Supplementary Material

A Proof of identification (3]

The proof is straightforward. We state it here for clarity and completeness. Note that
H{dzUw(Xv w, Z) = 1} = H{dzUw € DZ}H{dzUw(Xa Z) = 1}+H{dzUw € DW}H{dzUw (Xa W) = 1}7
H{dzLJw(Xv W, Z) = _1} = H{dzUw € DZ}]I{dzUw(X» Z) = _1}+H{dzUw S DW}H{dzUw(Xv W) = _1}'
Therefore, we have
E[Y(I)H{dzUw(Xv W, Z) = 1}] = E[Y(I)H{dzUw S DZ}H{dzUw (X, Z) = 1}
+Y (D daw € Dy }Hduuu(X, W) = 1)]
={d.uw € D}EY (D){d.uw(X, Z) = 1}]
+ H{dzUw € DW} E[Y(l)]l{dzuw (X, W) = 1}]
Similarly,
E[Y(_l)ﬂ{dzuw(Xa W, Z) = _1}} = I[{dzUw € DZ}E[Y(_I)H{dzUw(Xv Z) = _1}]
+ Hdoow € Dy} E[Y (~1)H{d.uu (X, W) = ~1}].
So
V(da) = EIY () Hdeuw(X, W, Z2) = 1}] + EIY (~)H{dz0u (X, W, 2) = ~1}]
- H{dzuw € DZ}E[Y(l)H{dzUw(Xv Z) - 1} + Y(fl)ﬂ{dzuw(Xa Z) = 71}]
+ {d.uw € DWIEY (D){d.u0w(X, W) =1} + Y (-1 {d.uw (X, W) = —1}]
= deiu € D2 YEI(W, duns (X, 2), X)] + {daisw € Dy }EY q(Z, A, X)H{duu(X, W) = A}],
where the last equality holds due to identification results (I)) and 2).

B Proof of Theorem /]

Recall that V' (d7,,) = E[Y/()I{d7 (X, W, Z) = 1} + Y (-1)I{d7,,(X,W, Z) = —1}], we essen-
tially need to consider the first term E[Y (1)I{dT,, (X, W, Z) = 1}]. Note that
HdZ, (X, W, Z) = 1} = {n(X) = 1}{d=(X, Z) = 1} + [{x(X) = 0}[{dw (X, W) = 1},
we have
EY(1)I{d:, (X, W,Z) =1} =EY(){n(X) = 1}I{d.(X,Z2) = 1} + Y(D)I{r(X) = 0}[{d, (X, W) = 1}]
= E[I{x(X) = DE[Y ()I{d.(X, 2) = 1}|X]
+ {n(X) = 0}E[Y (1){d, (X, W) = 1} X]].
By leveraging the outcome confounding bridge, we have
E[Y (DH{d:(X, 2) = 1}|X] = E[E[Y (1)|X, Z][{d.(X, Z) = 1}|X]
=E[EE]Y(1)|X, Z U)X, Z]{d.(X, Z) = 1}| X]
=E[EEY|X,U, A =1]|X, Z]{d.(X, Z) = 1}|X]
= E[E[E[L(W, 1, X)|X, U]|X, Z]l{d-(X, Z) = 1}| X]
=E[E[ERW,1, X)|X, Z,U]|X, Z|]l{d.(X, Z) = 1}|X]
= E[r(W,1, X)I{d.(X, Z) = 1}|X],
where the third equality is due to Assumption [T} the fourth equality can be verified by Theorem 1

in [Miao et al| (2018a) under Assumptions 2] and [ and the fifth equality is due to Assumption [I]
Moreover, by leveraging the treatment confounding bridge, we have

E[Y (D)I{d, (X, W) = 1}|X] = E[E[Y (1)| X, W]I{d\, (X, W) = 1}|X]
= E[E[E[Y(1)|X, W, U]|X, W]l{dw (X, W) = 1} X]
= E[E[E[Y(1)|X, W, U, A = 1]|X, W|Il{dy (X, W) = 1}|X]
= E[E[E[Y(1)|X,W,U, A = 1]E[¢(Z, 1, X)|X,U, A = 1]
P(A = 1|X,U)|X, W]{d,(X, W) = 1}|X]
= E[E[E[Yq(Z, 1, X)[{A = 1}|X,U, W]|X, W|I{dy(X, W) = 1}|X]
=E[Yq(Z,1, X)[{A = 1}I{d,(X, W) = 1}|X],

15



where the third equality is due to Assumption([T} the fourth equality is implied by Theorem 2.2 of [Cui
et al] (2023) under Assumptions @ and[5] and the fifth equality is due to Assumption [I] Therefore,

EY (D{dZ,, (X, W, Z) = 1}] = E[[{r(X) = BE[Y ()I{d.(X, Z) = 1}|X]
+{m(X) = O}E[Y (1){dy (X, W) = 1}|X]]
= E[{r(X) = BE[RW, 1, X)l{d.(X, Z) = 1}|X]
+{n(X) =0}E[Yq(Z,1, X)I{A = 1}[{d, (X, W) = 1}| X]]
= E[[{n(X) = 1}p(W, 1, X)[{d.(X, Z) = 1}
+{n(X)=0}Yq(Z,1,X)I[{A = 1}[{d,,(X, W) = 1}]. (10)
Similarly, as
HdZ, (X, W, Z) = =1} = {m(X) = J{d.(X, Z) = =1} + {m(X) = 0}[{dw (X, W) = —1},
we have
EY (-D)KdZ, (X, W, Z) = —1}]
= E[[{n(X) = 1}n(W, -1, X)[{d.(X, Z) = —1}
+{nx(X) =0}Yq(Z, -1, X)I{A = —1}{d, (X, W) = —1}]. (11)
Combining (T0) and (TT)), we have
V(dZ,) = EY (W{dZ, (X, W, Z) = 1} + Y (= 1){dZ, (X, W, Z) = —1}]
= E[[{n(X) = 1}n(W, 1, X){d.(X, Z) = 1}
+{r(X)=0}Yq(Z, 1, X)I{A = 1}{d,, (X, W) = 1}
+{n(X) =1}p(W, -1, X)I{d.(X, Z) = -1}
+{n(X)=0}Yq(Z, -1, X)I{A = —1}[{d, (X, W) = —1}]
=E[{n(X)=1}rh(W,d.(X,2),X) + {n(X) =0}Yq(Z, A, X)I{d,(X,W) = A}]
— E[r(X)h(W, d.(X, Z), X) + (1 — n(X))Yq(Z, A, X){du (X, W) = A},

which completes the proof.

C Proof of Theorem

For any d. € Dz and d,, € D)y, we have
V(dZ,) = B[7(X;ds, du)h(W,d-(X, Z), X) + (1 = 7(X;dz, dw))Y q(Z, A, X){dw (X, W) = A}]
— B[F(X; doy du)ER(W, da (X, 2), X)|X] + (1 = 7(X; dz d) JEY q(Z, A, X)H{do (X, W) = A}[X]]
= Emax{E[h(W,d. (X, Z), X)|X],E[Yq(Z, A, X)I{d,,(X,W) = A}| X]}],
where the last equality is due to the definition of 7(X; d,, d,,). As
max{E[h(W,d, (X, Z), X)|X],E[Yq(Z, A, X)I{d,,(X,W) = A} X]|} > E[h(W,d.(X, Z), X)|X],
and
max{E[h(W,d, (X, Z), X)|X],E[Yq(Z, A, X)I{d,(X,W) = A} X]|} > E[Yq(Z, A, X)I{d,,(X,W) = A} X],
taking expectations on both sides, we have
Emax{E[h(W, d.(X, Z), X)|X], E[Y q(Z, A, X){d., (X, W) = A}|X]}]
> E[E[R(W,d.(X, Z), X)|X]]
= E[r(W,d.(X, Z), X)]
= V(d.),

Emax{E[:(W, d.(X, Z), X)|X],E[Y ¢(Z, A, X)[{d.,(X, W) = A} X]}]
> BE[Y(Z, A, X)H{dy(X, W) = A}/ X]
~ E[Yq(Z, A, X)T{d, (X, W) = A}]
= V(dw)~
Therefore, we have V' (d7,,) > max{V (d,), V(dy)}.

zZw
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D Proof of Corollary]]

Recall that
d”* (X, W, Z) =7(X;ds, d5)dA(X, Z)+ (1 —7(X;ds, d))d (X, W),

with
(X3 d2, d) = {E[R(W, dX(X, Z), X|X] > B[Yq(Z, A, X)I{d},(X, W) = A}|X]},

» Yz Fw

we apply the result in Theorem[2] i.e.,
V(dZ;,) = max{V(d;), V(dy)}.

Due to V(d%,,,) = max{V(d%),V(d%)} as shown in Qi et al| (2023), we then conclude that
V(dZy) = max{V(d;), V(dy,), V(diy,)}-

E Proof of Proposition 1]

In the following, we show B
dl. € arg max V(d’r

zw)'

dr, €Dl
Recall that
V(dT,) =E[r(X;d.,d,)h(W,d.(X,Z),X)+ (1 —7(X;d.,dy))Yq(Z, A, X){d,(X,W) = A}]
= E[f(X;dz, dw)E[R(W,d-(X, Z), X)[X] + (1 = 7(X;d., dw) )E[Y ¢(Z, A, X)I{d(X, W) = A} X]]
= Emax{E[n(W,d.(X, Z), X)|X], E[Y¢(Z, A, X)[{d (X, W) = A} X]}]
> E[r(X)E[R(W,d.(X, Z), X)|X] + (1 - n(X ))E[YQ(Z,A,X)H{dw(XyW)=A}|X]]
= V(dZ,),

forany d, € Dz,d,, € Dyy and 7(-). Therefore, we essentially need to show
dTr €arg max V(dl,),
d7,€DL,,

where DL, 2 {d7, : d7, (X, W, Z) = 7#(X)d.(X, Z) + (1 — #(X))dw(X,W),d. € Dz,d,, €
Dw}. Recall that

d(X, Z) =sign{E[n(W, 1, X) — h(W, -1, X)| X, Z]},
dr (X, W) =sign{E[Yq(Z, A, X ) I{A =1} — Yq(Z, A, X)I{A = —1}| X, W]},
we have
E[L(W, d2(X, Z), X)|X, Z) E[h(W, d.(X, 2), X)X, Z],
EYq(Z, A, X I{A=d, (X, W)} X, W] >E[Yq(Z, A, X ) I{A = d ., (X, W)}| X, W].

Taking expectation with respect to Z and W given X respectively, we have

E[E[R(W, dZ(X, Z), X)|X, Z]|X] ZE[E[n(W, d. (X, Z), X)| X, Z]| X], (12)
E[E[Y ¢(Z, A, X){d,, (X, W) = A} X, W]|X] ZE[E[Y ¢(Z, A, X){dw (X, W) = A}X, W]|X].
13)

By the proof given in Section|[C| we have that
V(dZ},) = Elmax{E[r(W, d2(X, Z), X)|X], E[Y q(Z, A, X)I{d;, (X, W) = A} X]}],
V(dZ,) = Emax{E[h(W,d.(X, Z), X)|X], E[Y ¢(Z, A, X)I{d,, (X, W) = A} X]}].
Therefore,
V(dZ},) = Emax{E[E[n(W,d(X, Z), X)|X, Z]| X], E[E[Y ¢(Z, A, X)I{d}, (X, W) = A} X, W]|X]}],
V(dZ,) = Emax{E[E[n(W,d.(X, Z), X)|X, Z]| X], E[E[Y ¢(Z, A, X){d, (X, W) = A} X, W]|X]}].

From @) and (T3], we have V(dfr ) > V(dZ,,) for any d7,, € DZ%,,, which implies that d7, is the
maximizer of V' (dZ,,).
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F  Proof of Proposition 2]

By definition of K(7) we have

V(di,) = V(dZ,) - K(7). (14)
Then from
G(7) = min{V(dZ,) — V(dz), V(dZ,) — V(dw)},
We can See

max{V(d.),V(dy)} = V(dT
Finally, combining (T4) and (T3], we have
V(dZ,) = max{V(d.),V(dw)} — K(#) + G(7).

zZw

— G(7). (15)

As V(douw) = max{V(d.), V(d,)}, we conclude that

V(dZ,) =max{V(d.),V(dy)} — K(7) + G(7) = V(dzuw) — K(7) + G(7).

G Asymptotics of K(7)

Throughout this section, we assume that X € [0,1]” has a bounded density f(x) and
max{|Y|,[|||oc; [|¢||oc} < M for some M > 0. In addition, we assume that sup,, , .. \h(w,a,z)—
h(w,a,r)| = o,(n~%), sup, , ., |4(2,a,x) — q(z,a,7)| = 0,(n~#) for some a, 3 > 0 (Chen and
Christensen, 2013). Given the training dataset, we define an oracle estimator of §(x; d 25 czw)

C A S Wi, Zi), x) — Yiq(Zi, A ) dy (2, W) = Ay} (Xl
8 (x;d,, dy) = — il .
i K (D

We assume that with probability larger than 1 — 1/n, for any d, € Dz and d, € Dy,
sup, |0(z;d,,dy) — 0'(z;d,,dy)] < Cin~7 for some C; > 0 and v > 0 under certain con-
ditions (Jiang), 2017). If we further impose a restriction on the carnality of preliminary policy
classes and assume |Dz| = o(n) and |Dyy| = o(n), by a straightforward calculation, we have
SUD, 4. eD 2 dyy €Dy 10(2;d., dy) — 0(2;ds,dy)] < Con~¢ on a set Xy and P(XS) — 0, where
Cy > 0,¢ = min{a, 8,7}, and A is the complement of Xj.

To streamline the presentation, in the following, we abbreviate §(X;d.,dy,), 0'(X;d.,d,) and
0(X;d.,dy) as 6(X),0'(X) and §(X), respectively. Two subsets of X, namely Xy, and X, are
defined as

Xy = {z e X :1{5(x) >0} = 1,[{5(x) > 0} = 0},
Xpa = {z € X :{5(x) > 0} = 0,[{5(x) > 0} =1},
and we also define the complement set X, as
X, = {z € X :sign(d(z)) = sign(6(x))},

with sign(0) = 1. We see that Xp1NXf2 = 0, Xp1NXe = 0, Xp2NX. = 0, and Xy UXpUX, = X.
From the definition of K(7), we have

K(#) = / E[7(X;d, dw)h(W,d-(X, Z), X) + (1 — 7(X;d=, du))Y q(Z, A, X){d (X, W) = A}
TeEX
— #(X;d, d)R(W,do (X, Z), X) + (1 — 7#(X;d.,dw))Yq(Z, A, X){dy(X, W) = A}|X = z|f(x)dz

_ / L, @@+ / . 5(2) f (w)dx + / _ W@

_ / IRCICTS / IO
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The second equation holds because if © € X1, 7(x;d, dw) = 1,7(x; d, aAlw) =0 and

E[7(X;d.,dw)h(W,d.(X,2), X) + (1 — 7#(X;d.,dw))Yq(Z, A, X)I{dw(X, W) = A}
_ﬁ—(X;szdA ) ( CZ ( ) ) ( (XJZaJw))Yq(ZvAvX)]I{dw(Xv W) = A}|X = 1’] = _5(1');
L X

if v € Xpo, 7(z;d. 0,7(xf;d-,dy) = 1and
(

)_ d.,
E[7(X;d.,dw)h(W,d.(X,2), X) + (1 — 7(X;d.,dw))Yq(Z, A, X){dw(X, W) = A}

— (X d, do)R(W, d2(X, Z), X)+(1=7(X; dz, dw)) Y q(Z, A, X){dW(X, W) = A}X = 2] = §(2);
if z € X, #(x;d, (i ) = @(zy;d., d,) and
E[7(X;d.,dw)h(W, d2(X, Z), X) + (1 — 7(X;dz,dw))Y q(Z, A, X)H{dw (X, W) = A}

_ﬁ—(XﬂjzﬂiAw)h(VVa CZZ(Xv Z)>X)+(1_7AT(X§C§Z;Ciw))YQ<Z7A7X)]I{dw(X7 W) = A}|X = .’L‘] =0.

Therefore, we essentially need to bound — [ _ P (z)dx and [ _, d(x)f(x)dx follows

a similar proof. In this regard, we further spht Xf1 to Xp11 = {x € Xp @ d(z) €
(—Cn=%,Cn=%)} and X120 = {x € Xp1 : §(z) & (—Cn~S,Cn~¢)}. Then it is easy to see that
- fmexm §(z) f(z)dz is bounded by O(n~¢) and P(X}1 2) converges to 0 as P(X{) converges to
0. We then conclude that K(7) = o(1) almost surely.

H Proof of Proposition 3]

We start with defining two subsets of A/,
X ={z € X :7(2,d.,dy) = 1,7 (2, d}, di) = 0},
Xyo = {z € X : 7(x,d,dy) = 0,7(z,d, %) = 1},
and we also define the complement set X as
Xoe = {2 € X 7(z,ds, dy) = 7z, dZ, d},)},

which can also be split into

Kyer = {x € X : 7(x,dz, dy) = 7(x,dZ, dE) = 0},
Kyeo = {x € X : 7(x,d., dy) = 7z, d, d2) = 1}.

We see that X1 N Xgo = 0, Xge1 N Xgeo = 0, Xge1 U Xgeo = Xye, Xg1 N Xge = 0, Xgo N Xge = 0,
and Xgl U XgZ U ch =X.

From the definition of V (d7%) and V (d7,,), we have

V(dZZ)—V(JZw)=/€X (7 (X5 dZ, dip )W(W, dZ(X, Z), X) + (1 = 7(X; dZ, 43,)) Y g(Z, A, X){d,, (X, W)

F(Xidz,d)W(W,do(X, Z), X) — (1 — 7(X;d-, dw))Y q(Z, A, X)H{dW(X, W) = A} X = 2] f(x)da

/ e ElY q(Z, A, X)I{d:, (X, W) = A} — h(W,d,(X, Z), X)|X = z]f(x)dx
+/ . W, d:(X,Z), X) = Yq(Z, A, X){d(X,W) = A} X = z]f(z)dzx
- / . E[Yq(Z, A, X){d5(X,W) = A} = Yq(Z, A, X)H{dW(X, W) = A}|X = 2] f(z)dx
+ /EX ) hWW,d5(X, Z), X) — h(W,d.(X, Z), X)|X = ] f(z)dz.
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Then it is easy to see that
[ BIYG(ZA XM (W) = A}~ Yq(Z, A, X)Hd (X W) = A}[X = ol (2)ds
r€EX 1
and
/ E[MW,d3(X,Z),X) — W(W,d.(X, Z), X)|X = z]f(z)dx
TEX 2

converge to 0 in probability according to Assumption [6]

Therefore, we essentially need to bound
[ EYA(Z A XU (X W) = A} = W, d.(X. 2), X)X = 2] (2)da
TEX 1
and
[ BInV.2(X.2).X) - Ya(Z. A XOH (X W) = A}X = a]f(2)d.
TEX 2

We further split Xy to X1 = {z € X : EYq(Z,AX)Hd,(X,W) = A} —

AW,d.(X,Z),X)|X = z] € (=Cn",Cn" "} and Xpo = {z € Xp

ElYq(Z, A, X)I{d% (X, W) = A} — h(W,d(X,Z),X)|X = 2] ¢ (=Cn~",Cn"")} where
n = min{&, ¢}. Then it is easy to see that

/ ElYq(Z, A X)I{d;, (X, W) = A} — h(W, d.(X,2),X)|X = z|f(x)dx
TEXg1,1

is bounded by O(n~") and IP(X,; 2) converges to O in probability based on Assumption E] and the
definition of Xy;. A similar proof can also be conducted to obtain fa:EX ) Eh(W,d3(X,2),X) —

Yq(Z, A, X)I{dw(X,W) = A}|X = z|f(x)dz is small enough. We then have that V (d7,) 2
V(dZy,)-

As we have proved that K(fr) V(dT,)—V(d?,) = o(1) almost surely in Appendix we finally
conclude that V (d*,) 2 V (d77).

I Data generating mechanisim and parameter setup in Section 4]

The data generating mechanism for (X, A, Z, W, U) is summarized in Table |1} and the setups of
varying parameters in each scenario are summarized in Table 2]

J Derivation of optimal ITRs considered in Section 4]

From
Qg + aa 1+A + a X O—z Ozw Ozu
(Z, w, U)|A, X~N Mo + Na 4 4 pa X DIE Ozw 0'121; Owuy >
Ko + Ka 1+ + Kk X Ozu  Owu 0'12,,
and
ap + a,P(A=1X)+ a, X 02 0. O
(Z,VV,U)‘X ~N ;L0+/$(LHD(A: 1|X)+,LLT ,Z = Ozw 0'121) Twu 5
Ko+ koP(A =11X) 4+ £, X Oou Owu O

the following results hold,
1+ A4

1+A
]E[W|X5Aa U] = po + Ha—F5— 2

E[U|X, Z] = ko + ko P(A = 1]X) —&—mwX—i—

+uzX+

“(U — Ko — Ka — ke X), (16)

2
ou

(Z ag — o P(A=1|X) —a,X), (17)

E[U|X, W] = ko + koP(A =1|X) + k, X + %(W — po — HoP(A =11 X) — p X).
" (1s)
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Scenario | Parameter Setup

Number | b (X) | be(X) \ b3(X) | ba | b |
1 0.5+ 3X (1) — 5X(2) (0.25,0.25)” 0 025 | 8
2 0.5+ 3X (1) — 5X(2) (0.25,0.25)T 0 0o |8
3 2.3+ |X(1) -1 - |X(2) + 1| XT Sin(X(l)) — QCOS(X(Q)) 25| 4
4 0.25 — 6X (1) X (2) X7 0 0|5
5 0.1 - 2X7, X7 4X%) 08 | 8
6 —0.5 + exp(X(1)) — 3X(2) | (0.25,0.25)7 0 0 8

*X (1), X (2) denote the first and second dimensions of X.
* The parameter settings in scenarios 1-4 are considered by |Qi et al.| (2023).

Table 2: The varying parameters for each scenario.

Recall that

144 144
E(Y|X, A, Z,W,U) = bo + bl(X)+T + b (X)X + (bw + ba% 4 by(X)A - w)

<H’O +,U':0X+ %(U* Ko — HzX)> +wWa

u
then we can find that

1+ A 1+ A
E(Y|X,A,Z,U) = by + bl(X)+T + by (X)X + ( by +ba+T +bs(X)A —w)

2
u

1+ 4 144
:b0+b1(X)+T+bQ(X)X+ bu,+ba;+b3(X)Aw>

(uo e X + 0:’“ (U — ko — HIX)> +wE[W|X, A, Z,U],

(uo + pe X + 0:2“ (U — ko — /%X)) +wE[W|X, A, U],

u

1+ A 1+ A4
= bo+b1(X)T +b0(X)X + bw+baT +b3(X)A—w>

(uo-i-,uzX—i- %(U—/{O —/{IX)) +w (/J,Q—F/LIX-F %(U—mo —/izX)> ,

u u

1+ A 1+ A wu
= bo + bl(X)T + bQ(X)X + <bm +baT + bg(X)A) (Mo +H1X + 00_2

19)

(U = ko HxX)) ;

where the first equality is duo to Assumption [T} and the second equality is due to (I6), and
E(Y|X,A,W,U) =E(Y|X, A, Z,W,U)

1+ A 1+ A
= bo+b1(X)+T +b0(X)X + (bw +ba+T +b3(X)A—w>

(,uo + X + %(U — Ko — nmX)) + wW, (20)

u
where the first equality is due to Assumption [I] Furthermore, note that
E[r(W,1,X)|X, 2,U] = E[A(W, 1, X)|X, U]
=E[Y|X,A=1,U]
=EY|X,A=1,2U]

= by + b1 (X) + b2(X) X + (by + by + b3(X)) (uo + e X + a'“’“(U— Ko — nxX)> ,

2
o
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where the first and third equality is due to Assumption[] the second equality follows from Theorem 1
of Miao et al (2018a) under Assumptions[2]and[3] and the last equality is by (I9). Similarly,

E[h(W,-1,X)|X, Z, U] =E[Y|X,A=—1,Z,U]

O-'IU'lL
— b+ 00X+ (b = (X)) (o 4 X + 220 = = X))

o

On the other hand,

E[Yq(Z,1, X)I{A = 1}|X,W,U] = P(A = 1|X,W,U)E[Yq(Z,1, X)|X, A = 1,W, U]
=PA=1X,U)E[q(Z,1,X)|X,A=1UEY|X,A=1,W,U]
=E[Y|X,A=1,W,U]
=bo+ b1(X) + b2(X)X + (b + ba + b3(X) —w)

<u0 + g X + %(U— Ko — /izX)> +wW,

where the second equality is due to Assumption [I] and the third equality is due to Theorem 2.2 of
Cui et al(2023) under Assumptions[d]and 5] and the last equality is due to (20). Similarly,
=by + bQ(X)X + (bw — bg(X) — w)

<Mo + p X + %(U— Ko — HIX)> + wW.

u

Then we can find that

E[W(W, 1, X) — h(W, —1, X)|X, Z,U] = by (X) + (b + 263(X) (Mo S S m)) ,

2
u

E[Yq(Z, 1, X)I{A=1} - Yq(Z, —1, X)I{A = —1}|X, W, U]

= bl(X) + (ba +2b3(X)) (:U'O +,LL$X+ J:H(Uf Ko — K/IX)) :

2
u
Furthermore, we have

E[h(VVv 17X) - h(VV’ _LX)'XvZ] ZE[E[h(VV, 1aX) - h(VV, _1?X)|sz’ U]]

= bl(X) + (ba + 2b3(X)) (,U'O + NJIX + O;Uu (E[U|X7 Z] — Ko — "me)> ’

2
u

(21)
E[Yq(Z, I,X)]I{A = 1} — Yq(Z, —1, X)I[{A = —1}|X7 W]
=E[E[Yq(Z,1,X)I[{A=1} - Yq(Z, -1, X)[{A = -1} X,W,U]]
by (X) + (b + 2ba(X) <Mo X+ T (EUX, W)~ g m)) @

Therefore, plug (T7) and (I8) into (Z2I) and ([22) respectively, we can find that

Eh(W,1,X) — h(W,—1,X)|X, Z] = b1(X) + (ba + 2b3(X)) (po + pa X + U;;u (ko + kaP(A = 11X)
O—ZU

+h X+ —
UZ

(Z —ap—a,P(A=1X) — a,X) — ko — kX)),

E[Yq(Z,1, X)I{A = 1} - Yq(Z, -1, X){A = ~1}|X, W]
= b1(X) + (b + 25(X)) (10 + o X + 5% (0 + ko B(A = 1]X)
+ ke X + %(W — Mo — MaP(A = 1‘X) - /’LwX) — KRo — HacX))

w
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Hence,
= sign{by (X) + (ba + 2b3(X)) (110 + p1a X + %(m + koP(A = 1|X)

(Z —ag— a,P(A=1X) — a,X) — ko — X))},

O—Z’LL

2
0z

45 (X, W) = sign{E[YVq(Z,1, X)I{A = 1} — Yq(Z, -1, X)I[{A = —1}| X, W]}
— sign{b1(X) + (ba + 2b3(X)) (o + 1o X + 2% (ko + £ P(A = 1|X)

04

+ Kk X +

U’wu
+ ke X + U—Q(W — o — aP(A =1X) — 0 X) — ko — kX)) }

K Implementation details of numerical experiments

Step (i) The method we adopt is neural maximum moment restriction (NMMR), which employs
multilayer perceptron (MLP) to estimate the confounding bridges (Kompa et al.| [2022). The target
loss functions are set as

R(h) =E[(Y = (W, A, X))(Y' = h(W', A", X)) K.((Z,A, X), (2", A", X))],

R(q,a) =E[(1-I{A = a}q(Z,a, X)) (1-I{A" = a}q(Z',a, X)) K,(W, X), (W', X"))], fora € A,

where (Z/, W', A’, X', Y") are independent copies of (Z, W, A, X,Y),and K, : (Z x Ax X)? —
R, K, : (W x X)? — R denote continuous, bounded, and integrally strictly positive definite (ISPD)
kernels. In practice, we use the empirical risk instead, i.e.,

n

- 1

Rh)= —— i — hi)(y; — hi)ks i, 23
. 1 n
R(g,a) = nn=1) Z (1 —HKa; = a}qi)(1 — Ha; = a}qj)kw,ij, fora € A, (24)
i,j=1,i#j
where h; = h(w;,a:,%:), ¢ = (25,04, ), k55 = K.((21,04,%:)(25,a5,%5)) and ky, ;5 =
¥ij VERKERY i

Ky ((w;, z;), (wj, z;)). In addition, we add a penalty term with respect to network weights to
avoid overfitting.

As for the hyperparameters tuning procedure, we consider employing multilayer perceptrons with 2-
8 fully connected layers with a variable number of hidden units. We then perform a grid search over
the following parameters: learning rate, penalty coefficient, number of epochs, batch size, depth
of the network, and width of the network. For every permutation of these parameters, we train a
network based on the determined architecture and parameter values. Subsequently, we compute the
empirical risk. Our aim is to pinpoint the parameter combination that yields the lowest empirical
risk. These identified optimal parameters are then utilized to construct a refined neural network,
which, in turn, serves as the foundation for conducting estimations. The parameter setup is sum-
marized in Table[3] For detailed insights into the specific hyperparameter choices and architectural
dimensions, we refer to supplementary Section B in|Kompa et al.[(2022).

Parameter Value
Number of epoch | 150
Batch size 250

Learning rate 0.003
Penalty coefficient | 0.001, 0.01, 0.1
Depth of network | 4 (for estimating h)
8 (for estimating q)
Width of network | 80

Table 3: Parameter setup for step (i)
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Step (ii) For the estimation of preliminary ITRs, we follow the main text to solve the proposed
optimization problems. For instance, to estimate d7, we solve the following optimization problem:

§. € arg min P, [{A(W,1,X) — h(W, -1, X)}¢(9:(X, Z))] + plg:1I2. -

9-€G

Here, g, represents a measurable decision function in Gz : X x Z — R used to indicate d, (e.g.,
d.(X,Z) = sign(g.(X, Z))), ¢ denotes the hinge loss function ¢(x) = max{1—z,0}, and p, > 0
is a tuning parameter. As for the tuning procedure regarding p,, when g, is treated as a linear rule,
for each predefined p,, the data is divided into K folds. For each k € [K], we compute h(=*) and
gg"”, and then calculate the empirical value using the validation data. By averaging the empirical
values across K folds for each value of p,, we identify the parameter that maximizes the average
empirical value. The finalized parameter is then employed to determine §,. Such a procedure can
be extended. For example, when considering g, as a RKHS, it is advisable to apply the cross-fitting
procedure separately for each combination of pre-defined p, and bandwidth, with details presented

in|Qi et al.|(2023)). And the estimation of dy can be approached in a similar manner.

For more estimators regarding d; and d;,, we refer to Bennett and Kallus| (2023); |Sverdrup and
Cui (2023); 'Wang et al.| (2022)). One could further expand the estimation pipeline utilized in un-
confounded scenarios and leverage state-of-the-art machine learning techniques (Chen et al.| 2020;
Raghu et al.| 2017 [Yoon et al., [2018) to tackle the weighted classification problems and construct
estimates.

Step (iii) The estimation of 7 follows the procedure given in the main text. As for the selection of
bandwidth in the Nadaraya-Watson kernel regression estimator, we employ Scott’s rule of thumb
(Scott, 2015) and set v = 1.066n~Y/ 5 where & is the estimated standard deviation of X . For more
methods regarding estimation of J(-), we refer to (Chen| (2017); Dalmasso et al.| (2020); Dinh et al.
(2016); Sohn et al.|(2015).

For the convenience of readers to reproduce the results, the pseudo-code of the whole pipeline is
presented in Algorithm The code of implementation can also be accessed on GitHub

Algorithm 1: Estimation of optimal ITR d7*

Input: Training data
Construct MLP models to estimate h(w, a, ) and ¢(z, a, x):
Repeat for different penalty coefficients:
for each epoch do
for each batch do
Compute loss function (23) and (24) based on the batch
Update the internal model parameter
end
end

Finalize the penalty coefficient which minimizes the empirical loss, and obtain A(w, a, z) and
4(27 a? x)
Repeat for different p, and p,,:
for each batch do
Find §. 1, Gw,» by (7) and (€) based on the b-th batch, estimated bridge functions, and
specified p, and p,,, and then obtain dz,b, czw,b based on §, 4, Ju,b
Compute empirical value of d p, d., ; respectively using the data not covered in the batch
end
Finalize p, and p,, based on empirical values and then obtain d; (fw
Select bandwidth by Scott’s rule of thumb
Find 6(X;d., d,,) and then obtain #(X; d., d,)
Output: d7,, constructed by ()

zw

2https ://github.com/taoshen2022/0ptimal-Treatment-Regimes-for-Proximal-Causal-Learning
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L Additional results of numerical experiments

The experimental results with sample size n = 500 are presented in Figure @ The experimental
results with sample size n = 500 and an altered behavior policy (treatment is randomly assigned in
this case) are presented in Figure[5]
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Figure 4: Boxplots of the empirical value functions with n = 500.
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Figure 5: Boxplots of the empirical value functions with n = 500 and an altered behavior policy.
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M Additional results of real data application

Regarding the quantitative analysis, Table [] describes the estimated value functions of
our proposed ITR, alongside existing approaches, under four settings with increasing num-
bers of proxies. For Setting 1, Z = (pafil,paco2l),W = (phl,hemal). For
Setting 2, Z = (pafil,paco2l,potl),W = (phl,hemal,bilil). For Setting 3,
Z = (pafil,paco2l,potl,wt0),W = (phl,hemal,bilil,sodl). For Setting 4, Z =
(pafil, paco2l, potl, wt0, creal), W = (phl, hemal, bilil, sodl, albl).

V(dCf) V(dowl) V(dZ) V(dw) V(dzUw) V(dgw)
Setting 1 24.84 24.97 25.12 26.61 27.86 28.21
(3.06) (2.93) (4.69) (3.34) (2.28) (3.28)
Setting 2 24.81 24.97 25.60 25.74 26.32 27.02
(3.11) (2.94) (3.73) (3.57) (2.29) (2.95)
Setting 3 24.79 24.97 26.12 25.53 26.76 27.83
(3.02) (2.93) (3.61) (3.29) (2.76) (3.03)
Setting 4  24.90 24.97 25.26 25.81 27.38 27.96
(3.18) (2.93) 4.76) (3.03) 2.74) (3.07)

Table 4: Estimated values for different ITRs under different proxy variable settings.

As for the qualitative analysis, we present an illustrative example below. Regarding the estimated
ITRs in Setting 1, the coefficient of catl_lung is negative with a minor magnitude for d., con-
trasting with a positive and relatively large coefficient observed for d,,, which mirror the outcomes
outlined in |Q1 et al.| (2023). This finding suggests that, within the primary disease category of pa-
tients with lung cancer, d. advocates for undergoing RHC, while du displays a notably inconclusive
trend. As evidenced by 7, the prevailing trajectory for patients with cat1_lung = 1 involves a strong
inclination toward undergoing RHC, i.e., 7#(X) = 1, aligning with the guidance offered by d. Sig-
nificantly, the domain knowledge underscores the potential for patients with advanced lung cancer
to develop complications like pulmonary hypertension and coma, potentially warranting RHC for
assessing pulmonary vascular changes and informing treatment strategies (Galie et al.|[2009), which
lends support to the recommendations offered by our proposed regime. Furthermore, it is impor-
tant to note that the whole group of patients can be regarded as unions of multiple subgroups based
on various distinct features, and the superiority of d, is evident in some subgroups (e.g., amihx).
These results show that our proposed ITR offers superior efficacy compared to d;, dy and d y, as
our methodology incorporates selection through 7.
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