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A Proof of Theoretical Results1

A.1 Proof of Theorem 12

For the circumstance with soft truncation, µ̃z = 1
n

∑n
i=1 ψ(zi). As suggested in [1], we can exploit3

µ̃−z and µ̃+
z such that4

µ̃−z ≤ µ̃z ≤ µ̃+
z , (1)

to derive a bound for µ̃z . For some positive real parameter α, we define5

r(µ̃z) =

n∑
i=1

ψ [α(zi − µ̃z)] = 0. (2)

Let us introduce the quantity6

r(θ) =
1

αn

n∑
i=1

ψ [α(zi − θ)] . (3)

With the exponential moment inequality [5] and the Cr inequality [9], we have7

exp{αnr(θ)} ≤
{

1 + α(µz − θ) + α2[σ2 + (µz − θ)2]
}n

≤ exp{nα(µz − θ) + nα2[σ2 + (µz − θ)2]}.
(4)

In the same way,8

exp{−αnr(θ)} ≤ exp{−nα(µz − θ) + nα2[σ2 + (µz − θ)2]}. (5)

If we define for any µs ∈ R the bounds9

B−(θ) = µz − θ − α[σ2 + (µz − θ)2]− log(ε−1)

αn
(6)

and10

B+(θ) = µz − θ + α[σ2 + (µz − θ)2] +
log(ε−1)

αn
. (7)

From [2] (Lemma 2.2), we obtain that11

P (r(θ) > B−(θ)) ≥ 1− ε and P (r(θ) < B+(θ)) ≥ 1− ε. (8)

Let µ̃−z be the largest solution of the quadratic equation B−(θ) and µ̃+
z be the smallest solution of the12

quadratic equation B+(θ). Also, to guarantee the solution of the quadratic equation, we assume13

4α2σ2 +
4 log(ε−1)

n
≤ 1. (9)
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From [2] (Theorem 2.6), we then have14

µ̃−z ≥ µz −
ασ2 + log(ε−1)

αn

α− 1
, (10)

and15

µ̃+
z ≤ µz +

ασ2 + log(ε−1)
αn

α− 1
. (11)

With probability at least 1-2ε, we have µ̃−z ≤ µ̃z ≤ µ̃+
z . We can choose α = n

σ2 . Then we have16

|µ̃z − µz| ≤
σ2(n+ σ2 log(ε−1)

n2 )

n− σ2
, (12)

which holds with probability at least 1-2ε.17

We exploit the lower bound and let ε = 1
2t . Then we have18

`?s = µ̃s −
σ2(t+ σ2 log(2t)

t2 )

nt − σ2
, (13)

where nt denotes the number of times that the example was selected in the time intervals.19
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Figure 1: The illustration of the influence function for the soft estimator.

Here, we provide the graph of the used influence function for the soft estimator, which explains the20

mechanism of the function y = log(1 + x + x2/2) more clearly. The illustration is presented in21

Figure 1. As can be seen, when x is large and may be an outlier, the influence function can reduce its22

negative impact for mean estimation. Therefore, we exploit such an influence function for robust23

mean estimation, which brings better classification performance.24

A.2 Proof of Theorem 225

Lemma 1 ([11]). Let Zn = {z1, . . . , zn} be a (not necessarily time homogeneous) Markov chain26

with mean µz , taking values in a Polish state space Λ1 × . . . × Λn, with a mixing time τ(υ) (for27

0 ≤ υ ≤ 1). Let28

τmin = inf
0≤υ<1

τ(υ) ·
(

2− υ
1− υ

)2

. (14)

For some η ∈ R+, suppose that f : Λ→ R satisfies the following inequality:29

f(a)− f(b) ≤
n∑
i=1

η1[ai 6= bi], (15)

for every a, b ∈ Λ. Then for any ε ≥ 0, we have30

P (|f(Zn)−Ef(Zn)| ≥ ε) ≤ 2 exp

(
−2ε2

η2τmin

)
. (16)
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The detailed definition of the mixing time for the Markov chain can be found in [11, 12]. Let f be the31

mean function. Following the prior work on mean estimation [7, 4, 3, 10], without loss of generality,32

we assume µz = 0 for the underlying true distribution, and |zi| is upper bounded by Z. Then we can33

set η to 4Z/n for Eq. (15). Combining the above analyses, we can revise Eq. (16) as follows:34

P

(∣∣∣∣∣ 1n
n∑
i=1

zi

∣∣∣∣∣ ≥ 2Z

n

√
2τmin log

2

ε1

)
≤ ε1, (17)

and35

P

(
max
i∈[n]
|zi| ≥

2Z

n

√
2τmin log

2n

ε2

)
≤ ε2, (18)

for ε1 > 0 and ε2 > 0. If we remove the potential outliers Zno
from Zn. Therefore, we have36 ∣∣∣∣∣∣ 1

n− no

∑
zi∈Zn\Zno

−µz

∣∣∣∣∣∣ =
1

n− no

∣∣∣∣∣∣
∑
zi∈Zn

−
∑

zi∈Zno

∣∣∣∣∣∣
≤ 1

n− no

∣∣∣∣∣ ∑
zi∈Zn

∣∣∣∣∣+

∣∣∣∣∣∣
∑

zi∈Zno

∣∣∣∣∣∣


≤ 1

n− no

(∣∣∣∣∣ ∑
zi∈Zn

∣∣∣∣∣+ no max
i∈[n]
|zi|

)

≤ 1

n− no

(
2Z

√
2τmin log

2

ε1
+

2Zno
n

√
2τmin log

2n

ε2

)
,

(19)

which holds with probability at least 1− ε1 − ε2.37

For our task, we exploit the concentration inequality. Let ε1 = ε2 = 1
2t , and the losses be bounded by38

L. Next we can obtain39

|µ̃h − µ| ≤
2L

t− to

(√
2τmin log(4t) +

to
t

√
4τmin log(4t)

)
=

2
√

2τminL(t+
√

2to)

(t− to)t
√

log(4t)

(20)

with the probability at least 1− 1
t . In practice, it is easy to identify the value of L. For example, we40

can training deep networks on noisy datasets to observe the loss distributions. Then, we exploit the41

lower bound such that42

`?h = µ̃h −
2
√

2τminL(t+
√

2to)

(t− to)
√
t

√
log(4t)

nt
(21)

for sample selection.43

B Complementary Experimental Analyses44

# of training # of testing # of class size
MNIST 60,000 10,000 10 28×28×1

F-MNIST 60,000 10,000 10 28×28×1
CIFAR-10 50,000 10,000 10 32×32×3

CIFAR-100 50,000 10,000 100 32×32×3
Table 1: Summary of synthetic datasets used in the experiments.
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Figure 2: Synthetic class-dependent transition matrices used in our experiments on MNIST. The noise
rate is set to 20%.

B.1 The Details of Datasets and Generating Noisy Labels45

For the details of datasets, the important statistics of the used datasets are summarized in Table 1.46

For the details of generating noisy labels, we exploit both class-dependent and instance-dependent47

label noise which include five types of synthetic label noise to verify the effectiveness of the proposed48

method. Here, we describe the details of the noise setting as follows:49

(1). Class-dependent label noise:50

• Symmetric noise: this kind of label noise is generated by flipping labels in each class uniformly to51

incorrect labels of other classes.52

• Asymmetic noise : this kind of label noise is generated by flipping labels within a set of53

similar classes. In this paper, for MNIST, flipping 2→7, 3→8, 5↔6. For F-MNIST, flip-54

ping TSHIRT→SHIRT, PULLOVER→COAT, SANDALS→SNEAKER. For CIFAR-10, flipping55

TRUCK→AUTOMOBILE, BIRD→AIRPLANE, DEER→HORSE, CAT↔DOG. For CIFAR-100,56

the 100 classes are grouped into 20 super-classes, and each has 5 sub-classes. Each class is then57

flipped into the next within the same super-class.58

• Pairflip noise: the noise flips each class to its adjacent class.59

• Tridiagonal noise: the noise corresponds to a spectral of classes where adjacent classes are easier60

to be mutually mislabeled, unlike the unidirectional pair flipping. It can be implemented by two61

consecutive pair flipping transformations in the opposite direction.62

(2). Instance-dependent label noise:63

• Instance noise: the noise is quite realistic, where the probability that an instance is mislabeled64

depends on its features. We generate this type of label noise to validate the effectiveness of the65

proposed method as did in [13].66

We use synthetic noisy MNIST as an example and plot the noise transition matrices in Figure 2. The67

noise rate is set to 20%.68

B.2 Comparison with Other Types of Baselines69

As we focus on the sample selection approach in learning with noisy labels, in the main paper70

(Section 3.1), we fairly compare our methods with the baselines which also focus on sample selection.71

Here, we evaluate other types of baselines. We exploit APL [8] and CDR [14], which add implicit72

regularization from different perspectives. The experiments are conducted on MNIST and F-MNIST.73

Other experimental settings are the same as those in the main paper. The experimental results are74

provided in Table 2 and 3, which show that the proposed methods can outperform them with respect75

to classification performance.76

B.3 Experiments on Synthetic CIFAR-10077

For CIFAR-100, we use a 7-layer CNN structure from [17, 16]. Other experimental settings are the78

same as those in the experiments on MNIST, F-MNIST, and CIFAR-10. The results are provided in79

Table 4. We can see the proposed method outperforms all the baselines.80
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Noise type Sym. Asym. Pair. Trid. Ins.
Method/Noise ratio 20% 40% 20% 40% 20% 40% 20% 40% 20% 40%

APL 98.76
±0.06

94.92
±0.31

98.63
±0.05

88.65
±1.72

98.66
±0.10

68.44
±2.95

98.93
±0.04

76.44
±3.04

97.63
±0.73

87.90
±1.94

CDR 94.77
±0.17

92.16
±0.73

96.73
±0.19

91.05
±0.76

93.25
±0.90

71.02
±3.89

94.06
±0.92

70.28
±4.01

93.17
±0.96

77.45
±3.04

Table 2: Test accuracy (%) on MNIST over the last ten epochs.

Noise type Sym. Asym. Pair. Trid. Ins.
Method/Noise ratio 20% 40% 20% 40% 20% 40% 20% 40% 20% 40%

APL 91.73
±0.20

89.06
±0.41

90.13
±0.17

80.34
±0.63

90.22
±0.80

78.54
±4.33

90.84
±0.22

86.53
±0.76

90.96
±0.77

85.55
±2.86

CDR 85.62
±0.96

71.83
±1.37

89.78
±0.41

79.05
±1.39

85.72
±0.65

69.07
±2.31

86.75
±1.19

73.63
±2.82

85.92
±1.43

73.14
±3.12

Table 3: Test accuracy on F-MNIST over the last ten epochs.

Noise type Sym. Asym. Pair. Trid. Ins.
Method/Noise ratio 20% 40% 20% 40% 20% 40% 20% 40% 20% 40%

S2E 44.59
±0.32

25.78
±5.44

42.18
±1.73

26.81
±2.25

42.99
±1.54

26.96
±2.48

43.16
±0.93

27.72
±3.56

43.13
±0.67

27.12
±3.86

MentorNet 43.15
±0.42

37.62
±0.89

41.03
±0.22

28.27
±0.41

40.06
±0.37

27.17
±0.92

42.20
±0.30

31.74
±0.88

40.54
±0.69

33.09
±1.53

Co-teaching 45.17
±0.25

40.95
±0.52

42.76
±0.34

30.27
±0.33

42.50
±0.39

30.07
±0.17

44.41
±0.41

34.96
±0.35

42.23
±0.52

35.87
±1.47

SIGUA 42.03
±0.33

40.53
±0.49

36.67
±0.25

26.71
±0.42

36.48
±0.37

26.73
±0.33

39.21
±0.40

32.69
±0.36

39.19
±0.32

33.51
±0.43

JoCor 45.93
±0.21

41.56
±0.57

42.89
±0.37

29.19
±1.42

42.12
±0.35

30.12
±0.65

44.98
±0.27

34.23
±1.13

44.28
±0.59

35.60
±0.99

CNLCU-S 46.09
±0.29

42.11
±0.70

43.06
±0.28

30.47
±0.37

43.08
±0.92

30.33
±0.74

45.19
±0.90

35.49
±1.30

44.80
±0.70

36.23
±0.49

CNLCU-H 46.27
±0.38

42.05
±0.87

43.21
±0.93

30.55
±0.72

43.25
±0.75

30.79
±0.86

45.02
±1.06

35.24
±0.93

45.02
±1.07

36.17
±1.54

Table 4: Test accuracy (%) on CIFAR-100 over the last ten epochs. The best two results are in bold.

B.4 Experiments for Ablation Study81

We conduct the ablation study to analyze the sensitivity of the length of time intervals. The results82

are shown in Figure. 3 and 4. As we can seen, the proposed method, i.e., CNLCU-S and CNLCU-H83

are robust to the choices of hyperparameters.84
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Figure 3: Illustrations of the hyperparameter sensitivity for the proposed CNLCU-S. The error bar
for standard deviation in each figure has been shaded.

Note that in this paper, we concern uncertainty from two aspects, i.e., the uncertainty about small-loss85

examples and the uncertainty about large-loss examples. Here, we conduct ablation study to show the86

effect of removing different components to provide insights into what makes the proposed methods87

successful. The experiments are conducted on MNIST and F-MNIST. Other experimental settings88
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Figure 4: Illustrations of the hyperparameter sensitivity for the proposed CNLCU-H. The error bar
for standard deviation in each figure has been shaded.

are the same as those in the main paper (Section 3.1). Note that we employ two networks to teach89

each other following [6]. Therefore, when we do not consider uncertainty in sample selection, the90

proposed methods will reduce to the baseline Co-teaching [6].91

To study the effect of concerning uncertainty about small-loss examples, we remove the concerns92

about large-loss examples, i.e., the network is not encouraged to choose the less selected examples for93

updates. We express such a setting as “without concerning about large-loss examples” (abbreviated94

as w/o cl). To study the effect of concerning uncertainty about large-loss examples, we remove the95

concerns about small-loss examples, i.e., we only exploit the predictions of the current network. We96

express such a setting as “without concerning about small-loss examples” (abbreviated as w/o cs).97

Besides, we express the setting which directly uses non-robust mean as Co-teaching-M.98

The experimental results of ablation study are provided in Table 5 and 6. As can be seen, both aspects99

of uncertainty concerns can improve the robustness of models. Therefore, combining two uncertainty100

concerns, we can better combat noisy labels. In addition, robust mean estimation is superior to the101

non-robust mean in learning with noisy labels.102

Noise type Sym. Asym. Pair. Trid. Ins.
Method/Noise ratio 20% 40% 20% 40% 20% 40% 20% 40% 20% 40%

CNLCU-S 98.82
±0.03

98.31
±0.05

98.93
±0.06

97.67
±0.22

98.86
±0.06

97.71
±0.64

99.09
±0.04

98.02
±0.17

98.77
±0.08

97.78
±0.25

CNLCU-S w/o cl 98.02
±0.08

96.83
±0.29

98.50
±0.04

96.25
±0.13

98.22
±0.13

96.08
±0.75

98.64
±0.31

97.25
±0.24

98.17
±0.20

97.13
±0.40

CNLCU-S w/o cs 98.15
±0.20

97.12
±0.22

98.36
±0.07

96.39
±0.48

98.04
±0.24

96.12
±0.68

98.74
±0.05

97.30
±0.52

98.11
±0.15

97.32
±0.43

CNLCU-H 98.70
±0.06

98.24
±0.06

99.01
±0.04

98.01
±0.03

98.44
±0.19

97.37
±0.32

98.89
±0.15

97.92
±0.05

98.74
±0.16

97.42
±0.39

CNLCU-H w/o cl 98.06
±0.13

96.92
±0.23

98.39
±0.04

96.51
±0.57

97.04
±0.87

95.62
±0.93

98.33
±0.47

97.41
±0.92

98.01
±0.20

96.15
±0.28

CNLCU-H w/o cs 98.19
±0.22

97.05
±0.49

98.76
±0.59

97.17
±0.60

97.26
±1.19

96.31
±0.25

98.29
±0.17

97.65
±0.92

98.34
±0.36

96.49
±0.48

Co-teaching-M 97.72
±0.08

97.78
±0.32

98.27
±0.03

95.42
±0.42

96.22
±0.10

95.01
±0.65

97.92
±0.14

96.64
±0.77

98.02
±0.04

96.03
±0.57

Co-teaching 97.53
±0.12

95.62
±0.30

98.25
±0.08

95.08
±0.43

96.05
±0.96

94.16
±1.37

98.05
±0.06

96.18
±0.85

97.96
±0.09

95.02
±0.39

Table 5: Test accuracy (%) on MNIST over last ten epochs.

C Complementary Explanation for Network Structures103

Table 7 describes the 9-layer CNN [6] used on MNIST, F-MNIST, and CIFAR-10. Table 8 describes104

the 9-layer CNN [17] used on CIFAR-100. Here, LReLU stands for Leaky ReLU [15]. The slopes of105

all LReLU functions in the networks are set to 0.01. Note that that the 7/9-layer CNN is a standard106

and common practice in weakly supervised learning. We decided to use these CNNs, since then the107

experimental results are directly comparable with previous approaches in the same area, i.e., learning108

with noisy labels.109
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Noise type Sym. Asym. Pair. Trid. Ins.
Method/Noise ratio 20% 40% 20% 40% 20% 40% 20% 40% 20% 40%

CNLCU-S 92.37
±0.15

91.45
±0.28

92.57
±0.15

83.14
±1.77

92.04
±0.26

88.20
±0.44

92.24
±0.17

90.08
±0.34

91.69
±0.10

89.02
±1.02

CNLCU-S w/o cl 91.77
±0.35

89.40
±0.26

91.25
±0.30

72.93
±2.63

91.53
±0.17

87.31
±0.59

91.31
±0.52

89.50
±0.32

91.09
±0.13

88.45
±0.57

CNLCU-S w/o cs 91.85
±0.33

90.76
±0.28

91.94
±0.09

80.99
±2.74

91.28
±0.20

87.31
±0.72

91.39
±0.07

89.29
±0.51

90.98
±0.43

88.73
±0.62

CNLCU-H 92.42
±0.21

91.60
±0.19

92.60
±0.18

82.69
±0.43

91.70
±0.18

87.70
±0.69

92.33
±0.26

90.22
±0.71

91.50
±0.21

88.79
±1.22

CNLCU-H w/o cl 91.70
±0.04

90.05
±0.31

91.08
±0.06

71.35
±2.30

91.03
±0.29

87.22
±0.72

91.59
±0.07

90.01
±0.24

90.80
±0.27

88.31
±1.09

CNLCU-H w/o cs 91.82
±0.13

90.92
±0.42

92.45
±0.25

80.73
±1.63

91.21
±0.17

87.49
±0.32

92.08
±0.13

89.72
±0.24

91.21
±0.38

88.62
±0.73

Co-teaching-M 91.33
±0.18

89.05
±0.73

91.14
±0.90

71.03
±3.73

90.85
±0.61

86.95
±0.19

91.50
±0.46

89.18
±0.44

90.74
±1.06

88.25
±0.92

Co-teaching 91.48
±0.10

88.80
±0.29

91.03
±0.14

68.07
±4.58

90.77
±0.23

86.91
±0.71

91.24
±0.11

89.18
±0.36

90.60
±0.12

87.90
±0.45

Table 6: Test accuracy (%) on F-MNIST over last ten epochs.

Table 7: CNN on MNIST, F-MNIST, and CIFAR-10.
CNN on MNIST CNN on F-MNIST CNN on CIFAR-10

28×28 Gray Image 28×28 Gray Image 32×32 RGB Image
3×3 conv, 128 LReLU
3×3 conv, 128 LReLU
3×3 conv, 128 LReLU

2×2 max-pool
dropout, p = 0.25

3×3 conv, 256 LReLU
3×3 conv, 256 LReLU
3×3 conv, 256 LReLU

2×2 max-pool
dropout, p = 0.25

3×3 conv, 512 LReLU
3×3 conv, 256 LReLU
3×3 conv, 128 LReLU

avg-pool
dense 128→10 dense 128→10 dense 128→10

Table 8: CNN on CIFAR-100.
CNN on CIFAR-100
32×32 RGB Image
3×3 conv, 64 ReLU
3×3 conv, 64 ReLU

2×2 max-pool
3×3 conv, 128 ReLU
3×3 conv, 128 ReLU

2×2 max-pool
3×3 conv, 196 ReLU
3×3 conv, 196 ReLU

2×2 max-pool
dense 256→100
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