
A Supplemental Material490

This supplementary material is organized as follows: Section A.1 provides more details about491

Semantics-Layout Variation AutoEncoder; Section A.2 introduces the Stable Diffusion and its492

attention mechanism; Section A.3 describes the implementation of the Multi-Layer Sampler in detail;493

Section A.4 covers more ablation studies; Section A.5 presents more qualitative results, including494

comparison visualization and graph manipulation; Section A.6 discusses the limitations of this study.495

Section A.7 delves into the broader societal impacts of this work. The core script is zipped and496

attached to the supplementary material.497

A.1 Semantics-Layout Variation AutoEncoder498

Recall that we apply the triplet-GCN-based CVAE architecture in Section 3.1. Each triplet-GCN layer499

in the encoder and decoder takes the node and edge embeddings. Specifically, the GCNl mentioned500

in the paper uses two cascading MLPs {mlp1,mlp2} to deal with node and edge embeddings:501
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where l denotes the layer index of encoder or decoder, NE denotes the neighbor index set for each502

node, avg denotes the average pooling operation, ϕ and ψ denote intermediate features. Hence, mlp1503

conducts message passing among interconnected nodes and updates the edge features, while mlp2504

aggregates features from all neighboring nodes and updates its features. For graph union encoder,505

we let (ϕ0i , ϕ
0
ij , ϕ

0
j ) = (Oi, Eij ,Oj). The last embedding ϕLi is parameterized to the Gaussian506

distribution Z ∼ N (µ, σ), where µ, σ ∈ RDz output by two additional MLPs and Dz denotes the507

dimensional of latent space for node embedding.508

A.2 Diffusion with Compositional Masked Attention509

Stable Diffusion [20] is one of most popular text-to-image model. As described in Section 2.1,510

Stable Diffusion uses a U-Net ϵθ composed of convolution and transformer to estimate noise. The511

transformer includes two attention mechanisms, namely Cross-Attention, and Self-Attention.512

Cross-Attention Layer. Text prompts are mapped to sequence embeddings by CLIP text encoder513

and integrated into UNet via Cross-Attention to guide the de-noising trajectory:514

Attention(Qvisual,Ktext, Vtext) = softmax(
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T
text√

d
) · Vtext (14)

where Qvisual denotes the Query from the visual token of the UNet, Ktext and Vtext denotes Key515

and Value from text embeddings, all of which are projected by linear layers, d denotes the dimension516

of Qvisual, Ktext, and Vtext.517

Self-Attention Layer. Self-Attention captures self-related information within visual tokens:518

Attention(Qvisual,Kvisual, Vvisual) = softmax(
QvisualK

T
visual√

d
) · Vvisual (15)

where Qvisual, Kvisual, and Vvisual separately represent the Query, Key, and Value in self-attention519

layers, which are projected by linear layers. The self-attention mechanism isolates the information520

flow between specific tokens by multiplying a mask M to the QvisualK
T
visual. Since M is applied521

before softmax, the value of the isolated position is set to negative infinity −inf .522

Compositional Masked Attention Layer. Based on the attention mask M that depends on layout B,523

the Compositional Masked Attention can be expressed as:524

Attention(QCMA,KCMA, VCMA) = softmax(
QCMAK

T
CMA ⊙M√
d

) · VCMA (16)

where QCMA, KCMA, and VCMA individually represent the Query, Key, and Value derived from525

V ⊗ Ĉ, achieved through linear layer projections. We insert our proposed Compositional Masked526

Attention (CMA) between self-attention and cross-attention layers.527

A.3 Multi-Layer Sampler528

Layered Scene Representation. We decompose a controllable scene containing No objects into No529

layers. Different from SceneDiffusion [25], our approach involves each layer incorporating not only530
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separate latent code zi and spatial layout bi, but also integrating the interactive semantics si produced531

by the SL-VAE. Here we convert the layout parameter bi to two parts: (1) a fixed object-centric binary532

mask mi ∈ {0, 1}c×w×h to solely show the geometric property of the object, and (2) a two-element533

offset pi = {µi, υi} to solely indicate its spatial locations, with µi and υi defining the horizontal and534

vertical movement range. We sample Gaussian noise individually for the initial latent code of each535

layer, i.e., Z = {z(T )
i ∼ N (0, 1)}No

i=1. Then we utilize the layout-converted non-overlapping masks536

{li}No
i=1 to derive the aggregated latent code z from various layers:537

z(t) =

No∑
i=1

li ⊙ shift(z
(t)
i , pi) (17)

li = shift(mi, pi)

Ni−1∏
j=1

(1− shift(mj , pj)), (18)

where ⊙ denotes element-wise multiplication, and shift(x, p) denotes spatially shifting the values538

of x in the direction of p.539

Multi-Layer Generation We introduce the Multi-Layer Sampler that matches our diverse layout540

and semantic simulation. In contrast to SceneDiffusion [25] which scrambles the reference layouts541

randomly, we sample additional Nl layouts and semantics by the proposed SL-VAE. On the one hand,542

the SL-VAE ensures that the generated scene layout is reasonable. On the other hand, we take full543

advantage of the paired object-level (layouts, semantics). Specifically, the denoising scheme consists544

of four steps:545

(a) Sampling additional Nl layouts {Bn = {bn,i}No
i=1}

Nl
n=1 and semantics {Sn = {sn,i}No

i=1}
Nl
n=1 by546

the proposed SL-VAE. Note that Nl fixed seeds exist for the same scene graph. According to the547

description of the layered representation, we convert the layout to get offset {Pn = {pn,i}No
i=1}

Nl
n=1.548

(b) Aggregating latent codes from various layers in each scene:549

z(t)
n =

No∑
i=1

li ⊙ shift(z
(t)
i , pn,i) (19)

(c) Estimating the noise ϵ̂
(t)
n from each aggregated latent code z

(t)
n and gets denoised aggregated550
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1 , . . . , ẑ
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}:551
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where mn,i is the non-overlapping mask converted by the layout bn,i.552

(d) Updating the latent code of each layer by computing the weighted average of the Nl aggregated553

latent code554

z
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where shift(x,−p) denotes spatially shifting the values of x in the reverse direction of p.555

A.4 More Ablation Studies556

Table 6: Ablation study for graph construction.

Graph Type IS ↑ FID ↓
No CLIP Emb. 20.6 23.9
No Box Emb. 21.7 22.5
No Learnable Emb. 21.9 22.2

Graph Construction. We conduct ablation for557

graph construction in Table 6. We investigate the558

impact of different graph components (i.e., CLIP,559

Box, and Learnable Embeddings) by turning off560

each independently. We observe that each compo-561

nent improves the performance, all of which are562

crucial components presented in our DisCo.563

Computing Consumption. We demonstrate the impact of our proposed CMA on the computational564

complexity of the U-Net within the Stable Diffusion, as presented in Table 7. We use Floating Point565
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Table 7: Ablation study for computing consumption.

Method FLOPs (G) Params (M) Time (ms)
SD-v1.5 [20] 677.5 859.4 37.9
DisCo 724.1 875.8 108.3

Operations (FLOPs), the number of parameters (Params), and inference time (Time) to measure566

computing consumption. The FLOPS and Time metrics are conducted by processing the tensor with a567

resolution of 2× 4× 64× 64 on an NVIDIA A100 GPU. Our proposed DisCo significantly improves568

the controllability of the Stable Diffusion with a tolerable increase in computational cost.569

A.5 More Visualization Results570

Figure 8 showcases more generalizable generation results under consistency for graph manipulation571

(i.e., node addition and attribute control) in SG2I task. In Figure 9, 10, and 11, we present more572

visualization comparisons with the methods conditioned by text, layout, or scene graph, which573

demonstrates the superiority of our DisCo in terms of generation rationality and controllability.574

A.6 Limitations575

Figure 7: Qualitative limitations
on attribute leakage of overlapping.

The proposed CMA injects object-level information into the576

diffusion model via masks from the layout, effectively miti-577

gating semantic ambiguity and limiting attribute leakage. In578

scenarios involving object overlap, the proposed CMA inhibits579

direct interaction between the visual token and the object em-580

bedding along with its attributes. Nonetheless, the attribute581

information from the visual token inadvertently leaks into the582

overlapping region in subsequent layers. Hence, there may be583

attribute leakage among the objects, as shown in Figure 7.584

A.7 Broader Impacts585

We demonstrate the superiority of our DisCo over existing generation methods based on text, layout,586

and scene graphs, suggesting a potential beneficial influence on the realms of art creation and data587

synthesis. Nevertheless, there remains a concern regarding the possibility of generating malicious588

images or infringing copyright.589
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Graph Manipulation (Node Addition and Attribute Control)

Figure 8: Generalizable Generation Samples under Consistency for Graph Manipulation.
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A teddy bear sit on the ground; another two teddy bear besides the table

The street by the building; the car next to the truck

Two cow on top of grass; one near the tree; sky above the grass; a building near the tree

Tree zebras standing on the grass; two near the tree; one in front of the house

SD-XL DALL·E 3 Imagen 2 Ours

A building in front of a mountain; a tree in front of the building

Figure 9: Qualitative Comparison with Text-to-Image methods.
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GLIGEN LayoutDiffusion MIGC OursGLIGEN LayoutDiffusion MIGC Ours

A child with the hair on the grass

A boy riding a dog on the grass

A boy holding a apple on the grass

A man looking at the cloud in sky

A man walking on the sidewalk

Figure 10: Qualitative Comparison with Layout-to-Image methods.
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Scene Graph SGDiff R3CD Ours

Scene Graph SG2Im SceneGenie Ours

Figure 11: Qualitative Comparison with Scene-Graph-to-Image methods.
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