
Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

MMAL: Multi-Modal Analytic Learning for Exemplar-Free
Audio-Visual Class Incremental Tasks

Anonymous Author(s)

ABSTRACT
Class-incremental learning poses a significant challenge under an
exemplar-free constraint, leading to catastrophic forgetting and
sub-par incremental accuracy. Previous attempts have focused pri-
marily on single-modality tasks, such as image classification or
audio event classification. However, in the context of Audio-Visual
Class-Incremental Learning (AVCIL), the effective integration and
utilization of heterogeneous modalities, with their complemen-
tary and enhancing characteristics, remains largely unexplored.
To bridge this gap, we propose the Multi-Modal Analytic Learn-
ing (MMAL) framework, an exemplar-free solution for AVCIL that
employs a closed-form, linear approach. To be specific, MMAL in-
troduces a modality fusion module that re-formulates the AVCIL
problem through a Recursive Least-Square (RLS) perspective. Com-
plementing this, a Modality-Specific Knowledge Compensation
(MSKC) module is designed to further alleviate the under-fitting
limitation intrinsic to analytic learning by harnessing individual
knowledge from audio and visual modality in tandem. Comprehen-
sive experimental comparisons with existing methods show that
our proposed MMAL demonstrates superior performance with the
accuracy of 76.71%, 78.98% and 76.19% on AVE, Kinetics-Sounds and
VGGSounds100 datasets, respectively, setting new state-of-the-art
AVCIL performance. Notably, compared to those memory-based
methods, our MMAL, being an exemplar-free approach, provides
good data privacy and can better leverage multi-modal information
for improved incremental accuracy.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Com-
puter vision; Computer vision tasks; Scene understanding.
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Figure 1: Illustration of the audio-visual class-incremental
learning (AVCIL) task w/ and w/o exemplar.

1 INTRODUCTION
The inherent correlation between audio and visual signals empow-
ers humans to associate sounds with their sources, such as identify-
ing a barking dog. By leveraging the enhancing and complementary
nature of audio and vision, these endeavors aim to enhance the
understanding and capabilities of models for tasks such as speech
recognition [1, 8, 37, 52, 61], sound localization [12, 14, 22, 23, 31,
39, 47, 48, 50] and audio-visual event classification [7, 16, 55, 60,
65]. The aforementioned studies demonstrated the effectiveness of
jointly modeling audio-visual modalities in capturing meaningful
cross-modal semantic correlations. Inspired by their success, in this
paper, we tackle the problem of identifying the sounding objects in
synchronized audio-video streams. To be mentioned, it is crucial
for real-world applications where the set of classes (e.g., types of
sounds or visual events) may evolve or where the model needs to in-
tegrate new information into an ever-growing knowledge base. By
focusing on preserving semantic similarity and learned correlations
between modalities, we aim to mitigate catastrophic forgetting (i.e.,
a model loses previously acquired knowledge or experiences a sig-
nificant performance decline when learning new information) and
enhance the resilience and adaptability of audio-visual systems.

Class-incremental learning (CIL) [49, 62] progressively updates
network parameters by incorporating training data from differ-
ent unseen classes over time. Existing methodologies have concen-
trated mainly on employing exemplar-free [25, 28, 32] and memory-
based [15, 34–36, 62] solutions to mitigate catastrophic forgetting.
Specifically, the former one introduces additional regularization
terms to the loss function. While the later one leverages external
memory modules or knowledge distillation to selectively replay
past data samples, thereby achieving superior results.

As a viable alternative for exemplar-free CIL, Analytic Learning
(AL)-based [68–71] methods address the issue of catastrophic for-
getting by identifying the iterative mechanism as its main cause and
substituting it with linear recursive tools. These methods achieve re-
sults comparable to those of memory-based techniques and exhibit
robust performance. Nonetheless, the current AL-based methods
may encounter the challenge of under-fitting due to their reliance
on a single linear projection and the frozen backbone.
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While prior Class-incremental learning (CIL) works are mostly
limited to a single modality and cannot acquire concise multi-modal
representations with the awareness of different classes, there is a
growing need to extend these methods to broader domains and
modalities. To this end, a few attempts have been made in Audio-
visual Class-incremental learning (AVCIL), especially in the field of
audio-visual event classification [40, 46]. Specifically, they utilize
class token distillation and continual grouping to prevent knowl-
edge forgetting of previous tasks, thereby improving the model’s
adaptability to capture new and discriminative audio-visual event
categories. However, these works explore the data from previous
tasks, making them not feasible in privacy-sensitive scenarios with
confidential data (e.g., in private property and restricted area), as
illustrated in Figure 1.

To solve the aforementioned issues, we propose a novel yet prac-
tical framework, namely Multi-Modal Analytic Learning (MMAL),
for audio-visual CIL. Specifically, MMAL contains one modality
fusion module re-formulating the AVCIL problem in a Recursive
Least-Square (RLS) manner, and one Modality-Specific Knowledge
Compensation (MSKC) module remedying the under-fitting limita-
tion of the fusion module due to the frozen audio-visual backbone
and linearity (i.e., the inherent properties of analytic learning). This
study advances AL-based CIL methods by introducing multi-modal
incremental learning for the first time and proposes a compensation
module that simultaneously leverages individual modality knowl-
edge (i.e., A-MSKC and V-MSKC), thereby addressing their inherent
limitations without sacrificing the fundamental advantages. Our
key contributions can be summarized as follows.

(1) This paper is a pioneering work to provide the technical
route of analytic learning to address the challenging multi-
modal exemplar-free AVCIL problem.

(2) The fusion module of MMAL re-formulates the AVCIL prob-
lem into a RLS problem by freezing the audio-visual back-
bone. This allows the module to emulate its joint training
counterpart that adopts data from both current and historical
incremental steps.

(3) To address the intrinsic under-fitting issue associated with
analytic learning, we propose the Modality-Specific Knowl-
edge Compensation (MSKC) module. This allows for the
simultaneous integration of distinct audio and visual modal-
ity information for compensation, enhancing the model’s
overall learning capability.

(4) Through extensive experiments on three widely-used bench-
mark audio-visual datasets, AVE, Kinetics-Sounds, and VG-
GSound100, we demonstrate the superiority of our MMAL
over state-of-the-art competitors in AVCIL scenarios.

2 RELATEDWORK
2.1 Audio-Visual Learning
Previous research has extensively explored the field of audio-visual
learning, with numerous methods [3, 5, 30, 38, 42, 50] aiming to
explore their temporal correlations, enhancing and complementary
characteristics in synchronized streams. A comprehensive review
has been presented [57], which indicates the key point in audio-
visual learning is establishing cross-modal alignment by repelling

non-matching audio-visual embeddings while attracting the match-
ing ones. This draws increasing insight into interdisciplinary fields
such as speech separation [17–19, 43, 63], active speaker detec-
tion [10, 29, 33, 53] and sound localization [41, 47, 48, 51, 58]. In this
paper, our primary objective is to develop compact audio-visual rep-
resentations with non-stationary audio-visual pairs, specifically for
CIL tasks. This task poses greater challenges compared to the afore-
mentioned tasks because of the complexities arising from sequential
tasks and feature adaptation to changing audio-visual inputs over
time. There are a few attempts [40, 46] on AVCIL addressing above
challenges, however, they still require to store historical samples.

2.2 Class-Incremental Learning
The primary objective of CIL is to develop strategies that mitigate
the negative impact of forgetting previously learned classes while
accommodating the introduction of new classes. Existing CIL meth-
ods can be categorized into two main types, i.e., memory-based,
and exemplar-free methods.
Memory-basedWork. Memory-based methods [6, 9, 49, 64] lever-
age additional data, such as exemplars/memory, to tackle CIL. In
particular, they leverage the stored data from previous tasks to rein-
force learning and prevent catastrophic forgetting. The mechanism
was first introduced by iCaRL [49], followed by various attempts
due to its superior performance. In [59], an additional trainable
layer was designed to correct the bias towards new classes. The
LUCIR [21] creates an innovative adaptationwhich replaces the soft-
max layer with a cosine layer. In PODNet [15], a spatial-based dis-
tillation loss is introduced to retain previously acquired knowledge
while accommodating new information. While the above memory-
based methods have obtained satisfactory results, they still have
the requirement of storing previous samples.
Exemplar-free Work. Exemplar-free methods avoid revisiting
historical samples during training, which can be mainly catego-
rized into regularization-, and prototype-, and the recent analytic
learning-based types, which are discussed as follows.

1) Regularization-based methods introduce additional constraints
to the learning process to minimize the impact of new tasks on
previously learned knowledge. For example, EWC [28] protects the
critical parameters associated with previous tasks, ensuring their
stability and minimizing their susceptibility to change during train-
ing for new tasks. Based on EWC, RWalk [11] defines a Riemannian
metric to calculate a penalty term for the loss function, thereby
restricting the magnitude of changes in the parameters. Other ex-
amples include LfL [25] which penalizes differences in network
activations, and LwF [32] prevents activation changes between old
and new networks.

2) Prototype-based methods use past class prototypes to prevent
forgetting. For example, prototype augmentation is proposed in
PASS [66] to improve the discrimination of the classes learned
in different incremental steps. A prototype selection mechanism
is introduced in SSRE [67]. FeTrIL [45] combines a fixed feature
extractor and a pseudo-feature generator to improve the stability-
plasticity balance.

3) Analytic learning-based methods draw inspiration from [20, 69]
which leverage least squares to obtain closed-form solutions for
network training. In particular, ACIL[71] first transforms CIL into
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Figure 2: Overall framework of our proposed MMAL, starting with (a) audio-visual fusion backbone training via BP on the base
classes, followed by (b) audio-visual analytic re-alignment, and finally (c) audio-visual CIL steps. At each incremental step, it
consists of a fusion module (green part) for AVCIL in a RLS manner, and a MSKC module (red and blue parts) to remedy the
under-fitting limitation in the fusion module.

a recursive analytic learning process which releases the need of
storing exemplars by preserving a correlation matrix. DS-AL [68]
employs a dual-stream approach to further enhance the fitting
ability of ACIL. The following work GKEAL [70] specializes in the
few-shot CIL setting by introducing a Gaussian kernel process.

As an emerging and promising CIL branch, AL-based methods
demonstrate impressive performance, even on few-shot scenarios.
However, existing AL-based CIL works primarily focus on explor-
ing single-modality solutions, neglecting the potential benefits of
multi-modal learning, particularly in audio-visual CIL scenarios.
Thus, the integration of audio and visual modalities remains largely
unexplored. Furthermore, the AL-based methods require freezing
the backbone during the incremental steps, which will cause serious
under-fitting limitation due to the complexity of audio-visual data.
As a result, we are motivated to explore the multi-modal analytical
CIL solution in audio-visual settings.

3 PROPOSED METHOD
3.1 Preliminaries
Class-incremental learning aims to train the model FΘ with param-
eters Θ through a sequence of 𝐾 tasks {T1,T2, . . . ,T𝐾 }. In AVCIL
setting, for an incremental step T𝑘 , its corresponding training set
can be denoted as Dtrain

𝑘
∼ {𝑋 train

𝑘,𝑎
, 𝑋 train
𝑘,𝑣

, 𝑌 train
𝑘

}, where 𝑋𝑘,𝑎 and
𝑋𝑘,𝑣 are the sample’s audio and visual modalities respectively in
D𝑘 , and 𝑌𝑘 ∈ C𝑘 is the corresponding label, where C𝑘 is the label
space of task T𝑘 . The number of samples of D𝑡𝑟𝑎𝑖𝑛 is 𝑁𝑘 . For any
two tasks’ training label space, C𝑘1 and C𝑘2, they are mutually

exclusive, i.e., C𝑘1 ∩ C𝑘2 = ∅. The objective of AVCIL at incremen-
tal step 𝑘 is to train the networks given Dtrain

𝑘
, and test them on

Dtest
0:𝑘 (with Dtest

𝑘
∼ {𝑋 test

𝑘,𝑎
, 𝑋 test
𝑘,𝑣

, 𝑌 test
𝑘

}) consisting of data from all
seen classes up to step 𝑘 . More importantly, for exemplar-free CIL,
exemplar/memory from previous tasks are not allowed to be used
during the training of task T𝑘 .

3.2 Analytic Audio-Visual Incremental Learning
In this subsection, we will give details of the fusion module of
our proposed method. The fusion module aims to transform the
traditional AVCIL task into a RLS task and give its analytic solution
in a one-epoch training style. It starts with an audio-visual fusion
backbone via conventional backpropagation (BP) iterative training,
followed by the audio-visual analytic re-alignment, and finally the
audio-visual CIL procedures, as illustrated in Figure 2.
Audio-Visual Fusion Backbone Training via BP. Given an input
sequence of visual frames x𝑣 and the corresponding audio signal
x𝑎 , we first use the pre-trained audio and visual encoder (e.g., Au-
dioMAE [24] and VideoMAE [56]) to extract high-level visual and
audio embeddings, respectively. Afterward, the audio-guided visual
attention mechanism is employed to aggregate the visual embed-
ding by considering both spatial and temporal dimensions. This
has been demonstrated to be highly effective in capturing corre-
lations between audio and visual features [54]. Lastly, we add the
audio-guided visual embedding and the audio embedding as the
joint audio-visual embeddings and then feed into the classifier. The
model is trained on the base classes using backpropagation (BP)

2024-04-13 11:29. Page 3 of 1–10.
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for multiple epochs. Subsequently, when provided with an input
sample, the network produces the following output:

𝑌 = 𝑓softmax (FΘ (𝑋𝑎, 𝑋𝑣)𝑊FFN), (1)

where FΘ (𝑋𝑎, 𝑋𝑣) denotes the output of the audio-visual backbone,
𝑊FFN are the parameters of the linear feed-forward classifier, and
𝑓softmax denotes the softmax function.

Once the audio-visual fusion backbone is trained on the base
classes, we freeze this backbone and replace the final linear clas-
sifier with a 2-layer analytic network for re-alignment and the
forthcoming incremental steps, as detailed in the following section.
Audio-Visual Analytic Re-alignment. With the network trained
on the base classes, MMAL seeks to detach the backbone and attach
it with a 2-layer linear feed-forward network, in which the first
layer conducts embedding up-sampling before feeding to the subse-
quent layer for classification. This procedure enables the network’s
learning to match the learning dynamics of analytic learning.

Specifically, we feed the input samples (𝑋 train
0,𝑎 , 𝑋 train

0,𝑣 ) of the
base classes into the backbone to extract the joint audio-visual
embeddings, and then up-sample the embeddings followed by an
activation function:

𝑋𝑎𝑣0 = 𝑓𝜎 (FΘ (𝑋 train
0,𝑎 , 𝑋 train

0,𝑣 )𝑊 𝑎𝑣
𝑢𝑝 ), (2)

where𝑊 𝑎𝑣
𝑢𝑝 denotes the parameters of the up-sampling layer,𝑋𝑎𝑣 ∈

R𝑁0×𝑑𝑎𝑣 with 𝑑𝑎𝑣 being the up-sampling size, and 𝑓𝜎 is the ac-
tivation function. Here, we simply follow other analytic meth-
ods [69, 71] to adopt the random projection for𝑊 𝑎𝑣

𝑢𝑝 and ReLU
for 𝑓𝜎 .

We then map the up-sampled embeddings into the label matrix
𝑌 train
0 via the linear classifier layer, whose weights can be computed
by solving:

argmin
𝑊 𝑎𝑣

0

=∥ 𝑌 train
0 − 𝑋𝑎𝑣0 𝑊

𝑎𝑣
0 ∥2𝐹 +𝜂 ∥𝑊 𝑎𝑣

0 ∥2𝐹 , (3)

where ∥ · ∥𝐹 is the Frobenius form, and 𝜂 is the regularization term.
Then, the optimal solution can be obtained as:

�̂� 𝑎𝑣
0 = ((𝑋𝑎𝑣0 )𝑇𝑋𝑎𝑣0 + 𝜂𝐼 )−1 (𝑋𝑎𝑣0 )𝑇𝑌 train

0 , (4)

where �̂� 𝑎𝑣
0 is the estimated parameters of the linear classifier layer,

and ·𝑇 indicates the transpose operation.
Analytic Audio-Visual Class-Incremental Learning. Following
the analytic re-alignment of the joint audio-visual embeddings, we
then move to the AVCIL steps in an analytic learning manner.

Specifically, the learning problem using all seen data at step 𝑘 −1
can be extended from (3) to:

argmin
𝑊 𝑎𝑣

𝑘−1

=∥ 𝑌 train
0:𝑘−1 − 𝑋

𝑎𝑣
0:𝑘−1𝑊

𝑎𝑣
𝑘−1 ∥2𝐹 +𝜂 ∥𝑊 𝑎𝑣

𝑘−1 ∥2𝐹 , (5)

where

𝑌 train
0:𝑘−1 =


𝑌 train
0 0 0 · · · 0
0 𝑌 train

1 0 · · · 0
.
.
.

0 0 · · · 0 𝑌 train
𝑘−1


, 𝑋𝑎𝑣0:𝑘−1 =


𝑋𝑎𝑣0
𝑋𝑎𝑣1
.
.
.

𝑋𝑎𝑣
𝑘−1


Similar to (4), the solution to (5) can be obtained as:

�̂� 𝑎𝑣
𝑘−1 = ((𝑋𝑎𝑣0:𝑘−1)

𝑇𝑋𝑎𝑣0:𝑘−1 + 𝜂𝐼 )
−1 (𝑋𝑎𝑣0:𝑘−1)

𝑇𝑌 train
0:𝑘−1, (6)

where �̂� 𝑎𝑣
𝑘−1 ∈ R𝑑𝑎𝑣×

∑𝑘−1
𝑖=1 𝑑𝑦𝑖 .

To goal of AVCIL under exemplar-free constraint is to sequen-
tially learn new tasks on Dtrain

𝑘
given a network trained onDtrain

0:𝑘−1.
Nevertheless, the equation above shows that previous data is still
required. To reduce this dependency, let 𝑅𝑎𝑣

𝑘−1 = ((𝑋𝑎𝑣
𝑘−1)

𝑇𝑋𝑎𝑣
𝑘−1 +

𝜂𝐼 )−1, we redefine the CIL process as a RLS task as outlined in the
subsequent theorem.
Theorem 1. Given training data 𝐷train

𝑘
and estimated weights of

the final classifier layer �̂� 𝑎𝑣
𝑘−1 of task T𝑘−1, �̂� 𝑎𝑣

𝑘
can be recursively

obtained by:

�̂� 𝑎𝑣
𝑘

= �̂� 𝑎𝑣
𝑘−1 − 𝑅

𝑎𝑣
𝑘
(𝑋𝑎𝑣
𝑘

)𝑇𝑋𝑎𝑣
𝑘
�̂� 𝑎𝑣
𝑘−1 + 𝑅

𝑎𝑣
𝑘
(𝑋𝑎𝑣
𝑘

)𝑇𝑌 train
𝑘

, (7)

where

𝑅𝑎𝑣
𝑘

= 𝑅𝑎𝑣
𝑘−1 − 𝑅

𝑎𝑣
𝑘−1 (𝑋

𝑎𝑣
𝑘

)𝑇 (𝑋𝑎𝑣
𝑘
𝑅𝑎𝑣
𝑘−1 (𝑋

𝑎𝑣
𝑘

)𝑇 + 𝐼 )−1𝑋𝑎𝑣
𝑘
𝑅𝑎𝑣
𝑘−1, (8)

proof. See the Supplementary Material.
Theorem 1 suggests that the weights of joint training can be

obtained by recursively training on the data from Dtrain
1 to Dtrain

𝑘
sequentially, which implies that, by freezing the audio-visual back-
bone, the AVCIL is equalized to its joint training counterpart as
shown in the theorem. This means the model trained incrementally
yields the same weights as that trained on both current and all
previous data.

3.3 Modality-Specific Knowledge Compensation
The audio-visual fusion module is built on the joint audio-visual
embeddings. Moreover, since the AVCIL problem is reformulated
to a RLS task, the audio-visual backbone has to be freezed, except
the final linear classifier. However, when the training samples are
complex, the fusion module might not be sufficient to capture the
complementary representations of the multi-modal data, thus the
under-fitting might occur. To alleviate this limitation, we introduce
the MSKC module by leveraging the individual information from
audio and visual modality to enhance the fusion module.

This MSKC module contains an audio MSKC (A-MSKC) and a
visual MSKC (V-MSKC) sub-module, which operate in a similar
manner to the main fusion module, except that the label matrix
for updating �̂� 𝑎𝑣

𝑘
is generated using the residue from the fusion

module. For brevity, in the following part, we take the A-MSKC for
explanation while the V-MSKC follows the same rules.
Audio-Visual Analytic Re-labelling. Without loss of generality,
assume that we have conducted the fusion stream at step 𝑘 , (i.e.,
obtaining �̂� 𝑎𝑣

𝑘
and 𝑅𝑎𝑣

𝑘
) and the A-MSKC sub-module at step 𝑘 − 1

(i.e., obtaining theweightsmatrix�̂� 𝑎
𝑘−1 and its corresponding𝑅

𝑎
𝑘−1).

Let 𝑌𝑘 be the residue after conducting the fusion module, i.e.,

𝑌𝑘 = [0𝑁0:𝑘−1×𝑑𝑦𝑘−1𝑌
train
𝑘

] − 𝑋𝑎𝑣
𝑘
�̂� 𝑎𝑣
𝑘
, (9)

where the zero matrix is due to the mutually exclusive AVCIL set-
ting. Let 𝑋𝑎

𝑘
be the output the corresponding up-sampled audio

embedding, i.e.,
𝑋𝑎
𝑘
= 𝑓𝜎 (𝑋𝑎

′

𝑘
𝑊 𝑎
𝑢𝑝 ), (10)

where𝑊 𝑎
𝑢𝑝 represents the weights of the up-sampling layer of the

A-MSKC sub-module.
The𝑌𝑘 can be viewed as the residual error, where the joint audio-

visual embedding cannot reach. The key idea of the MSKC module
is to leverage the individual information from both audio and visual
modality to remedy this error, attempting to further reduce the

2024-04-13 11:29. Page 4 of 1–10.
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Algorithm 1 The procedure of MMAL

Require: Training dataDtrain
0:𝐾 , regularization weight𝜂, audio com-

pensation weight 𝜆𝑎 , and visual compensation weight 𝜆𝑣 .
1: Audio-Visual Fusion Backbone Training: Train the audio-

visual fusion backbone via BP on the base classes.
2: Audio-Visual Analytic Re-alignment: Obtain the base
weight �̂� 𝑎𝑣

0 using (4) and 𝑅𝑎𝑣0 = ((𝑋𝑎𝑣0 )𝑇𝑋𝑎𝑣0 + 𝜂𝐼 )−1, 𝑅𝑎0 =

((𝑋𝑎0 )
𝑇𝑋𝑎0 + 𝜂𝐼 )−1, 𝑅𝑣0 = ((𝑋 𝑣0 )

𝑇𝑋 𝑣0 + 𝜂𝐼 )−1.
3: Audio-Visual Analytic Re-labelling: Obtain the new labels

for MSKC module using (11).
4: for k=1 to K (with Dtrain

𝑘
,�̂� 𝑎𝑣

𝑘−1,�̂�
𝑎
𝑘−1,�̂�

𝑣
𝑘−1, 𝑅

𝑎𝑣
𝑘−1, 𝑅

𝑎
𝑘−1, and

𝑅𝑣
𝑘−1) do

5: i) Update 𝑅𝑎𝑣
𝑘
, 𝑅𝑎
𝑘
, and 𝑅𝑣

𝑘
, using (8), (13) and (15) respectively.

6: ii) Update �̂� 𝑎𝑣
𝑘
,�̂� 𝑎

𝑘
, and �̂� 𝑣

𝑘
, using (7), (12), and (14) respec-

tively.
7: end for

forgetting and improve the incremental accuracy. To achieve this,
we construct an audio recursive CIL and a visual recursive CIL
procedures for audio and video, respectively. Akin to the audio-
visual fusion module indicated in Theorem 1, the A-MSKC module
follows a similar recursive procedure.

Before conducting the following step, note that 𝑌𝑘 is the label
residual error containing both the current and all previous data,
however, under the exemplar-free constraint, we only have access to
the dataDtrain

𝑘
at step 𝑘 . Therefore, to prevent the false supervision

for the data at step 𝑘 , let

𝑌𝑘 = [0𝑁0:𝑘−1×𝑑𝑦𝑘−1 {𝑌𝑘 }𝑑𝑦𝑘 ], (11)

only contain the last 𝑑𝑦𝑘 columns for present data Dtrain
𝑘

.
Audio MSKC. Upon obtaining the input 𝑋𝑎

𝑘
and new labels 𝑌𝑘 ,

we can proceed to recursively update the weight𝑊 𝑎
𝑘
of A-MSKC

following the same procedure indicated in Theorem 1. Then we
have

�̂� 𝑎
𝑘
= �̂� 𝑎

𝑘−1 − 𝑅
𝑎
𝑘
(𝑋𝑎
𝑘
)𝑇𝑋𝑎

𝑘
�̂� 𝑎
𝑘−1 + 𝑅

𝑎
𝑘
(𝑋𝑎
𝑘
)𝑇𝑌𝑘 , (12)

where

𝑅𝑎
𝑘
= 𝑅𝑎

𝑘−1 − 𝑅
𝑎
𝑘−1 (𝑋

𝑎
𝑘
)𝑇 (𝑋𝑎

𝑘
𝑅𝑎
𝑘−1 (𝑋

𝑎
𝑘
)𝑇 + 𝐼 )−1𝑋𝑎

𝑘
𝑅𝑎
𝑘−1, (13)

Visual MSKC. Similarly, to leverage visual modality to compensate
the fusion module, we have

�̂� 𝑣
𝑘
= �̂� 𝑣

𝑘−1 − 𝑅
𝑣
𝑘
(𝑋 𝑣
𝑘
)𝑇𝑋 𝑣

𝑘
�̂� 𝑣
𝑘−1 + 𝑅

𝑣
𝑘
(𝑋 𝑣
𝑘
)𝑇𝑌𝑘 , (14)

where

𝑅𝑣
𝑘
= 𝑅𝑣

𝑘−1 − 𝑅
𝑣
𝑘−1 (𝑋

𝑣
𝑘
)𝑇 (𝑋 𝑣

𝑘
𝑅𝑣
𝑘−1 (𝑋

𝑣
𝑘
)𝑇 + 𝐼 )−1𝑋 𝑣

𝑘
𝑅𝑣
𝑘−1, (15)

Finally, during the inference stage, the predictions can be ob-
tained as follows:

𝑌𝑘 = 𝑋𝑎𝑣
𝑘
�̂� 𝑎𝑣
𝑘

+ 𝜆𝑎𝑋𝑎𝑘�̂�
𝑎
𝑘
+ 𝜆𝑣𝑋 𝑣𝑘�̂�

𝑣
𝑘
, (16)

where 𝜆𝑎 and 𝜆𝑣 denote the compensation ratio of audio and visual
modality respectively, indicating the degree to which the network
relies on the audio and video to compensate andmakemore accurate
prediction. The MMAL is summarized in Algorithm 1.

4 EXPERIMENTS
4.1 Datasets
We conduct experiments with our proposed method compared to
state-of-the-art baselines on three public datasets i.e., AVE [54],
Kinetics-Sounds [4] and VGGSound [13]. Specifically, the AVE
dataset consists of 4K 10-seconds videos from 28 audio-visual event
classes. The Kinetics-Sounds dataset contains around 24K 10-seconds
videos from 31 human action classes, while the VGGSound dataset
contains around 200K 10-seconds YouTube videos from 309 classes.
We follow the experimental protocol adopted in [46], in which 30
classes are randomly selected from the Kinetics-Sounds containing
23K samples in total, and 100 classes (i.e., VGGSound100) are ran-
domly selected from the original VGGSound dataset containing 60K
samples in total. For each class of the VGGSound100, 50 samples
are randomly selected for validation and testing, respectively.

In terms of class-incremental setting, since the AVE and Kinetics-
Sounds datasets contain few classes, we evenly divide the AVE into
4 incremental steps, each of which contains 7 classes, and divide the
Kinetics-Sounds into 5 incremental steps, each of which contains
6 classes. While for the VGGSound100 dataset, we explore two
different incremental scenarios: 0Base-10Task, and 50Base-𝑛Task.
The former evenly splits 100 classes into 10 tasks, which mainly
follows the setting in [46], while the latter first selects 50 classes
as the base classes and then distributes the other across 𝑛 tasks. It
shoud be noted that for the AVE, Kinetics-Sounds and the 0Base-
10Task setting on VGGSound100, the base classes are considered to
be those classes of the first task. Most existing methods only report
small-phase results, e.g., those of 𝐾 = 4, 5, 10, we include 𝐾 = 25, 50
as well to validate MMAL’s large-step performance.

4.2 Evaluation Metric
The key to successful incremental learning lies in maintaining a
delicate balance between plasticity and stability, enabling the ac-
quisition of new knowledge without forgetting previously learned
information. Therefore, two metrics, namely average incremental
accuracy (𝐴𝑐𝑐) and performance drop rate (𝑃𝐷), are used to evalu-
ate CIL methods. 𝐴𝑐𝑐 = 1

𝐾+1
∑𝐾
𝑘=0𝐴𝑐𝑐𝑘 , where 𝐴𝑐𝑐𝑘 indicates the

average test accuracy of the model incrementally trained at step
𝑘 by testing it on all seen classes (i.e., Dtest

0:𝑘 ), evaluates the overall
performance of CIL algorithms. A higher 𝐴𝑐𝑐 score is preferred.
𝑃𝐷 = 𝐴𝑐𝑐00 − 𝐴𝑐𝑐

0
𝐾
, where 𝐴𝑐𝑐0

𝐾
denotes the average accuracy at

last step 𝐾 by testing it on the base classesDtest
0 , reveals the degree

to which a CIL method forgets the base classes in the first step,
which can reflect the degree of the model’s retention ability of the
old knowledge.

4.3 Implementation Details
We conduct all our experiments with PyTorch [44]. For the au-
dio encoder and visual encoder, we use the recent self-supervised
pre-trained AudioMAE [24] and VideoMAE [56], respectively. Fol-
lowing the protocol of AudioMAE, the raw audio waveform is
transformed into 128-dimensional spectrogram with a 25ms Han-
ning window and a 10ms shift before feeding into the audio encoder.
Similar to VideoMAE, 16 frames are randomly selected from the

2024-04-13 11:29. Page 5 of 1–10.
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Table 1: The overall results of different incremental approaches on the AVE, Kinetics-Sounds, and VGGSound100 datasets. The
evaluation metrics are Acc and PD. The bold part denotes the overall best results, and the underlined part denotes the best
results of the compared baselines. The experimental results show that our MMAL achieves the SOTA incremental performance
over other methods on all three datasets.

Method Exemplar-free?
AVE Kinetics-Sounds VGGSound100

0Base-4Task 0Base-5Task 0Base-10Task 50Base-10Task
Acc (%) ↑ PD (%) ↓ Acc (%) ↑ PD (%) ↓ Acc (%) ↑ PD (%) ↓ Acc (%) ↑ PD (%) ↓

Fine-tuning ! 42.40 76.81 41.18 90.01 26.21 81.40 53.02 59.52
LwF [32] ! 58.07 49.04 65.54 40.05 59.34 33.00 55.66 11.64
ACIL [71] ! 70.56 21.16 72.64 23.86 73.15 19.01 71.87 11.28
iCaRL-NME [49] % 56.15 43.27 64.51 44.08 56.19 40.99 55.28 29.96
iCaRL-FC [49] % 65.88 37.50 65.54 44.62 64.22 42.40 60.25 33.28
SS-IL [2] % 61.94 33.66 69.71 25.00 69.20 28.00 66.75 16.60
AFC-NME [26] % 68.46 52.89 69.13 54.03 61.41 63.60 58.00 20.68
AFC-LSC [26] % 65.21 60.58 67.02 54.57 57.76 58.20 56.22 28.88
AV-CIL [46] % 74.04 22.12 73.06 22.04 72.80 21.80 67.83 14.63
MMAL ! 76.71 18.82 78.98 18.72 76.19 17.20 74.19 8.64

             (d) VGGSound100: 50Base-10Task(c) VGGSound100: 0Base-10Task(b) Kinetics-Sounds: 0Base-5Task(a) AVE: 0Base-4Task

Figure 3: Testing accuracy at each incremental step on (a) AVE, (b) Kinetics-Sounds, and (c),(d) VGGSound100 (i.e., 0Base-10Task
and 50Base-10Task). The results show that as the incremental step increases, our MMAL generally outperforms other state-of-
the-art incremental learning methods.

video clip and then feed into the visual encoder. During the con-
ventional BP training on the base classes, we freeze the pre-trained
audio and visual encoder, and only train the remaining parts con-
taining audio-guided visual attention layer, the fusion layer and
the final classifier, with a maximum training epochs of 200. We use
Adam [27] to optimize the model with learning rate and weight
decay of 1e-3 and 1e-4, respectively, with a batch size of 256. All
experiments are conducted using one Nvidia A100 GPU with the
results averaged over 3 runs. Note that in our MMAL, the audio-
visual backbone is only trained during the BP-based training. After
which, the parameters of the backbone are fixed and used as a
feature extractor during the following incremental steps.

For the regularization parameter 𝜂, we fix it at 𝜂 = 1 for all
three datasets. For the embedding up-sampling dimension of the
fusion module, audio MSKC and visual MSKC (i.e., 𝑑𝑎𝑣, 𝑑𝑎 and
𝑑𝑣 ), we set to (8K, 15K, 15K), (8K, 15K, 15K), and (20K, 20K, 20K)
for AVE, Kinetics-Sounds and VGGSound100, respectively. For the
compensation ratio of audio and visual modality (𝜆𝑎, 𝜆𝑣 ) in (16), we
set to (0.8, 0.9), (0.5, 1.0), (0.7, 1.0) for AVE, Kinetics-Sounds and
VGGSound100, respectively.

4.4 Main Results
To demonstrate the effectiveness of the proposed MMAL, we com-
prehensively compare it to previous representative and state-of-
the-art baselines: 1) Fine-tuning: the simplest incremental learning
method which initializes the model with the parameters trained
from the last step and re-train it on the current step without any
constraints to prevent the catastrophic forgetting issue. 2) LwF [32],
an exemplar-free method that preserves outputs of previous exam-
ples to reduce the forgetting of the old task and act as a regularizer
for the new task. 3) ACIL [71]: an exemplar-free AL-based method
that identifies the iterative mechanism as the primary cause of
catastrophic forgetting and replace it with linear recursive tools.
4) iCaRL [49]: an memory-based method that uses the exemplars
in combination with distillation to avoid forgetting. We report the
experimental results with both nearest-mean-of-exemplars (NME)
classification strategy and the classifier, denoted as iCaRL-NME
and iCaRL-FC, respectively. 5) SS-IL [2]: an exemplar-based method
that consists of separated softmax output layer combined with
task-wise knowledge distillation network. 6) AFC [26]: a knowl-
edge distillation method that minimizes the upper bound of the
expected loss increased over the previous tasks. We also report

2024-04-13 11:29. Page 6 of 1–10.
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Table 2: The evolution of average accuracy 𝑨𝒄𝒄 and last step
accuracy 𝑨𝒄𝒄𝑲 with the growing incremental step on the
VGGSound100 dataset.

Num. Task Acc (%) ↑ 𝑨𝒄𝒄𝑲 (%) ↑
5 74.57 70.30
10 74.19 70.28
25 73.95 70.32
50 73.96 70.31

Table 3: Accuracy comparison of our MMAL w/ and w/o the
MSKC module.

Module AVE Kinetics-Sounds VGGSound100
Dtest

0 Dtest
1:K Dtest

0 Dtest
1:K Dtest

0 Dtest
1:K

w/o MSKC 58.65 67.59 78.49 54.92 74.60 59.87
w/ MSKC 57.69 76.90 76.88 67.53 73.20 63.71

the experimental results with both NME classification strategy and
the classifier, denoted as AFC-NME and AFC-LSC, respectively. 7)
AV-CIL [46]: an audio-visual incremental learning method that in-
corporates the dual-audio-visual similarity constraint and visual
attention distillation.

We compare the proposed MMAL with the above methods in Ta-
ble 1.We can see that our proposedMMAL outperforms recent state-
of-the-art methods significantly, including both memory-based and
exemplar-free methods. Specifically, on the AVE dataset, our MMAL
outperforms the state-of-the-art Acc and PD results by 2.67 and
3.30, respectively. For the Kinetics-Sounds dataset, our method out-
performs the state-of-the-art method, i.e., AV-CIL, by 5.92 and 3.32
for Acc and PD, respectively. For the 0Base-10Task setting on the
VGGSound100 dataset, our method has the improvement of 2.32
and 1.81 for Acc and PD over the ACIL. While for the 50Base-10Task
scenario, our method yields 2.32 and 2.64 improvement for Acc and
PD compared the strong baseline ACIL. These experimental results
demonstrate the effectiveness of our proposed method in AVCIL.

Furthermore, we show the testing accuracy at each incremen-
tal step of our MMAL and other baselines in Figure 3. It can be
observed that our method achieves the best performance at each in-
cremental step on three datasets, showing less forgetting and better
accuracy. Moreover, comparing two different settings on the VG-
GSound100 dataset, the accuracy at last step of the 50Base-10Task
achieves 70.28%, even though the accuracy on the base classes is
only 81.60% which is much lower than that of the 0Base-10Task (i.e.,
90.40%), indicating less forgetting. This might be due to that, in the
50Base-10Task setting, we have more data to train the backbone
during the base training, thus encouraging to extract more mean-
ingful representations for the following incremental steps. Note
that the backbone is freeze once the base training is finished in our
MMAL. In summary, our method has a significant superiority for
exemplar-free AVCIL compared to others, which demonstrates the
effectiveness of our proposal.

4.5 Large-step Performance
In Section 3, we have demonstrated that the MMAL exhibits a step-
invariant property. To empirically validate this claim, we conduct
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Figure 4: The change of top-5 predictionsw/ (left column) and
w/o (middle column) the compensation of MSKC module.

large-phase incremental experiments with 𝐾 from 5 to 50 on the
VGGSound100 dataset. The network is first trained on the base
classes containing half (i.e., 50) of the full classes, subsequently,
the network gradually learns the remaining classes evenly for 𝐾
steps. For example, for the 10-task experiment, there are five classes
per incremental step. As shown in Table 2, the average accuracy
𝐴𝑐𝑐 and the accuracy at last phase 𝐴𝑐𝑐𝐾 almost remain unchanged
across various incremental scenarios even under the extreme case
of 𝐾 = 50, in which only one class in each incremental step.

4.6 Analysis on the MSKC module
The MSKC module utilizes the individual information from audio
and visual simultaneously to compensate the limitation of the fu-
sion module. To help understand this strategy, we give specific
examples (e.g., 0Base-4Task experiments on the AVE dataset) dur-
ing the MMAL training and testing. We plot the top-5 predictions
with before and after the MSKCmodule’s contribution. As shown in
Figure 4, the original prediction for the sample class is inaccurate in
the fusion stream. While the MSKC module provides an extra gain,
thereby correcting the predicted result. In this example, we can
observe a significant prediction change, suggesting a non-trivial
enhancement on the MMAL’s ability by leveraging the individual
information from audio and visual modality.

We also quantitatively analyze theMSKC’s impact on the stability
and plasticity of the model. To show this, after training on all
steps, we evaluate the corresponding model on the base classes
Dtest

0 and the incremental classes Dtest
1:𝐾 separately. As shown in

Table 3, by introducing the MSKC module, new classes learned
during the incremental steps receive a significant improvement
(plasticity) with few performance loss on the base classes (stability).
For instance, the MKSC module improves the newly learned classes
by 9.31% while only losing the accuracy 0.96% on the base classes of
the AVE dataset, suggesting a more reasonable stability-plasticity
balance for overall improvement.

4.7 Ablation Study
4.7.1 MSKC Ablation. To quantitatively evaluate the effect of the
MSKC module, we conduct ablation experiments on three datasets.
The MSKC contains an audio sub-module and a visual sub-module,
aiming to leverage information from audio and video modality,
respectively. As shown in Table 4, without the audio compensation
(i.e., A-MSKC), the performance will drop 2.50%, 0.99%, and 1.99%
on the AVE, Kinetics-Sounds and VGGSound100 respectively. If we
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Figure 5: Qualitative comparisons of representations learned by LwF, iCaRL, AV-CIL and the proposed MMAL. Note that each
spot denotes features extracted from one sample, and each color refers to one audio-visual category.

Table 4: Ablation study of the MSKC module, containing the
A-MSKC and V-MSKC sub-module.

Module AVE Kinetics-Sounds VGGSound100
MMAL 76.71 78.98 76.19

-A-MSKC 74.21 77.99 74.20
-V-MSKC 70.56 72.56 73.16

further remove the visual compensation (i.e., V-MSKC), the average
accuracy will yield a significant drop of 6.15%, 6.42% and 3.03%
compared to the full model. This demonstrates the effectiveness of
our proposed MSKC module.

4.7.2 Compensation Ratio Ablation. To explore the appropriate
compensation ratio of audio and visual modality to enhance the
overall performance, here we conduct ablation experiment to inves-
tigate the effect of different ratio on the Kinetics-Sound dataset. As
shown in Table 5, when the 𝜆𝑣 is set to 1, the best performance is
obtained at 𝜆𝑎 = 0.5. When increasing the ratio of audio modality,
the performance starts to decrease, indicating over-compensation
could mislead the model. When the 𝜆𝑎 is set to 0.5, the performance
will drop as the ratio of visual modality becomes small, which sug-
gests that visual modality play an important role to correct the
inaccurate predictions of the fusion module.

4.8 Qualitative Analysis
Learning informative audio-visual representations with category-
aware semantics is critical for classifying audio-visual pairs. To
better evaluate the quality of learned category-aware features, we
visualize the learned joint audio-visual representations of 9 cate-
gories after finishing 4 incremental tasks on Kinetics-Sounds by
t-SNE, as shown in Figure 5. It should be noted that each color
denotes one class of the audio-visual pair. As can be seen in the last
column, audio-visual embeddings extracted by the proposed MMAL
are both intra-class compact and inter-class separable. In contrast
to our representations in the audio-visual semantic space, mix-
tures of multiple audio-visual categories still exist among features
learned by LwF, iCaRL and AV-CIL. These meaningful visualization
results further showcase the superiority of our MMAL in extracting
compact audio-visual incremental representations with class-aware
semantics for incremental audio-visual learning.

Table 5: Ablation study of the audio compensation ratio
𝜆𝑎 and visual compensation ratio 𝜆𝑣 on the Kinetics-Sound
dataset.

𝝀𝒂 𝝀𝒗 Acc (%) ↑ 𝑨𝒄𝒄𝑲 (%) ↑
0.1 1.0 78.11 67.57
0.3 1.0 78.66 68.33
0.5 1.0 78.98 69.31
0.8 1.0 78.73 69.20
1.0 1.0 78.42 68.54
0.5 0.8 78.48 68.84
0.5 0.5 77.53 66.60
0.5 0.3 76.47 65.42
0.5 0.1 74.69 62.97

5 CONCLUSION
In this paper, we propose a Multi-Modal Analytic Learning (MMAL)
to tackle the challenging exemplar-free AVCIL problem for the first
time. Specifically, MMAL comprises a fusion module that redefines
the AVCIL task through a RLS solution, and a Modality-Specific
Knowledge Compensation (MSKC)module that alleviates the under-
fitting stemming from the static backbone and inherent linearity
within the fusion module. Hence, the fusion and compensation
module can complement each other for better category-aware se-
mantics during the incremental steps, yielding improved incre-
mental performance. Experimental results on three audio-visual
class-incremental datasets AVE, Kinetics-Sounds andVGGSound100
show that our proposed approach outperforms state-of-the-art
methods significantly. In the future, we plan to extend our MMAL
for tri-modal learning and beyond.
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