the given ε guarantees at δ=10−6 under b=342-min-separation. The matrices are scaled to have
sensitivity 1 under (k=6, b=342), see Table 2, and so a larger noise multiplier σ is necessary for the
MULTI-EPOCH MF matrices. Test-set accuracy for MULTI-EPOCH MF at ε = 8 was unavailable.
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Mechanism clients per
round B

ε noise
mult. σ

server
lr ηs

Eval Accuracy
(%, Smoothed)

Test Accuracy
(%)

DP-SGD, w/ ampl. 1000 1 0.37313 0.3460 22.50 22.22

Multi-epoch MF, no ampl. 1000 1 4.22468 0.2035 22.11 22.10

(Band) MF, w/ ampl. (Ours) 1000 1 0.79118 0.3460 23.11 22.83

DP-SGD, w/ ampl. 1000 2 0.30481 0.3460 22.89 22.62

Multi-epoch MF, no ampl. 1000 2 2.23048 0.3460 23.36 23.24

(Band) MF, w/ ampl. (Ours) 1000 2 0.64708 0.5882 24.01 23.71

DP-SGD, w/ ampl. 1000 4 0.25136 0.3460 23.27 22.94

Multi-epoch MF, no ampl. 1000 4 1.19352 0.5882 24.36 24.16

(Band) MF, w/ ampl. (Ours) 1000 4 0.52224 1.0000 24.67 24.42

DP-SGD, w/ ampl. 1000 8 0.20567 0.5882 23.59 23.30

Multi-epoch MF, no ampl. 1000 8 0.65294 1.0000 25.08 24.88

(Band) MF, w/ ampl. (Ours) 1000 8 0.43490 1.7000 25.26 24.99

DP-SGD, w/ ampl. 1000 16 0.16876 0.5882 23.96 23.61

Multi-epoch MF, no ampl. 1000 16 0.36861 1.7000 25.59 25.43

(Band) MF, w/ ampl. (Ours) 1000 16 0.36861 1.7000 25.59 25.43

Table 5: Parameters and metrics for Fig. 1(b). The noise multipliers are calibrated to achieve the
given ε guarantees at δ=10−6 under (k=6, b=342)-participation, assuming Poisson sampling for
DP-SGD and BANDMF.
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Eval Accuracy (%, Smoothed)

server lr ηs 0.0084 0.0143 0.0244 0.0414 0.0704 0.1197 0.2035 0.3460 0.5882 1.0000 1.7000 2.8900 4.9130 8.3521

ε Mechanism

1.0

DP-SGD 14.31 15.98 16.82 16.53 15.46 4.67 - - - - - - - -

Single-epoch MF - - - - 20.16 20.29 19.68 - - - - - - -

Optimal TreeAgg - - - - - 21.08 21.15 20.34 - - - - - -

Multi-epoch MF - - - - - 21.56 21.96 21.60 - - - - - -

Band MF, b=342 (Ours) - - - - - 21.70 22.12 21.96 - - - - - -

2.0

DP-SGD - 16.20 17.88 18.70 18.22 17.75 15.52 - - - - - - -

Single-epoch MF - - - - - 21.46 21.66 21.26 - - - - - -

Optimal TreeAgg - - - - - - 22.40 22.52 21.87 - - - - -

Multi-epoch MF - - - - - - 22.80 23.15 22.96 - - - - -

Band MF, b=342 (Ours) - - - - - - - 23.27 23.31 22.57 - - - -

4.0

DP-SGD - - 18.08 19.45 20.07 19.97 19.48 18.08 - - - - - -

Single-epoch MF - - - - - - 22.66 22.94 22.60 - - - - -

Optimal TreeAgg - - - - - - - 23.57 23.66 23.27 - - - -

Multi-epoch MF - - - - - - - 23.87 24.19 24.01 - - - -

Band MF, b=342 (Ours) - - - - - - - - 24.26 24.35 23.74 - - -

8.0

DP-SGD - - - - 20.61 21.26 21.24 20.89 20.00 - - - - -

Single-epoch MF - - - - - - - 23.73 24.03 23.71 - - - -

Optimal TreeAgg - - - - - - - - 24.52 24.54 24.15 - - -

Multi-epoch MF - - - - - - - - 24.72 24.95 24.77 24.17 - -

Band MF, b=342 (Ours) - - - - - - - - 24.76 25.06 24.92 - - -

16.0

DP-SGD - - - - - - 22.39 22.51 22.17 - - - - -

Single-epoch MF - - - - - - - - 24.66 24.80 24.50 - - -

Optimal TreeAgg - - - - - - - - 24.89 25.15 25.15 - - -

Multi-epoch MF - - - - - - - - - 25.38 25.50 25.34 - -

Band MF, b=342 (Ours) - - - - - - - - - 25.38 25.59 25.47 - -

inf DP-SGD - - - - - - - - - - 25.96 26.23 26.24 8.03

Table 6: Federated learning rate tuning for StackOverflow NWP. Validation accuracy smoothed over the final 400 rounds of training, used to select the best
server learning rates for the comparison of test-set accuracy presented in Fig. 5[a].
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Eval Accuracy (%, Smoothed)
server lr ηs 0.1197 0.2035 0.3460 0.5882 1.0000 1.7000 2.8900 4.9130

ε Mechanism

1.0
DP-SGD - 22.39 22.50 22.03 - - - -
Multi-epoch MF 21.75 22.11 21.95 - - - - -
Band MF, b=9 (Ours) - 22.83 23.11 23.03 - - - -

2.0
DP-SGD - 22.70 22.89 22.66 - - - -
Multi-epoch MF - 22.89 23.36 23.26 - - - -
Band MF, b=18 (Ours) - - 23.80 24.01 23.77 - - -

4.0
DP-SGD - 22.88 23.27 23.20 - - - -
Multi-epoch MF - - 23.96 24.36 24.22 23.71 - -
Band MF, b=32 (Ours) - - - 24.52 24.67 24.43 - -

8.0
DP-SGD - - 23.48 23.59 23.28 - - -
Multi-epoch MF - - - 24.79 25.08 24.98 24.55 -
Band MF, b=64 (Ours) - - - - 25.15 25.26 24.79 -

16.0

DP-SGD - - 23.85 23.96 23.72 - - -
Multi-epoch MF - - - - 25.42 25.59 25.50 24.92
Band MF, b=342 (Ours) - - - - 25.37 25.55 25.45 24.90
Band MF, b=64 (Ours) - - - - 25.38 25.54 25.40 -

Table 7: Centralized learning rate tuning for StackOverflow NWP.. Validation accuracy smoothed over the final 400 rounds of training, used to select the best
server learning rates for the comparison of test-set accuracy presented in Fig. 1(b). DP-SGD and BANDMF use amplification.
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Algorithm 7 Banded Matrix Multiplication

Input: b̂-Banded lower triangular matrix
C ∈ Rn×n, vector x ∈ Rn
Output: Cx
for i = 1, . . . , n do

yi =
∑i
j=i−b̂+1 C[i,j]xj

return y

Algorithm 8 Banded Inverse Multiplication

Input: b̂-Banded lower triangular matrix
C ∈ Rn×n, vector y ∈ Rn
Output: C−1y
for i = 1, . . . , n do

xi = (yi −
∑i−1

j=i−b̂+1
C[i,j]xj)/C[i,i]

return x

Figure 13: Algorithms for matrix-vector and inverse matrix-vector multiplication by a banded matrix.
To simplify the presentation, we use the convention that out-of-bounds indexing into a matrix or
vector returns 0.

I Efficient Multiplication and Inverse of Banded Matrices753

Algorithms 7 and 8 (Fig. 13) give algorithms for lower triangular banded matrix-vector multiplication754

and inverse banded matrix-vector multiplication. Note that both algorithms are compatible with the755

streaming nature of gradients. As soon as the next input xi is received, the algorithm can immediately756

output yi. Both algorithms require storing a state of size b̂, and run in O(n · b̂) time. While the757

algorithms are described with respect to computing matrix-vector products, they can also be used to758

compute matrix-matrix products where the right-hand-side is a n× d matrix by multiplying by each759

column independently. In this setting, these algorithms require O(b̂ · d) space and O(n · b̂ · d) time.760

Both algorithms have appeared previously in the literature on Monte Carlo methods, which have a761

similar problem at their core to that of noise generation for MF; see e.g. [51, Section 2].762

J Application to a Real-World Cross-Device FL System763

We train a one-layer LSTM language model of∼2.4 million parameters in a practical cross-device FL764

system . The model is used for predicting the next word of Spanish in a mobile virtual keyboard. We765

pretrain the model on public multilingual C4 dataset [46, 53], and then fine-tune with on-device user766

data in FL. In a common practical FL system, clients have to satisfy criteria like being charged, idle767

and connected to unmetered network to participate in a round [10, 26, 30, 44], hence only a subset768

of clients can be reached and there is a strong diurnal pattern of client participation [54, 57]. It is769

very challenging to hold a fixed set of clients for evaluation, or develop random sampling for privacy770

amplification.771

J.1 Reporting privacy guarantees772

We follow the guidelines outlined in [45, Sec. 5.3] to report privacy guarantees.773

1. DP setting. This a central DP guarantee where the service provider is trusted to correctly774

implement the mechanism.775

2. Instantiating the DP Definition776

(a) Data accesses covered: The DP guarantee applies to all well-behaved clients 7 in a777

single training run. We do not account for hyperparameter tuning in our guarantees.778

Public multilingual C4 data [53] is used for pre-training.779

(b) Final mechanism output: Only the final model checkpoint is released for use in pro-780

duction, however the mechanism’s output is technically the full sequence of privatized781

gradients, and so the guarantee also applies at this level, and hense all intermedi-782

ate models are protected (including those sent to devices participating in federated783

learning).784

(c) Unit of privacy. Device-level DP is considered, i.e., the notion of adjacency is with785

respect to arbitrary training datasets on each client device, and the device might have786

an arbitrarily large local dataset containing arbitrary training examples. For user’s with787

7Clients that faithfully follow the algorithm including participation limits. Due to the design of the algorithm,
a mis-behaved client does not adversely affect the DP guarantee of any well-behaved clients.
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a single device, this corresponds directly to user-level DP; for devices shared with788

multiple users, this provides a stronger notion of DP than user-level; for a user with789

multiple devices that happen to both participate in training the model, the notion is790

weaker, but group privacy can be used to obtain a user-level guarantee.791

(d) Adjacency definition for “neigbouring” datasets: We use the zero-out definition [34].792

This is a a special form of the add-or-remove definition, where neighboring data sets793

differ by addition/removal of a single client. In the absence of a client at any training794

step, we assume that the client’s model update gets replaced with the all zeros vector.795

This assumption enforces a subtle modification to the traditional definition of the796

add/remove notion of DP which allows neighboring data sets to have the same number797

of records.798

3. Privacy accounting details799

(a) Type of accounting used: Both ρ−zCDP [11] accounting, and PLD accounting [18] for800

(ε, δ)−DP are used.801

(b) Accounting assumptions : Each client only participates limited times during the training,802

and there are at least a min-separation of b rounds between two consecutive participation803

of a client. This is enforced by a timer on clients in the cross-device FL system.804

(c) The formal DP statement: The privacy guarantees are ρ=0.52-zCDP and805

(ε=6.69, δ=10−10)-DP for ONLINE TREEAGG, while BANDMF achieves ρ=0.24-806

zCDP and (ε=4.35, δ=10−10)-DP.807

(d) Transparency and verifiability: We are going to open source our code based on Tensor-808

Flow Federated and Tensorflow Privacy. Key portions of the cross-device FL system809

will also open sourced.810
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