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Abstract

The k-means++ algorithm of Arthur and Vassilvitskii (SODA 2007) is often the1

practitioners’ choice algorithm for optimizing the popular k-means clustering ob-2

jective and is known to give an O(log k)-approximation in expectation. To obtain3

higher quality solutions, Lattanzi and Sohler (ICML 2019) proposed augmenting4

k-means++ with O(k log log k) local search steps obtained through the k-means++5

sampling distribution to yield a c-approximation to the k-means clustering problem,6

where c is a large absolute constant. Here we generalize and extend their local7

search algorithm by considering larger and more sophisticated local search neigh-8

borhoods hence allowing to swap multiple centers at the same time. Our algorithm9

achieves a 9 + ε approximation ratio, which is the best possible for local search.10

Importantly we show that our approach yields substantial practical improvements,11

we show significant quality improvements over the approach of Lattanzi and Sohler12

(ICML 2019) on several datasets.13

1 Introduction14

Clustering is a central problem in unsupervised learning. In clustering one is interested in grouping15

together “similar” object and separate “dissimilar” one. Thanks to its popularity many notions of16

clustering have been proposed overtime. In this paper, we focus on metric clustering and on one of17

the most studied problem in the area: the Euclidean k-means problem.18

In the Euclidean k-means problem one is given in input a set of points P in Rd. The goal of19

the problem is to find a set of k centers so that the sum of the square distances to the centers20

is minimized. More formally, we are interested in finding a set C of k points in Rd such that21 ∑
p∈P minc∈C ||p− c||2, where with ||p− c|| we denote the Euclidean distance between p and c.22

The k-means problem has a long history, in statistics and operations research. For Euclidean k-23

means with running time polynomial in both n, k and d, a 5.912-approximation was recently shown24

in Cohen-Addad et al. [2022a], improving upon Kanungo et al. [2004], Ahmadian et al. [2019],25

Grandoni et al. [2022] by leveraging the properties of the Euclidean metric. In terms of lower bounds,26

the first to show that the high-dimensional k-means problems were APX-hard were Guruswami and27

Indyk [2003], and later Awasthi et al. [2015] showed that the APX-hardness holds even if the centers28

can be placed arbitrarily in Rd. The inapproximability bound was later slightly improved by Lee et al.29

[2017] until the recent best known bounds of Cohen-Addad and Karthik C. S. [2019], Cohen-Addad30

et al. [2022d] that showed that it is NP-hard to achieve a better than 1.06-approximation and hard to31

approximate it better than 1.36 assuming a stronger conjecture. From a more practical point of view,32

Arthur and Vassilvitskii [2009] showed that the widely-used popular heuristic of Lloyd Lloyd [1957]33

can lead to solutions with arbitrarily bad approximation guarantees, but can be improved by a simple34

seeding strategy, called k-means++, so as to guarantee that the output is within an O(log k) factor of35

the optimum Arthur and Vassilvitskii [2007].36
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Thanks to its simplicity k-means++ is widely adopted in practice. In an effort to improve its37

performances Lattanzi and Sohler [2019], Choo et al. [2020] combine k-means++ and local search to38

efficiently obtain a constant approximation algorithm with good practical performance. These two39

studies show that one can use the k-means++ distribution in combination with a local search algorithm40

to get the best of both worlds: a practical algorithm with constant approximation guarantees.41

However, the constant obtained in Lattanzi and Sohler [2019], Choo et al. [2020] is very large (several42

thousands in theory) and the question as whether one could obtain a practical algorithm that would43

efficiently match the 9+ ε-approximation obtained by the nO(d/ϵ) algorithm of Kanungo et al. [2004]44

has remained open. Bridging the gap between the theoretical approach of Kanungo et al. [2004] and45

k-means++ has thus been a long standing goal.46

Our Contributions. We make significant progress on the above line of work.47

• We adapt techniques from the analysis of Kanungo et al. [2004] to obtain a tighter analysis48

of the algorithm in Lattanzi and Sohler [2019]. In particular in Corollary 4, we show that49

their algorithm achieves an approximation of ratio of ≈ 26.64.50

• We extend this approach to multi-swaps, where we allow swapping more than one center at51

each iteration of local search, improving significantly the approximation to ≈ 10.48 in time52

O(nd · poly(k)).53

• Leveraging ideas from Cohen-Addad et al. [2021], we design a better local search swap that54

improves the approximation further to 9 + ε (see Theorem 12). This new algorithm matches55

the 9+ε-approximation achieved by the local search algorithm in Kanungo et al. [2004], but56

it is significantly more efficient. Notice that 9 is the best approximation achievable through57

local search algorithms, as proved in Kanungo et al. [2004].58

• We provide experiments where we compare against k-means++ and Lattanzi and Sohler59

[2019]. We study a variant of our algorithm that performs very competitively with our60

theoretically sound algorithm. The variant is very efficient and still outperforms previous61

work in terms of solution quality, even after the standard postprocessing using Lloyd.62

Additional Related Work. We start by reviewing the approach of Kanungo et al. [2004] and a63

possible adaptation to our setting. The bound of 9 + ε on the approximation guarantee shown by64

Kanungo et al. [2004] is for the following algorithm: Given a set S of k centers, if there is a set65

S+ of at most 2/ε points in Rd together with a set S− of |S+| points in S such that S \ S− ∪ S+66

achieves a better k-means cost than S, then set S := S \ S− ∪ S+ and repeat until convergence.67

The main drawback of the algorithm is that it asks whether there exists a set S+ of points in Rd that68

could be swapped with elements of S to improve the cost. Identifying such a set, even of constant69

size, is already non-trivial. The best way of doing so is through the following path: First compute70

a coreset using the state-of-the-art coreset construction of Cohen-Addad et al. [2022b] and apply71

the dimensionality reduction of Becchetti et al. [2019], Makarychev et al. [2019], hence obtaining72

a set of Õ(k/ε4) points in dimension O(log k/ε2). Then, compute grids using the discretization73

framework of Matousek [2000] to identify a set of ε−O(d) ∼ kO(ε−2 log(1/ε)) grid points that contains74

nearly-optimum centers. Now, run the local search algorithm where the sets S+ are chosen from75

the grid points by brute-force enumeration over all possible subsets of grid points of size at most,76

say s. The running time of the whole algorithm with swaps of magnitude s, i.e.: |S+| ≤ s, hence77

becomes kO(s·ε−2 log(1/ε)) for an approximation of (1 + ε)(9 + 2/s), meaning a dependency in k78

of kO(ε−3 log(1/ε)) to achieve a 9 + ε-approximation. Our results improves upon this approach in79

two ways: (1) it improves over the above theoretical bound and (2) does so through an efficient and80

implementable, i.e.: practical, algorithm.81

Recently, Grunau et al. [2023] looked at how much applying a greedy rule on top of the k-means++82

heuristic improves its performance. The heuristic is that at each step, the algorithm samples ℓ centers83

and only keeps the one that gives the best improvement in cost. Interestingly the authors prove that84

from a theoretical standpoint this heuristic does not improve the quality of the output. Local search85

algorithms for k-median and k-means have also been studied by Gupta and Tangwongsan [2008] who86

drastically simplified the analysis of Arya et al. [2004]. Cohen-Addad and Schwiegelshohn [2017]87

demonstrated the power of local search for stable instances. Friggstad et al. [2019], Cohen-Addad88

et al. [2019] showed that local search yields a PTAS for Euclidean inputs of bounded dimension (and89

doubling metrics) and minor-free metrics. Cohen-Addad [2018] showed how to speed up the local90

search algorithm using kd-trees (i.e.: for low dimensional inputs).91
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For fixed k, there are several known approximation schemes, typically using small coresets Becchetti92

et al. [2019], Feldman and Langberg [2011], Kumar et al. [2010]. The state-of-the-art approaches93

are due to Bhattacharya et al. [2020], Jaiswal et al. [2014]. The best known coreset construction94

remains Cohen-Addad et al. [2022c,b].95

If the constraint on the number of output centers is relaxed, then we talk about bicriteria approxima-96

tions and k-means has been largely studied Bandyapadhyay and Varadarajan [2016], Charikar and97

Guha [2005], Cohen-Addad and Mathieu [2015], Korupolu et al. [2000], Makarychev et al. [2016].98

2 Preliminaries99

Notation. We denote with P ⊆ Rd the set of input points and let n = |P |. Given a point set Q ⊆ P100

we use µ(Q) to denote the mean of points in Q. Given a point p ∈ P and a set of centers A we denote101

with A[p] the closest center in A to p (ties are broken arbitrarily). We denote with C the set of centers102

currently found by our algorithm and with O∗ an optimal set of centers. Therefore, given p ∈ P ,103

we denote with C[p] and O∗[p] its closest ALG-center and OPT-center respectively. We denote by104

cost(Q,A) the cost of points in Q ⊆ P w.r.t. the centers in A, namely105

cost(Q,A) =
∑
q∈Q

min
c∈A
||q − c||2 .

We use ALG and OPT as a shorthand for cost(P, C) and cost(P,O∗) respectively. When we sample106

points proportionally to their current cost (namely, sample q with probability cost(q, C) /cost(P, C))107

we call this the D2 distribution. When using Oε(·) and Ωε(·) we mean that ε is considered constant.108

We use Õ(f) to hide polylogarithmic factors in f . The following lemma is folklore.109

Lemma 1. Given a point set Q ⊆ P and a point p ∈ P we have110

cost(Q, p) = cost(Q,µ(Q)) + |Q| · ||p− µ(Q)||2 .

Let O∗
i be an optimal cluster, we define the radius of O∗

i as ρi such that ρ2i · |O∗
i | = cost(O∗

i , oi),111

where oi = µ(O∗
i ). We define the δ-core of the optimal cluster O∗

i as the set of points p ∈ O∗
i112

that lie in a ball of radius (1 + δ)ρi centered in oi. In symbols, core(O∗
i ) = P ∩B(oi, (1 + δ)ρi).113

Throughout the paper, δ is always a small constant fixed upfront, hence we omit it.114

Lemma 2. Let O∗
i be an optimal cluster and sample q ∈ O∗

i according to the D2-distribution115

restricted to O∗
i . If cost(O∗

i , C) > (2 + 3δ) · cost(O∗
i , oi) then Pr[q ∈ core(O∗

i )] = Ωδ(1).116

Proof. Define α := cost(O∗
i , C) /cost(O∗

i , oi) > 2 + 3δ. Thanks to Lemma 1, for each c ∈ C we117

have ||c− oi||2 ≥ (α− 1)ρ2i . Therefore, for each y ∈ core(O∗
i ) and every c ∈ C we have118

cost(y, c) = ||y − c||2 ≥
(√

α− 1− (1 + δ)
)2 · ρ2i = Ωδ(αρ

2
i ).

Moreover, by a Markov’s inequality argument we have |O∗
i \ core(O∗

i )| ≤ 1
1+δ · |O

∗
i | and thus119

|core(O∗
i )| ≥ Ωδ(|O∗

i |). Combining everything we get120

cost(core(O∗
i ) , C) ≥ |core(O∗

i ) | · min
c∈C

y∈core(O∗
i )

cost(y, c) = Ωδ(|O∗
i |) · Ωδ(αρ

2
i )

and |O∗
i | · αρ2i = cost(O∗

i , C), hence cost(core(O∗
i ) , C) = Ωδ(cost(O∗

i , C)).121

3 Multi-Swap k-Means++122

The single-swap local search (SSLS) k-means++ algorithm in Lattanzi and Sohler [2019] works123

as follows. First, k centers are sampled using k-means++ (namely, they are sampled one by one124

according to the D2 distribution, updated for every new center). Then, O(k log log k) steps of local125

search follow. In each local search step a point q ∈ P is D2-sampled, then let c be the center among126

the current centers C such that cost(P, (C \ {c}) ∪ {q}) is minimum. If cost(P, (C \ {c}) ∪ {q}) <127

cost(P, C) then we swap c and q, or more formally we set C ← (C \ {c}) ∪ {q}.128

We extend the SSLS so that we allow to swap multiple centers simultaneously and call this algorithm129

multi-swap local search (MSLS) k-means++. Swapping multiple centers at the same time achieves a130

lower approximation ratio, in exchange for a higher time complexity. In this section, we present and131

analyse the p-swap local search (LS) algorithm for a generic number of p centers swapped at each132

step. For any constant δ > 0, we obtain an approximation ratio ALG/OPT = η2 + δ where133

η2 − (2 + 2/p)η − (4 + 2/p) = 0. (1)
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The Algorithm. First, we initialize our set of centers using k-means++. Then, we run O(ndkp−1)134

local search steps, where a local search step works as follows. We D2-sample a set In = {q1 . . . qp}135

of points from P (without updating costs). Then, we iterate over all possible sets Out = {c1 . . . cp}136

of p distinct elements in C ∪ In and select the set Out such that performing the swap (In,Out)137

maximally improves the cost1. If this choice of Out improves the cost, then we perform the swap138

(In,Out), else we do not perform any swap for this step.139

Theorem 3. For any δ > 0, the p-swap local search algorithm above runs in Õ(ndk2p) time and,140

with constant probability, finds an (η2 + δ)-approximation of k-means, where η satisfies Equation (1).141

Notice that the SSLS algorithm of Lattanzi and Sohler [2019] is exactly the p-swap LS algorithm142

above for p = 1.143

Corollary 4. The single-swap local search in Lattanzi and Sohler [2019], Choo et al. [2020] achieves144

an approximation ratio < 26.64.145

Corollary 5. For p = O(1) large enough, multi-swap local search achieves an approximation ratio146

< 10.48 in time O(nd · poly(k)).147

3.1 Analysis of Multi-Swap k-means++148

In this section we prove Theorem 3. Our main stepping stone is the following lemma.149

Lemma 6. Let ALG denote the cost at some point in the execution of MSLS. As long as ALG/OPT >150

η2 + δ, a local search step improves the cost by a factor 1− Ω(1/k) with probability Ω(1/kp−1).151

Proof of Theorem 3. First, we show that O(kp log log k) local steps suffice to obtain the desired152

approximation ratio, with constant probability. Notice that a local search step can only improve the153

cost function, so it is sufficient to show that the approximation ratio is achieved at some point in time.154

We initialize our centers using k-means++, which gives a O(log k)-approximation in expectation.155

Thus, using Markov’s inequality the approximation guarantee O(log k) holds with arbitrary high156

constant probability. We say that a local-search step is successful if it improves the cost by a factor of157

at least 1−Ω(1/k). Thanks to Lemma 6, we know that unless the algorithm has already achieved the158

desired approximation ratio then a local-search step is successful with probability Ω(1/kp−1). To go159

from O(log k) to η2+δ we need O(k log log k) successful local search steps. Standard concentration160

bounds on the value of a Negative Binomial random variable show that, with high probability, the161

number of trial to obtain O(k log log k) successful local-search steps is O(kp log log k). Therefore,162

after O(kp log log k) local-search steps we obtain an approximation ratio of η2 + δ.163

To prove the running time bound it is sufficient to show that a local search step can be performed in164

time Õ(ndkp−1). This is possible if we maintain, for each point x ∈ P , a dynamic sorted dictionary2165

storing the pairs (cost(x, ci) , ci) for each ci ∈ C. Then we can combine the exhaustive search166

over all possible size-p subsets of C ∪ In and the computation of the new cost function using time167

O(ndkp−1 log k). To do so, we iterate over all possible size-(p− 1) subsets Z of C ∪ In and update168

all costs as if these centers were removed, then for each point x ∈ P we compute how much its cost169

increases if we remove its closest center cx in (C ∪ In) \ Z and charge that amount to cx. In the end,170

we consider Out = Z ∪ {c} where c is the cheapest-to-remove center found in this way.171

The rest of this section is devoted to proving Lemma 6. For convenience, we prove that Lemma 6172

holds whenever ALG/OPT > η2 +O(δ), which is wlog by rescaling δ. Recall that we now focus on173

a given step of the algorithm, and when we say current cost, current centers and current clusters we174

refer to the state of these objects at the end of the last local-search step before the current one. Let175

O∗
1 . . . O

∗
k be an optimal clustering of P and let O∗ = {oi = µ(O∗

i ) | for i = 1 . . . k} be the set of176

optimal centers of these clusters. We denote with C1 . . . Ck the current set of clusters at that stage of177

the local search and with C = {c1 . . . ck} the set of their respective current centers.178

We say that ci captures oj if ci is the closest current center to oj , namely ci = C[oj ]. We say that179

ci is busy if it captures more than p optimal centers, and we say it is lonely if it captures no optimal180

center. Let Õ = {oi | cost(O∗
i , C) > δ · ALG/k} and C̃ = C \ {C[oi] | oi ∈ O∗ \ Õ}. For ease of181

notation, we simply assume that Õ = {o1 . . . oh} and C̃ = {c1 . . . ch′}. Notice that h′ > h.182

1If In ∩Out ̸= ∅ then we are actually performing the swap (In \Out,Out \ In) of size < p.
2Also known as dynamic predecessor search data structure.
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Weighted ideal multi-swaps. Given In ⊆ P and Out ⊆ C̃ of the same size we say that the183

swap (In,Out) is an ideal swap if In ⊆ Õ. We now build a set of weighted ideal multi-swaps184

S. First, suppose wlog that {c1 . . . ct} is the set of current centers in C̃ that are neither lonely nor185

busy. Let L be the set of lonely centers in C̃. For each i = 1 . . . t, we do the following. Let In186

be the set of optimal centers in Õ captured by ci. Choose a set Li of |In| − 1 centers from L, set187

L ← L \ Li and define Out = Li ∪ {ci}. Assign weight 1 to (In,Out) and add it to S. For each188

busy center ci ∈ {ct+1 . . . ch′} let A be the set of optimal centers in Õ captured by ci, pick a set Li189

of |A| − 1 lonely current centers from L (a counting argument shows that this is always possible).190

Set L ← L \ Li. For each oj ∈ A and cℓ ∈ Li assign weight 1/(|A| − 1) to (oj , cℓ) and add it to S .191

Observation 7. The process above generates a set of weighted ideal multi-swaps such that: (i) Every192

swap has size at most p; (ii) The combined weights of swaps involving an optimal center oi is 1; (iii)193

The combined weights of swaps involving a current center ci is at most 1 + 1/p.194

Consider an ideal swap (In,Out). Let O∗
In =

⋃
oi∈In O

∗
i and COut =

⋃
cj∈Out Cj . Define the195

reassignment cost Reassign(In,Out) as the increase in cost of reassigning points in COut \O∗
In to196

centers in C \Out. Namely,197

Reassign(In,Out) = cost(COut \O∗
In, C \Out)− cost(COut \O∗

In, C) .

We take the increase in cost of the following reassignment as an upper bound to the reassignment198

cost. For each p ∈ COut \ O∗
In we consider its closest optimal center O∗[p] and reassign p to the199

current center that is closest to O∗[p], namely C[O∗[p]]. In formulas, we have200

Reassign(In,Out) ≤
∑

p∈COut\O∗
In

cost(p, C[O∗[p]])− cost(p, C[p])

≤
∑

p∈COut

cost(p, C[O∗[p]])− cost(p, C[p]) .

Indeed, by the way we defined our ideal swaps we have C[O∗[p]] ̸∈ Out for each p ̸∈ O∗
In and this201

reassignment is valid. Notice that the right hand side in the equation above does not depend on In.202

Lemma 8.
∑

p∈P cost(p, C[O∗[p]]) ≤ 2OPT + ALG + 2
√

ALG
√

OPT.203

Proof. Deferred to the supplementary material.204

Lemma 9. The combined weighted reassignment costs of all ideal multi-swaps in S is at most205

(2 + 2/p) · (OPT +
√

ALG
√

OPT).206

Proof. Denote by w(In,Out) the weight associated with the swap (In,Out).207 ∑
(In,Out)∈S

w(In,Out) · Reassign(In,Out) ≤

∑
(In,Out)∈S

w(In,Out) ·
∑

p∈COut

cost(p, C[O∗[p]])− cost(p, C[p]) ≤

(1 + 1/p) ·
∑
cj∈C

∑
p∈Cj

cost(p, C[O∗[p]])− cost(p, C[p]) ≤

(1 + 1/p) ·

∑
p∈P

cost(p, C[O∗[p]])− ALG

 .

The second inequality uses (iii) from Observation 7. Applying Lemma 8 completes the proof.208

Recall the notions of radius and core of an optimal cluster introduced in Section 2. We say that a209

swap (In,Out) is strongly improving if cost(P, (C ∪ In) \Out) ≤ (1 − δ/k) · cost(P, C). Let210

In = {o1 . . . os} ⊆ Õ and Out = {c1 . . . cs} ⊆ C̃ we say that an ideal swap (In,Out) is good211

if for every q1 ∈ core(o1) . . . qs ∈ core(os) the swap (Q, Out) is strongly improving, where212

Q = {q1 . . . qs}. We call an ideal swap bad otherwise. We say that an optimal center oi ∈ Õ is good213

if that’s the case for at least one of the ideal swaps it belongs to. Recalling how we constructed our214

5



set of weighted ideal swaps S, if oi belongs to a s-swap (In,Out) ∈ S for s > 1 then it is good if215

and only if (In,Out) is good; else oi might belong to up to p− 1 single swaps and then any of them216

being good would suffice. Denote with G the union of cores of good optimal centers in Õ.217

Lemma 10. If an ideal swap (In,Out) is bad, then we have218

cost(O∗
In, C) ≤ (2 + δ)cost(O∗

In,O∗) + Reassign(In,Out) + δALG/k. (2)

Proof. Let In = {o1 . . . os}, Q = {q1 . . . qs} such that q1 ∈ core(o1) . . . qs ∈ core(os).219

Then, by Lemma 1 cost(O∗
In,Q) ≤ (2 + δ)cost(O∗

In,O∗). Moreover, Reassign(In,Out) =220

cost(P \O∗
In, C \Out) − cost(P \O∗

In, C) because points in P \ COut are not affected by the221

swap. Therefore, cost(P, (C ∪ Q) \Out) ≤ (2 + δ)cost(O∗
In,O∗) + Reassign(In,Out) +222

cost(P \O∗
In, C). Suppose by contradiction that Equation (4) does not hold, then223

cost(P, C)− cost(P, (C ∪ Q) \Out) =

cost(P \O∗
In, C) + cost(O∗

In, C)− cost(P, (C ∪ Q) \Out) ≥ δALG/k.

Hence, (Q, Out) is strongly improving and this holds for any choice of Q, contradiction.224

Lemma 11. If ALG/OPT > η2 + δ then cost(G, C) = Ωδ(cost(P, C)). Thus, if we D2-sample q225

we have P [q ∈ G] = Ωδ(1).226

Proof. First, we observe that the combined current cost of all optimal clusters in O∗ \ Õ is at most227

k · δALG/k = δALG. Now, we prove that the combined current cost of all O∗
i such that oi is bad is228

≤ (1− 2δ)ALG. Suppose, by contradiction, that it is not the case, then we have:229

(1− 2δ)ALG <
∑

Bad oi∈Õ

cost(O∗
i , C) ≤

∑
Bad (In,Out)∈S

w(In,Out) · cost(O∗
In, C) ≤∑

Bad (In,Out)

w(In,Out) · ((2 + δ)cost(O∗
In,O∗) + Reassign(In,Out) + δALG/k) ≤

(2 + δ)OPT + (2 + 2/p)OPT + (2 + 2/p)
√

ALG
√

OPT + δALG.

The second and last inequalities make use of Observation 7. The third inequality uses Lemma 10.230

Setting η2 = ALG/OPT we obtain the inequality η2 − (2 + 2/p±O(δ))η− (4 + 2/p±O(δ)) ≤ 0.231

Hence, we obtain a contradiction in the previous argument as long as η2 − (2 + 2/p ± O(δ))η −232

(4 + 2/p±O(δ)) > 0. A contradiction there implies that at least an δ-fraction of the current cost is233

due to points in
⋃

Good oi∈Õ O∗
i . We combine this with Lemma 2 and conclude that the total current234

cost of G =
⋃

Good oi∈Õ core(O∗
i ) is Ωδ(cost(P, C)).235

Finally, we prove Lemma 6. Whenever q1 ∈ G we have that q1 ∈ core(o1) for some good o1.236

Then, for some s ≤ p we can complete o1 with o2 . . . os such that In = {o1 . . . os} belongs237

to a good swap. Concretely, there exists Out ⊆ C such that (In,Out) is a good swap. Since238

In ⊂ Õ we have cost(O∗
i , C) > δOPT/k for all oi ∈ In, which combined with Lemma 2 gives239

that for i = 2 . . . s P [qi ∈ core(oi)] ≥ Ωδ(1/k). Hence, we have P [qi ∈ core(oi) for i =240

1 . . . s] ≥ Ωδ,p(1/k
p−1). Whenever we sample q1 . . . qs from core(o1) . . . core(os), we have that241

(Q, Out) is strongly improving. Notice, however, that (Q, Out) is a s-swap and we may have s < p.242

Nevertheless, whenever we sample q1 . . . qs followed by any sequence qs+1 . . . qp it is enough to243

choose Out′ = Out ∪ {qs+1 . . . qp} to obtain that ({q1 . . . qp}, Out′) is an improving p-swap.244

4 A Faster (9 + ε)-Approximation Local Search Algorithm245

The MSLS algorithm from Section 3 achieves an approximation ratio of η2 + ε, where η2 − (2 +246

2/p)η − (4 + 2/p) = 0 and ε > 0 is an arbitrary small constant. For large p we have η ≈ 10.48. On247

the other hand, employing p simultaneous swaps, Kanungo et al. [2004] achieve an approximation248

factor of ξ2 + ε where ξ2 − (2 + 2/p)ξ − (3 + 2/p) = 0. If we set p ≈ 1/ε this yields a (9 +O(ε))-249

approximation. In the same paper, they prove that 9-approximation is indeed the best possible for250

p-swap local search, if p is constant (see Theorem 3.1 in Kanungo et al. [2004]). They showed that 9251

is the right locality gap for local search, but they matched it with a very slow algorithm. To achieve a252

(9 + ε)-approximation, they discretize the space reducing to O(nε−d) candidate centers and perform253

an exhaustive search over all size-(1/ε) subsets of candidates at every step. As we saw in the related254
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work section, it is possible to combine techniques from coreset and dimensionality reduction to255

reduce the number of points to n′ = k · poly(ε−1) and the number of dimensions to d′ = log k · ε−2.256

This reduces the complexity of Kanungo et al. [2004] to kO(ε−3 log ε−1).257

In this section, we leverage techniques from Cohen-Addad et al. [2021] to achieve a (9 + ε)-258

approximation faster 3. In particular, we obtain the following.259

Theorem 12. Given a set of n points in Rd with aspect ratio ∆, there exists an algorithm that260

computes a 9 + ε-approximation to k-means in time ndkO(ε−2) logO(ε−1)(∆) · 2−poly(ε−1).261

Notice that, besides being asymptotically slower, the pipeline obtained combining known techniques262

is highly impractical and thus it did not make for an experimental test-bed. Moreover, it is not obvious263

how to simplify such an ensemble of complex techniques to obtain a practical algorithm.264

Limitations of MSLS. The barrier we need to overcome in order to match the bound in Kanungo265

et al. [2004] is that, while we only consider points in P as candidate centers, the discretization266

they employ considers also points in Rd \ P . In the analysis of MSLS we show that we sample267

each point qi from core(O∗
i ) or equivalently that qi ∈ B(oi, (1 + ϵ)ρi), where ρi is such that O∗

i268

would have the same cost w.r.t. oi if all its points were moved on a sphere of radius ρi centered269

in oi. This allows us to use a Markov’s inequality kind of argument and conclude that there must270

be Ωϵ(|O∗
i |) points in O∗

i ∩ B(oi, (1 + ϵ)ρi). However, we have no guarantee that there is any271

point at all in O∗
i ∩ B(oi, (1 − ε)ρi). Indeed, all points in O∗

i might lie on ∂B(oi, ρi). The fact272

that potentially all our candidate centers q are at distance at least ρi from oi yields (by Lemma 1)273

cost(O∗
i , q) ≥ 2cost(O∗

i , oi), which causes the zero-degree term in ξ2−(2+2/p)ξ−(3+2/p) = 0274

from Kanungo et al. [2004] to become a 4 in our analysis.275

Improving MSLS by taking averages. First, we notice that, in order to achieve (9 + ε)-276

approximation we need to set p = Θ(1/ε). The main hurdle to achieve a (9 + ε)-approximation is277

that we need to replace the qi in MSLS with a better approximation of oi. We design a subroutine278

that computes, with constant probability, an ε-approximation ôi of oi (namely, cost(O∗
i , ôi) ≤279

(1 + ε)cost(O∗
i , oi)). The key idea is that, if sample uniformly O(1/ε) points from O∗

i and define280

ôi to be the average of our samples then cost(O∗
i , ôi) ≤ (1 + ε)cost(O∗

i , oi)281

Though, we do not know O∗
i , so sampling uniformly from it is non-trivial. To achieve that, for each282

qi we identify a set N of nice candidate points in P such that a poly(ε)/k fraction of them are from283

O∗
i . We sample O(1/ε) points uniformly from N and thus with probability (ε/k)O(1/ε) we sample284

only points from O∗
i . Thus far, we sampled O(1/ε) points uniformly from N ∩ O∗

i . What about285

the points in O∗
i \N? We can define N so that all points in O∗

i \N are either very close to some286

of the (qj)j or they are very far from qi. The points that are very close to points (qj)j are easy to287

treat. Indeed, we can approximately locate them and we just need to guess their mass, which is288

matters only when ≥ poly(ε)ALG, and so we pay only a logO(1/ε)(1/ε) multiplicative overhead to289

guess the mass close to qj for j = 1 . . . p = Θ(1/ε). As for a point f that is very far from qi (say,290

||f − qi|| ≫ ρi) we notice that, although f ’s contribution to cost(O∗
i , oi) may be large, we have291

cost(f, o) ≈ cost(f, oi) for each o ∈ B(qi, ρi) ⊆ B(oi, (2 + ε)ρi) assuming qi ∈ core(oi).292

5 Experiments293

In this section, we show that our new algorithm using multi-swap local search can be employed to294

design an efficient seeding algorithm for Lloyd’s which outperforms both the classical k-means++295

seeding and the single-swap local search from Lattanzi and Sohler [2019].296

Algorithms. The multi-swap local search algorithm that we analysed above performs very well297

in terms of solution quality. This empirically verifies the improved approximation factor of our298

algorithm, compared to the single-swap local search of Lattanzi and Sohler [2019].299

Motivated by practical considerations, we heuristically adapt our algorithm to make it very competitive300

with SSLS in terms of running time and still remain very close, in terms of solution quality, to the301

theoretically superior algorithm that we analyzed. The adaptation of our algorithm replaces the phase302

where it selects the p centers to swap-out by performing an exhaustive search over
(
k+p
p

)
subsets of303

3The complexity in Theorem 12 can be improved by applying the same preprocessing techniques using
coresets and dimensionality reduction, similar to what can be used to speed up the approach of Kanungo et al.
[2004]. Our algorithm hence becomes asymptotically faster.
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Figure 1: Comparison between MSLS and MSLS-G, for p = 3, for k = 25, on the datasets KDD-
BIO and RNA. The y axis shows the solution cost divided by the means solution cost of KM++.

centers. Instead, we use an efficient heuristic procedure for selecting the p centers to swap-out, by304

greedily selecting one by one the centers to swap-out. Specifically, we select the first center to be the305

cheapest one to remove (namely, the one that increases the cost by the least amount once the points306

in its cluster are reassigned to the remaining centers). Then, we update all costs and select the next307

center iteratively. After p repetitions we are done. We perform an experimental evaluation of the308

“greedy” variant of our algorithm compared to the theoretically-sound algorithm from Section 3 and309

show that employing the greedy heuristic does not measurably impact performance.310

The four algorithms that we evaluate are the following: 1) KM++: The k-means++ from Arthur311

and Vassilvitskii [2007], 2) SSLS: The Single-swap local search method from Lattanzi and Sohler312

[2019], 3) MSLS: The multi-swap local search from Section 3, and 4) MSLS-G: The greedy variant313

of multi-swap local search as described above.314

We use MSLS-G-p = x and MSLS-p = x, to denote MSLS-G and MSLS with p = x, respectively.315

Notice that MSLS-G-p = 1 is exactly SSLS. Our experimental evaluation explores the effect of316

p-swap LS, for p > 1, in terms of solution cost and running time.317

Datasets. We consider the three datasets used in Lattanzi and Sohler [2019] to evaluate the perfor-318

mance of SSLS: 1) KDD-PHY – 100, 000 points with 78 features representing a quantum physic task319

kdd [2004], 2) RNA - 488, 565 points with 8 features representing RNA input sequence pairs Uzilov320

et al. [2006], and 3) KDD-BIO – 145, 751 points with 74 features measuring the match between a321

protein and a native sequence kdd [2004]. We discuss the results for two or our datasets, namely322

KDD-BIO and RNA. We deffer the results on KDD-PHY to the appendix and note that the results are323

very similar to the results on RNA.324

We performed a preprocessing step to clean-up the datasets. We observed that the standard deviation325

of some features was disproportionately high. This causes all costs being concentrated in few326

dimensions making the problem, in some sense, lower-dimensional. Thus, we apply min-max scaling327

to all datasets and observed that this causes all our features’ standard deviations to be comparable.328

Experimental setting. All our code is written in Python. The code will be made available upon329

publication of this work. We did not make use of parallelization techniques. To run our experiments,330

we used a personal computer with 8 cores, a 1.8 Ghz processor, and 15.9 GiB of main memory331

We run all experiments 5 times and report the mean and standard deviation in our plots. All our332

plots report the progression of the cost either w.r.t local search steps, or Lloyd’s iterations. We run333

experiments on all our datasets for k = 10, 25, 50. The main body of the paper reports the results for334

k = 25, while the rest can be found in the appendix. We note that the conclusions of the experiments335

for k = 10, 50 are similar to those of k = 25.336

Removing centers greedily. We first we compare MSLS-G with MSLS. To perform our experi-337

ment, we initialize k = 25 centers using k-means++ and then run 50 iterations of local search for both338

algorithms, for p = 3 swaps. Due to the higher running of the MSLS we perform this experiments on339

1% uniform sample of each of our datasets. We find out that the performance of the two algorithms is340

comparable on all our instances, while they both perform roughly 15%-27% at convergence. Figure 1341

shows the aggregate results, over 5 repetitions of our experiment.342

It may happen that MSLS, which considers all possible swaps of size p at each LS iteration, performs343

worse than MSLS-G as a sub-optimal swap at intermediate iterations may still lead to a better local344

8



Figure 2: The first row compares the cost of MSLS-G, for p ∈ {1, 4, 7, 10}, divided by the mean
cost of KM++ at each LS step, for k = 25. The legend reports also the running time of MSLS-G
per LS step (in seconds). The second row compares the cost after each of the 10 iterations of Lloyd
with seeding from MSLS-G, for p ∈ {1, 4, 7, 10} and 15 local search steps and KM++, for k = 25.

optimum by coincidence. Given that MSLS-G performs very comparably to MSLS, while it is much345

faster in practice, we use MSLS-G for the rest of our experiments where we compare to baselines.346

This allows us to consider higher values of p, without compromising much the running time.347

Results: Evaluating the quality and performance of the algorithms. In our first experiment we348

run KM++ followed by 50 iterations of MSLS-G with p = 1, 4, 7, 10 and plot the relative cost w.r.t.349

KM++ at each iteration, for k = 25. The first row of Figure 2 plots the results. Our experiment shows350

that, after 50 iterations MSLS-G for p = 4, 7, 10 achieves improvements of roughly 10% compared351

to MSLS-G-p = 1 and of the order of 20%− 30% compared to KM++. We also report the time per352

iteration that each algorithm takes. For comparison, we report the running time of a single iteration of353

Lloyd’s next to the dataset’s name. It is important to notice that, although MSLS-G-p = 1 is faster,354

running more iterations MSLS-G-p = 1 is not sufficient to compete with MSLS-G when p > 1.355

Results: Evaluating the quality after postprocessing using Lloyd. In our second experiment,356

we use KM++ and MSLS-G as a seeding algorithm for Lloyd’s and measure how much of the357

performance improvement measured in the first experiment is retained after running Lloyd’s. First,358

we initialize our centers using KM++ and the run 15 iterations of MSLS-G for p = 1, 4, 7. We359

measure the cost achieved by running 10 iterations of Lloyd’s starting from the solutions found by360

MSLS-G as well as KM++. In Figure 2 (second row) we plot the results. Notice that, according to361

the running times from the first experiment, 15 iterations iterations of MSLS-G take less than 10362

iterations of Lloyd’s for p = 4, 7 (and also for p = 10, except on RNA). We observe that MSLS-G363

for p > 1 performs at least as good as SSLS from Lattanzi and Sohler [2019] and in some cases364

maintains non-trivial improvements.365

Conclusion and Future Directions366

We present a new algorithm for the k-means problem and we show that it outperforms theoretically367

and experimentally state-of-the-art practical algorithms with provable guarantees in terms of solution368

quality. A very interesting open question is to improve our local search procedure by avoiding the369

exhaustive search over all possible size-p subsets of centers to swap out, concretely an algorithm with370

running time Õ(2poly(1/ε)ndk).371
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Supplementary Material517

Proofs from Section 3518

Lemma 8.
∑

p∈P cost(p, C[O∗[p]]) ≤ 2OPT + ALG + 2
√

ALG
√

OPT.519

Proof. ∑
p∈P

cost(p, C[O∗[p]]) =

∑
oi∈O∗

∑
p∈O∗

i

cost(p, C[oi]) =

∑
oi∈O∗

|O∗
i | · cost(oi, C[oi]) + cost(O∗

i , oi) =

OPT +
∑
p∈P

cost(O∗[p], C[O∗[p]]) ≤

OPT +
∑
p∈P

cost(O∗[p], C[p]) ≤

OPT +
∑
p∈P

(||O∗[p]− p||+ ||p− C[p]||)2 =

2OPT + ALG + 2
∑
p∈P

||O∗[p], p|| · ||p, C[p]|| ≤ 2OPT + ALG + 2
√

ALG
√

OPT.

The second equality is due to Lemma 1 and the last inequality is due to Cauchy-Schwarz.520

Proofs from Section 4521

In this section, we prove the following.522

Theorem 12. Given a set of n points in Rd with aspect ratio ∆, there exists an algorithm that523

computes a 9 + ε-approximation to k-means in time ndkO(ε−2) logO(ε−1)(∆) · 2−poly(ε−1).524

We start with a key lemma showing that a sample of size O(1/ε) is enough to approximate 1-mean.525

Lemma 13 (Form Inaba et al. [1994]). Given an instance P ⊆ Rd, sample m = 1/(εδ) points526

uniformly at random from P and denote the set of samples with S. Then cost(P, µ(S)) ≤ (1 +527

ε)cost(P, µ(P )) with probability at least 1− δ.528

Proof. We want to prove that with probability 1 − δ we have ||µ(S) − µ(P )||2 ≤529

εcost(P, µ(P )) /|P |. Then, applying Lemma 1 gives the desired result. First, we notice that530

µ(P ) is an unbiased estimator of µ(P ), namely E[µ(S)] = µ(P ). Then, we have531

E
[
||µ(S)− µ(P )||2

]
=

1

m

|S|∑
i=1

E
[
||si − µ(P )||2

]
=

cost(P, µ(P ))

m · |P |

where si are uniform independent samples from P . Applying Markov’s inequality concludes the532

proof.533

The algorithm that verifies Theorem 12 is very similar to the MSLS algorithm from Section 3 and534

we use the same notation to describe it. The intuition is that in MSLS we sample Q = {q1 . . . qp}535

hoping that qi ∈ core(oi) for each i; here we refine qi to a better approximation ôi of oi and swap536

the points (ôi)i rather than (qi)i. Our points ôi are generated taking the average of some sampled537

point, thus we possibly have ôi ̸∈ P while, on the other hand, qi ∈ P .538
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A (9+ε)-approximation MSLS algortihm. First, we initialize our set of centers using k-means++.539

Then, we run ndkO(ε−2) · 2poly(ε−1) local search steps, where a local search step works as follows.540

Set p = Θ(ε−1). We D2-sample a set Q = {q1 . . . qp} of points from P (without updating costs).541

Then, we iterate over all possible sets Out = {c1 . . . cp} of p distinct elements in C ∪ Q. We define542

the set of temporary centers T = (C ∪ Q) \ Out and run a subroutine APX-CENTERS(T ) which543

returns a list of poly(ε−1) · logO(ε−1)(∆) size-s sets În = {ô1 . . . ôs} (where s = |Q \Out|). We544

select the set În in this list such that the swap (În,Out \ Q) yields the maximum cost reduction.545

Then we select the set Out that maximizes the cost reduction obtained in this way. If (În, Out \ Q)546

actually reduces the cost then we perform that swap.547

A subroutine to approximate optimal centers. Here we describe the subroutine548

APX-CENTERS(T ). Let Q \Out = {q1 . . . qs}. Recall that s ≤ p = O(ε−1). This subroutine out-549

puts a list of 2poly(ε
−1) ·logO(ε−1)(∆) size-s sets În = {ô1 . . . ôs}. Here we describe how to find a list550

of 2poly(ε
−1) · log(∆) values for ô1. The same will apply for ô2 . . . ôs and taking the Cartesian product551

yields a list of 2poly(ε
−1) · logO(ε−1)(∆) size-s sets. Assume wlog that the pairwise distances between552

points in P lie in [1,∆]. We iterate over all possible values of ρ1 ∈ {1, (1 + ε) . . . (1 + ε)⌈log1+ε ∆⌉}.553

We partition P in three sets: the set of far points F = {x ∈ P | cost(x, q1) > ρ21/ε
3}, the set of554

close points C = {x ∈ P \ F | cost(x, T ) ≤ ε3ρ21} and the set of nice points N = P \ (C ∪ F ).555

Then, we sample uniformly from N a set S of size Θ(ε−1). For each (s+ 1)-tuple of coefficients556

α0, α1 . . . αs ∈
{
1, (1− ε), (1− ε)2, . . . (1− ε)⌈log1−ε(ε

7)⌉
}
∪{0}we output the candidate solution557

given by the convex combination558

ô1 = ô1(α0 . . . αs) =
α0µ(S) +

∑s
i=1 αiqi∑s

i=0 αi
(3)

so, for each value of ρ1, we output 2poly(ε
−1) values for ô1. Hence, 2poly(ε

−1) · log(∆) values in total.559

Analysis560

The key insight in the analysis of the MSLS algorithm form Section 3 was that every qi was a proxy561

for oi because qi ∈ core(oi), and thus qi provided a good center for O∗
i . In the analysis of this562

improved version of MSLS we replace qi with ôi which makes a better center for O∗
i . Formally, fixed563

Out, we say that a point ôi is a perfect approximation of oi when cost(O∗
i , (C ∪ {ôi}) \Out) ≤564

(1 + ε)OPTi + εOPT/k. We define Õ and C̃ as in Section 3, except that we replace δ with ε (which565

here is not assumed to be a constant). Likewise, we build the set S of ideal multi-swaps as in Section 3.566

Recall that we say that a multi-swap (In,Out) is strongly improving if cost(P, (C ∪ In) \Out) ≤567

(1 − ε/k) · cost(P, C). Let In = {o1 . . . os} ⊆ Õ and Out = {c1 . . . cs} ⊆ C̃, we overload568

the definition from Section 3 and say that the ideal multi-swap (In,Out) is good if for every569

În = {ô1 . . . ôs} such that each ôi is a perfect approximation of oi for each i = 1 . . . s the swap570

(În, Out) is strongly improving. We call an ideal swap bad otherwise. As in Section 3, we define571

the core of an optimal center; once again we replace δ with ϵ, which is no longer constant. The two572

following lemmas are our stepping stones towards Theorem 12.573

Lemma 14. If ALG/OPT > 9 + O(ε) then, with probability k−O(ε−1) · 2−poly(ε−1), there exists574

Out ⊆ C ∪ Q such that:575

(i) If Q \Out = {q1 . . . qs} then q1 ∈ core(o1) . . . qs ∈ core(os) for some o1 . . . os ∈ O∗576

(ii) If we define In = {o1 . . . os} then (In,Out \ Q) is a good ideal swap.577

Lemma 15. If (i) from Lemma 14 holds, then with probability k−O(ε−2) · 2−poly(ε−1), the list578

returned by APX-CENTERS contains În = {ô1 . . . ôs} such that ôi is a perfect approximation of oi579

for each i = 1 . . . s.580

Proof of Theorem 12. Here we prove that our improved MSLS algorithm achieves a (9 + O(ε))-581

approximation, which is equivalent to Theorem 12 up to rescaling ε. Combining Lemma 14 and582
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Lemma 15 we obtain that, as long as ALG/OPT > 9 + O(ε), with probability at least k−O(ε−2) ·583

2−poly(ε−1), the list returned by APX-CENTERS contains În = {ô1 . . . ôs} such that (În, Out \ Q)584

is strongly improving. If this happens, we call such a local step successful. Now the proof goes585

exactly as the proof of Theorem 3. Indeed, We show that kO(ε−2) · 2poly(ε−1) local steps suffice to586

obtain Ω(k log log k/ε) successful local steps, and thus to obtain the desired approximation ratio,587

with constant probability.588

To prove the running time bound it is sufficient to notice that a local search step can be performed in589

time nd logO(ε−1)(∆) · 2poly(ε−1).590

In the rest of this section, we prove Lemma 14 and Lemma 15.591

Observation 16. If we assume δ = ε non-constant in Lemma 2, then performing the computations592

explicitly we obtain Pr[q ∈ core(O∗
i )] ≥ poly(ε).593

In order to prove Lemma 14, we first prove the two lemmas. Lemma 17 is the analogous of Lemma 10594

and Lemma 18 is the analogous of Lemma 11. Overloading once again the definition from Section 3,595

we define G as the union of cores of good optimal centers in Õ, where an optimal center is defined to596

be good if at least one of the ideal multi-swaps in S it belongs to is good (exactly as in Section 3).597

Lemma 17. If an ideal swap (In,Out) is bad, then we have598

cost(O∗
In, C) ≤ (1 + ε)cost(O∗

In,O∗) + Reassign(In,Out) + εALG/k. (4)

Proof. Let In = {o1 . . . os}, În = {ô1 . . . ôs} such that ôi is a perfect approximation of oi for each599

i = 1 . . . s. Recall that O∗
In :=

⋃s
i=1 O

∗
i , then600

cost
(
O∗

In, (C ∪ În) \Out
)
≤

s∑
i=1

cost(O∗
i , (C ∪ {ôi}) \Out) ≤ (1 + ε)cost(O∗

In,O∗) . (5)

Moreover, Reassign(In,Out) = cost(P \O∗
In, C \Out) − cost(P \O∗

In, C) because points601

in P \ COut are not affected by the swap. Therefore, cost
(
P, (C ∪ În) \Out

)
≤ (1 +602

ε)cost(O∗
In, O

∗) + Reassign(In,Out) + cost(P \O∗
In, C). Suppose by contradiction that Equa-603

tion (4) does not hold, then604

cost(P, C)− cost
(
P, (C ∪ În) \Out

)
=

cost(P \O∗
In, C) + cost(O∗

In, C)− cost
(
P, (C ∪ În) \Out

)
≥ ϵALG/k.

Hence, (În,Out) is strongly improving and this holds for any choice of În, contradiction.605

Lemma 18. If ALG/OPT > 9 + O(ε) then cost(G, C) ≥ cost(P, C) · poly(ε). Thus, if we606

D2-sample q we have P [q ∈ G] ≥ poly(ε).607

Proof. First, we observe that the combined current cost of all optimal clusters in O∗ \ Õ is at most608

k · εALG/k = εALG. Now, we prove that the combined current cost of all O∗
i such that oi is bad is609

≤ (1− 2ε)ALG. Suppose, by contradiction, that it is not the case, then we have:610

(1− 2ε)ALG <
∑

Bad oi∈Õ

cost(O∗
i , C) ≤

∑
Bad (In,Out)∈S

w(In,Out) · cost(O∗
In, C) ≤∑

Bad (In,Out)

w(In,Out) · ((1 + ε)cost(O∗
In,O∗) + Reassign(In,Out) + εALG/k) ≤

(1 + ε)OPT + (2 + 2/p)OPT + (2 + 2/p)
√

ALG
√

OPT + εALG.

The second and last inequalities make use of Observation 7. The third inequality uses Lemma 17.611

Setting η2 = ALG/OPT we obtain the inequality η2 − (2 + 2/p±O(ε))η− (3 + 2/p±O(ε)) ≤ 0.612

Hence, we obtain a contradiction in the previous argument as long as η2− (2+ 2/p±O(ε))η− (3+613
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2/p±O(ε)) > 0, which holds for p = Θ(ε−1) and η2 = 9+O(ε). A contradiction there implies that614

at least an ε-fraction of the current cost is due to points in
⋃

Good oi∈Õ O∗
i . Thanks to Observation 16,615

we have Pq∼cost(q,C)[q ∈ core(O∗
i ) | q ∈ O∗

i ] ≥ poly(ε). Therefore, we can conclude that the616

current cost of G =
⋃

Good oi∈Õ core(O∗
i ) is at least a poly(ε)-fraction of the total current cost.617

Proof of Lemma 14. Thanks to Lemma 18, we have that P [q1 ∈ G] ≥ poly(ε). Whenever q1 ∈ G618

we have that q1 ∈ core(o1) for some good o1. Then, for some s ≤ p we can complete o1 with619

o2 . . . os such that In = {o1 . . . os} belongs to a good swap. Concretely, there exists Out ⊆ C such620

that (In,Out) is a good swap. Since In ⊂ Õ we have cost(O∗
i , C) > εOPT/k for all oi ∈ In,621

which combined with Observation 16 gives that, for each i = 2 . . . s, P [qi ∈ core(oi)] ≥ poly(ε)/k.622

Hence, we have P [qi ∈ core(oi) for i = 1 . . . s] ≥ 2−poly(ε−1)k−O(ε−1). Notice, however, that623

(În, Out) is a s-swap and we may have s < p. Nevertheless, whenever we sample q1 . . . qs followed624

by any sequence qs+1 . . . qp it is enough to choose Out′ = Out ∪ {qs+1 . . . qp} to obtain that625

({q1 . . . qp}, Out′) is an improving p-swap.626

In order to prove Lemma 15 we first need a few technical lemmas.627

Lemma 19 (Lemma 2 from Lattanzi and Sohler [2019]). For each x, y, z ∈ Rd and ε > 0,628

cost(x, y) ≤ (1 + ε)cost(x, z) + (1 + 1/ε)cost(z, y).629

Lemma 20. Given q ∈ Rd and Z ⊆ Rd such that cost(Z, q) ≤ ε2Γ then, for each o ∈ Rd630

(1−O(ε))cost(Z, o)−O(ε)Γ ≤ |Z|cost(q, o) ≤ (1 +O(ε))cost(Z, o) +O(ε)Γ

Proof. To obtain the first inequality, we apply Lemma 19 to bound cost(z, o) ≤ (1+ε)cost(z, o)+631

(1 + 1/ε)cost(z, q) for each z ∈ Z. To obtain the second inequality, we bound cost(q, o) ≤632

(1 + ε)cost(z, o) + (1 + 1/ε)cost(z, q) for each z ∈ Z.633

Lemma 21. Let X = {x1 . . . xℓ} be a weighted set of points in Rd such that xi has weight wi.634

Let µ be the weighted average of X . Let µ̂ = µ̂(α1 . . . αℓ) be the weighted average of X where xi635

has weight αi. If wi ≤ αi ≤ wi/(1 − ε) for each i = 1 . . . ℓ, then if we interpret cost(X,C) as636 ∑
xi∈X wi · cost(xi, C) we have cost(X, µ̂) ≤ (1 +O(ε))cost(X,µ).637

Proof. We note that µ minimizes the expression cost(X,µ). Moreover, cost(X, z) ≤
∑ℓ

i=1 αi ·638

cost(xi, z) ≤ cost(X, z) /(1 − ε). Since µ̂ minimizes the expression
∑ℓ

i=1 αi · cost(xi, z) it639

must be cost(X, µ̂) ≤ cost(X,µ) /(1− ε).640

Adopting the same proof strategy, we obtain the following.641

Observation 22. Thanks to Lemma 20, we can assume that the points in Z are concentrated in q for642

the purpose of computing a (1 +O(ε))-approximation to the 1-means problem on Z, whenever an643

additive error Γ is tolerable. Indeed, moving all points in Z to q introduces a 1+O(ε) multiplicative644

error on cost(Z, ·) and a O(ε)Γ additive error.645

The next lemma shows that a point z that is far from a center o experiences a small variation of646

cost(z, o) when the position of o is slightly perturbed.647

Lemma 23. Given o, z ∈ Rd such that ||o − z|| ≥ r/ε we have that for every o′ ∈ B(o, r),648

cost(z, o′) = (1±O(ε))cost(z, o).649

Proof. It is enough to prove it for all o′ that lie on the line L passing through o and z, any other650

point in o′′ ∈ B(o, r) admits a point o′ ∈ B(o, r) ∩ L with ||o′ − z|| = ||o′′ − z||. It is enough to651

compute the derivative of cost(z, ·) with respect to the direction of L and see that ∂cost(z,·)
∂L |B(o,r) =652

(1±O(ε))r/ε. Thus, cost(z, o′) = cost(z, o)± (1±O(ε))r2/ε = (1±O(ε))cost(z, o).653

Proof of Lemma 15. Here we prove that for each o1 . . . os there exist coefficients α
(i)
0 . . . α

(i)
s ∈654 {

1, (1− ε) . . . (1− ε)⌈log1−ε(ε
7)⌉

}
∪ {0} such that the convex combination ôi = ôi(α

(i)
0 . . . α

(i)
s )655

is a perfect approximation of oi, with probability k−O(ε−2) · 2−poly(ε−1). Wlog, we show this656

16



for o1 only. Concretely, we want to show that, with probability k−O(ε−1) · 2−poly(ε−1), there657

exist coefficients α0 . . . αs such that ô1 = ô1(α0 . . . αs) satisfies cost(O∗
1 , (C ∪ {ô1}) \Out) ≤658

(1 + O(ε))OPT1 + O(ε)OPT/k. Taking the joint probability of these events for each i = 1 . . . s659

we obtain the success probability k−O(ε−2) · 2−poly(ε−1). Note that we are supposed to prove that660

cost(O∗
1 , (C ∪ {ô1}) \Out) ≤ (1+ ε)OPT1 + εOPT/k, however we prove a weaker version where661

ε is replaced by O(ε), which is in fact equivalent up to rescaling ε.662

Similarly to C[·] and O∗[·] define T [p] as the closest center to p in T . Denote with C1, F1 and N1 the663

intersections of O∗
1 with C,F and N respectively. In what follows we define the values of α0 . . . αs664

that define ô1 = ô1(α0 . . . αs) and show an assignment of points in O∗
1 to centers in (C ∪{ô1})\Out665

with cost (1 + O(ε))OPT1 + O(ε)OPT/k. Recall that we assume that qi ∈ core(oi) for each666

i = 1 . . . s.667

In what follows, we assign values to the coefficients (αi)i. It is understood that if the final value668

we choose for αi is v then we rather set αi to the smallest power of (1− ε) which is larger than v,669

if v > ε7. Else, set αi to 0. We will see in the end that this restrictions on the values of αi do not670

impact our approximation.671

In what follows, we will assign the points in O∗
1 to C \Out, if this can be done inexpensively. If it672

cannot, then we will assign points to ô1. In order to compute a good value for ô1 we need an estimate673

of the average of points assigned to ô1. For points in N1, computing this average is doable (leveraging674

Lemma 13) while for points in O∗
1 \N1 we show that either their contribution is negligible or we675

can collapse them so as to coincide with some qi ∈ Q without affecting our approximation. The676

coefficients (αi)i≥1 represent the fraction of points in O∗
i which is collapsed to qi. α0 represents the677

fraction of points in O∗
i which average we estimate as µ(S). Thus, Equation (3) defines ôi as the678

weighted average of points qi, where the weights are the (approximate) fractions of points collapsed679

onto qi, together with the the average µ(S) and its associated weight α0.680

Points in C1. All points p ∈ C1 such that T [p] ̸∈ Q can be assigned to T [p] ∈ C \Out incurring a681

total cost of at most ε6OPT1, by the definition of C1. Given a point p ∈ C1 with T [p] ∈ Q we might682

have T [p] ̸∈ C \Out and thus we cannot assign p to T [p]. Denote with W the set of points p with683

T [p] ∈ Q. Our goal is now to approximate µ(W ). In order to do that, we will move each p ∈ W684

to coincide with qi = T [p]. We can partition W into W1 . . .Ws so that for each z ∈Wi T [z] = qi.685

If p ∈ Zi then we have ||p − qi||2 ≤ ε3ρ21. Hence, thanks to Observation 22, we can consider686

points in Wi as if they were concentrated in qi while losing at most an additive factor O(ε)OPT1687

and a multiplicative factor (1 + ε) on their cost. For i = 1 . . . s, set αi ← |Wi|/|O∗
1 |. In this way,688 ∑s

i=1 αi · qi/
∑s

i=1 αi is an approximates solution to 1-mean on W up to a multiplicative factor689

(1 + ε) and an additive factor O(ε)OPT1.690

Points in N1. Consider the two cases: (i) cost(N1, T ) > ε2OPT/k; (ii) cost(N1, T ) ≤691

ε2OPT/k.692

Case (i). We show that in this case µ(S) is a (1 + ε)-approximation for 1-mean on N1, with693

probability k−O(ε−1) · 2−poly(ε−1). First, notice that if we condition on S ⊆ N1 then Lemma 13694

gives that µ(S) is a (1 + ε)-approximation for 1-mean on N1 with constant probability. Thus, we are695

left to prove that S ⊆ N1 with probability k−O(ε−1) · 2−poly(ε−1). We have that the Pp∼cost(p,T )[p ∈696

N1 | p ∈ N ] ≥ ε2/k, however the costs w.r.t. T of points in N varies of at most a factor697

poly(ε−1), thus Pp∼Unif [p ∈ N1 | p ∈ N ] ≥ poly(ε)/k. The probability of S ⊆ N1 is thus698

(poly(ε)/k)|S| = k−O(ε−1) · 2−poly(ε−1). In this case, we set α0 ← |N1|/|O∗
1 | because µ(S)699

approximates the mean of the entire set N1.700

Case (ii). Here we give up on estimating the mean of N1 and set α0 ← 0. The point x ∈ N1 such that701

T [x] ̸∈ Q can be assigned to T [x] incurring a combined cost of ε2OPT/k. We partition the remaining702

points in N1 into Z1 ∪ . . . Zs where each point x is placed in Zi if T [x] = qi. Now, we collapse the703

points in Zi so as to coincide with qi and show that this does not worsen our approximation factor. In704

terms of coefficients (αi)i, this translates into the updates αi ← αi + |Zi|/|O∗
i | for each i = 1 . . . s.705

Indeed, using Observation 22 we can move all points in Zi to qi incurring an additive combined cost706

of εOPT/k and a multiplicative cost of 1 +O(ε).707
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Points in F1. Points in F1 are very far from q1 and thus far from o1, hence even if their contribution708

to cost(O∗
1 , o1) might be large, we have cost(F1, o1) = (1±O(ε))cost(F1, o

′) for all o′ in a ball709

of radius ρ1/ε centered in o1, thanks to Lemma 23.710

Let H be the set of points that have not been assigned to centers in C\Out. In particular, H = W∪N1711

if points in N1 satisfy case (i) and H = W ∪ Z1 . . . Zs if points in N1 satisfy case (ii). We consider712

two cases.713

If ||µ(H) − q1|| ≤ ρ/ε, then ||µ(H) − o1|| ≤ ρ(1 + ε + 1/ε) because q1 ∈ core(o1). Since714

for each f ∈ F1 we have ||f − o1|| ≥ ||f − q1|| − (1 + ε)ρ ≥ Ω(ρ/ε3) then cost(f, o′) =715

(1±O(ε))cost(f, o1) for each o′ in a ball of radius O(ρ/ε) centered in o1, and so in particular for716

o′ = µ(H). Thus in this case we can simply disregard all points in F1 and computing ô1 according717

to the (αi)i defined above yields a perfect approximation of oi.718

Else, if ||µ(H) − q1|| > ρ/ε, a similar argument applies to show that cost(H, o′) = (1 ±719

ε)cost(H, o) for each o′ in ball of radius O(ρ) centered in o1. Indeed, we can rewrite cost(H, o′)720

as |H| · cost(µ(H), o′) + cost(µ(H), H). If ||µ(H)− q1|| < ρ/ε the first term varies of at most a721

factor (1 + ε) and the second term is constant. Thus in this case ô1 = q1 is a perfect approximation722

of o1 and we simply set α1 = 1 and αj = 0 for j ̸= 1. In other words, here µ(N1 ∪H) is too far723

from q1 (and thus o1) to significantlyt influence the position of ô1 and the same holds for any point in724

F1. This works, of course, because we assumed q1 ∈ core(o1).725

Discussing the limitations on the coefficients values. The proof above would work smoothly if726

we were allowed to set αi to exactly the values discussed above, representing the fractions of points727

from O∗
i captured by different qis. However, to make the algorithm efficient we limit ourselves to728

values in
{
1, (1− ε) . . . (1− ε)⌈log1−ε(ε

7)⌉
}
∪ {0}. Lemma 21 shows that as long as the values of729

(αi)i estimate the frequencies described above up to a factor 1±O(ε) then the approximation error730

is within a multiplicative factor 1±O(ε).731

We are left to take care of the case in which αi is set to a value < ε7. We set αi when dealing732

with points in C1 ∪ N1 and for each x ∈ C1 ∪ N1 we have, for each o′ ∈ B(q1, (1 + ε)ρ),733

cost(x, o′) ≤ 2cost(q1, o′)+ 2cost(x, q1) = O(ρ1ε
−6). Thus, if we simply set αi ← 0 whenever734

we have αi < ε7 then the combined cost of points in O∗
1 with respect to o′ varies by ε7|O∗

1 | ·ρ1ε−6 =735

O(ε)OPT1. Effectively, ignoring these points does not significantly impact the cost. hence solving736

1-mean ignoring these points finds a (1 +O(ε))-approximate solution to the original problem.737

Additional Experimental Evaluation738

In this section we report additional experiments which presentation did not fit in the main body. In739

particular, we run experiments on the dataset KDD-PHY and for k = 10, 50.740

In Figure 3 we compare MSLS-G with MSLS. To perform our experiment, we initialize k = 25741

centers using KM++ and then run 50 iterations of local search for both algorithms, for p ∈ {2, 3}742

swaps. We repeat each experiment 5 times. For ease of comparison, we repeat the plot for the743

KDD-BIO and RNA datasets that we present in the main body of the paper. Due to the higher running744

of the MSLS we perform this experiments on 1% uniform sample of each of our datasets. We find745

out that the performance of the two algorithms is comparable on all our instances, while they both746

perform roughly 15%-27% better than k-means++ at convergence.747

In Figure 4 we run KM++ followed by 50 iterations of MSLS-G with p = 1, 4, 7, 10 and k =748

10, 25, 50 (expcluding the degenerate case p = k = 10) and plot the relative cost w.r.t. KM++ at749

each iteration. The results for k = 25 on KDD-BIO and RNA can be found in Figure 2. We repeat750

each experiment 5 times. Our experiment shows that, after 50 iterations MSLS-G for p = 4, 7, 10751

achieves improvements of roughly 5 − 10% compared to MSLS-G-p = 1 and of the order of752

20%− 40% compared to KM++. These improvements are more prominent for k = 25, 50. We also753

report the time per iteration that each algorithm takes. For comparison, we report the running time754

of a single iteration of Lloyd’s next to the dataset’s name. Notice that the experiment on RNA for755

k = 50 is performed on a 10% uniform sample of the original dataset, due to the high running time.756

In Figure 5, we use KM++ and MSLS-G as a seeding algorithm for Lloyd’s and measure how much757

of the performance improvement measured is retained after running Lloyd’s. First, we initialize758

18



Figure 3: Comparison between MSLS and MSLS-G, for p = 2 (left column) and p = 3 (right
column), for k = 25, on the datasets KDD-BIO (first row), KDD-PHY (second row) and RNA (third
row). The y axis shows the mean solution cost, over the 5 repetitions of the experiment, divided by
the means solution cost of KM++.
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Figure 4: We compare the cost of MSLS-G, for p ∈ {1, 4, 7, 10}, divided by the mean cost of KM++
at each LS step, for k ∈ {10, 25, 50}, excluding the degenerate case p = k = 10. The legend reports
also the running time of MSLS-G per LS step (in seconds). The experiments were run on all datasets:
KDD-BIO, RNA and KDD-PHY, excluding the case of k = 25 for KDD-BIO and RNA which are
reported in the main body of the paper.
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our centers using KM++ and the run 15 iterations of MSLS-G for p = 1, 4, 7. We measure the759

cost achieved by running 10 iterations of Lloyd’s starting from the solutions found by MSLS-G as760

well as KM++. We run experiments for k = 10, 25, 50 and we repeat each experiment 5 times. We761

observe that for k = 25, 50 MSLS-G for p > 1 performs at least as good as SSLS from Lattanzi762

and Sohler [2019] and in some cases maintains non-trivial improvements. These improvements are763

not noticeable for k = 10; however, given how Lloyd’s behave for k = 10 we conjecture that k = 10764

might be an “unnatural” number of clusters for our datasets.765

21



Figure 5: We compare the cost after each of the 10 iterations of Lloyd with seeding from MSLS-G,
for p ∈ {1, 4, 7, 10} and 15 local search steps and KM++, for k ∈ {10, 25, 50}. We excluded the
degenerate case p = k = 10, and the experiments reported in the main body of the paper.
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