
Supplementary Material
On-Device Training Under 256KB Memory

Contents

A Video Demo 2

B Variance of Different Runs 2

C Training Setups & Discussions 2

D Evolutionary Search vs. Random Search 4

E Amount of Compute 4

F More Contribution Analysis Results 5

G Other Partial Update Methods That Did Not Work 6

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



A Video Demo

We prepared a video demo showing that we can deploy our framework to a microcontroller
(STM32F746, 320KB SRAM, 1MB Flash) to enable on-device learning. We adapt the MCUNet
model (pre-trained on ImageNet) to classify whether there is a person in front of the camera or not.
The training leads to decent accuracy within the tight memory budget. Please find the demo here:
https://youtu.be/XaDCO8YtmBw.

The training is performed with 100 sample images from the VWW dataset [2] fed through the
camera (50 positive and 50 negative). The total (pure) training throughput for the pipeline (including
overheads like camera IO) is shown in the Figure. S1. The total training time would be around
minutes. This is quite affordable for tiny on-device learning applications.

Figure S1. A screenshot of our video demo.

B Variance of Different Runs

We notice that the variance of different runs is quite small in our experiments. Here we provide
detailed information about the variance.

Firstly, if we use the same random seed for the data loader, we will get exactly the same results
for multiple runs. The weight quantization process after each iteration (almost) eliminates the non-
determinism from GPU training*. Therefore, we study the randomness from different random seeds
in data shuffling. Here we provide the results of 3 runs in Table S1 to show the variance. We train the
MobileNetV2-w0.35 model with the sparse update scheme (searched under 100KB analytic memory
usage) 3 times independently. We find the variance is very small, especially when we report the
average accuracy (for most of our results): the standard derivation is only ±0.07%.

Table S1. The variance between different runs is small, especially when we report the average accuracy (only
±0.07%). Results obtained by training MobileNetV2-w0.35 for three times using the sparse update scheme
searched under 100KB analytic memory constraint.

Runs Accuracy (%) Avg
Acc.Cars CF10 CF100 CUB Flowers Food Pets VWW

run1 51.59 87.03 63.89 54.14 85.95 62.28 77.84 88.34 71.38
run2 52.87 86.8 63.81 54.87 85.30 62.45 77.30 88.65 71.50
run3 52.49 87.13 63.80 55.16 85.35 61.99 77.08 88.21 71.40

mean 52.32 86.99 63.83 54.72 85.53 62.24 77.41 88.40 71.43
±std ±0.66 ±0.17 ±0.05 ±0.52 ±0.36 ±0.23 ±0.39 ±0.22 ±0.07

C Training Setups & Discussions

In this section, we introduce detailed training setups and discuss the reasons that lead to several
design choices.

We used SGD optimizer+QAS for training. We set weight decay as 0 since we observed no over-
fitting during experiments. This is also a common choice in transfer learning [6]. We find the initial

*https://developer.download.nvidia.com/video/gputechconf/gtc/2019/
presentation/s9911-determinism-in-deep-learning.pdf

2

https://youtu.be/XaDCO8YtmBw
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9911-determinism-in-deep-learning.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9911-determinism-in-deep-learning.pdf


learning rate significantly affects the accuracy, so we extensively tuned the learning rate for each
run to report the best accuracy. We used cosine learning rate decay and performed warm-up [4] for
1 epoch on VWW and 5 epochs on other datasets. We used Ray [9] for experiment launching and
hyper-parameter tuning.

Data type of the classifier. During transfer learning, we usually need to randomly initialize the
classifiers (or add some classes) for novel categories. Although the backbone is fully quantized for
efficiency, we find that using a floating-point classifier is essential for transfer learning performance.
Using a floating-point classifier is also cost-economical since the classifier consists of a very small
part of the model size (0.3% for 10 classes).

We compare the results of the quantized classifier and floating-point classifier in Table S2. We
update the last two blocks of the MCUNet model with SGD-M optimizer and QAS to measure the
downstream accuracy. We find that keeping the classifier as floating-point significantly improves the
downstream accuracy by 2.3% (on average) at a marginal overhead. Therefore, we use floating-point
for the classifier by default.

Table S2. Keeping the classifier as floating-point greatly improves the downstream accuracy.
fp32

classifier
Accuracy (%) Avg

Acc.Cars CF10 CF100 CUB Flowers Food Pets VWW

✗ 50.8 86.1 62.7 56.8 82.5 61.7 80.8 87.8 71.2
✓ 55.2 86.9 64.6 57.8 89.1 64.4 80.9 89.3 73.5

Single-batch training & momentum. For on-device training on microcontrollers, we can only fit
batch size 1 due to the tight memory constraint. However, single-batch training has very low efficiency
when simulated on GPUs since it cannot leverage the hardware parallelism, making experiments slow.
We study the performance gap between single-batch training and normal-batch training (batch size
128) to see if we can use the latter as an approximation.

We compare the results of different batch sizes in Table S3, with and without momentum. Due to the
extremely low efficiency of single-batch training, we only report results on datasets of a smaller size.
We used SGD+QAS as the optimizer and updated the last two blocks of the MCUNet [8] model. We
extensively tuned the initial learning rate to report the best results.

Table S3. Momentum helps transfer learning with batch size 128, but not with batch size 1; without momentum,
we can use the normal-batch training results as an approximation for single-batch training. Results obtained by
updating the last two blocks of MCUNet [8] with SGD+QARS.

Batch size Momentum Mem Cost Accuracy (%) Avg
Acc.Cars CUB Flowers Pets VWW

128 (GPU simulate) 0.9 2× 55.2 57.8 89.1 80.9 89.3 74.4
0 1× 47.8 57.2 87.3 80.8 88.8 72.4

1 (tinyML) 0.9 2× 47.8 54.8 88.5 80.5 86.2 71.5
0 1× 51.1 56.2 88.7 79.3 86.0 72.3

We can make two observations:

1. Firstly, momentum helps optimization for normal-batch training as expected (average
accuracy 74.4% vs. 72.4%). However, it actually makes the accuracy slightly worse for the
single-batch setting (71.5% vs. 72.3%). Since using momentum will double the memory
requirement for updating parameters (assume we can safely quantize momentum buffer;
otherwise the memory usage will be 5× larger), we will not use momentum for tinyML
on-device learning.

2. Without momentum, normal-batch training, and single-batch training lead to a similar aver-
age accuracy (72.4% vs. 72.3%), allowing us to use batched training results for evaluation.

3



Given the above observation, we report the results of batched training without momentum by default,
unless otherwise stated.

Gradient accumulation. With the above training setting, we can get a similar average accuracy
compared to actual on-device training on microcontrollers. The reported accuracy on each dataset
is quite close to the real on-device accuracy, with only one exception: the VWW dataset, where the
accuracy is 2.5% lower. This is because VWW only has two categories (binary classification), so the
information from each label is small, leading to unstable gradients. For the cases where the number
of categories is small, we can add gradient accumulation to make the update more stable. We show
the comparison of adapting the pre-trained MCUNet model in Table S4. The practice closes the
accuracy gap at a small extra memory cost (11%), allowing us to get 89.1% top-1 accuracy within
256KB memory usage.

To provide a clear comparison, we do not apply gradient accumulation in our experiments except for
this comparison.

Table S4. Gradient accumulation helps the optimization on datasets with a small category number. Numbers
obtained by training with batch size 1, the same setting as on microcontrollers.

model accumulate grad SRAM VWW accuracy

MCUNet-5FPS ✗ 160KB 86.6%
✓ 188KB 89.1%

D Evolutionary Search vs. Random Search

We find that evolutionary search can efficiently explore the search space to find a good sparse update
scheme given a memory constraint. Here we provide the comparison between evolutionary search
and random search in Figure S2. We collect the curves when searching for an update scheme of the
MCUNet-5FPS [8] model under 100KB memory constraint (analytic). We find that evolutionary
search has a much better sample efficiency and can find a better final solution (higher sum of ∆acc)
compared to random search. The search process is quite efficient: we can search for a sparse update
scheme within 10 minutes based on the contribution information. Note that we use the same update
scheme for all downstream datasets.

Av
g 

A
cc

 (%
)

72

73

74

75

76

28 32 36 40 44

B
es

t Δ
ac

c

30
34
38
42
46
50

0 5000 10000 15000 20000

evolutionary
random

(a) Effectiveness of search

ch. selection avg acc.
larger mag. 69.6%
smaller mag. 69.4%
random 1 69.4%
random 2 69.4%

positive correlation faster and better

Sum of Δacc #sampled backward configs
(b) Random vs. evolutionary (c) Sub-channel selection

B
es

t Δ
ac

c

30

34

38

42

46

50

0 5000 10000 15000 20000

evolutionary
random

#sampled backward configs

faster and better

Figure S2. Evolutionary search has a better sample efficiency and leads to a better final result compared with
random search when optimizing sparse update schemes.

E Amount of Compute

To evaluate the performance of different training schemes, we simulate the training on GPUs to
measure the average accuracy on 8 downstream datasets. Thanks to the small model size (for the
tinyML setting) and the small dataset size, the training cost for each scheme is quite modest: it only
takes 3.2 GPU hours for training on all 8 downstream datasets (cost for one run; do not consider
hyper-parameter tuning).

For the pre-training on ImageNet [3], it takes about 31.5 GPU hours (300 epochs). Note that we
only need to pre-train each model once.

We performed training with NVIDIA GeForce RTX 3090 GPUs.

4



F More Contribution Analysis Results

Here we provide the contribution analysis results of the MobileNetV2-w0.35 [10] and ProxylessNAS-
w0.3 [1] on the Cars dataset [7] (Figure S3 and S4). The pattern is similar to the one from the
MCUNet model: the later layers contribute to the accuracy improvement more; within each block,
the first point-wise convolutional layer contributes to the accuracy improvement the most.

0%

2%

4%

6%

8%

10%

12%

0 5 10 15 20 25 30 35 40 45 50
#layers to update bias

re
la

tiv
e 

ac
c.

 g
ai

n

-4%

0%

4%

8%

12%

0 5 10 15 20 25 30 35 40 45 50

update all channels
update 1/2 channels
update 1/4 channels
update 1/8 channels

layer index to update weight

re
la

tiv
e 

ac
c.

 g
ai

n

(a) Contribution of last k biases Δaccb[:k] (b) Contribution of a certain weight ΔaccWi,r

MBV2

0%
2%
4%
6%
8%

10%
12%

0 10 20 30 40 50
#layers to update bias

re
la

tiv
e 

ac
c.

 g
ai

n

-3%

0%

3%

6%

9%

12%

15%

0 10 20 30 40 50

update all channels
update 1/2 channels
update 1/4 channels
update 1/8 channels

layer index to update weight

re
la

tiv
e 

ac
c.

 g
ai

n

(a) Contribution of last k biases Δaccb[:k] (b) Contribution of a certain weight ΔaccWi,r

Proxyless
Figure S3. Contribution analysis of updating biases and weights for MobileNetV2-w0.35 [10].

0%

2%

4%

6%

8%

10%

12%

0 5 10 15 20 25 30 35 40 45 50
#layers to update bias

re
la

tiv
e 

ac
c.

 g
ai

n

-4%

0%

4%

8%

12%

0 5 10 15 20 25 30 35 40 45 50

update all channels
update 1/2 channels
update 1/4 channels
update 1/8 channels

layer index to update weight

re
la

tiv
e 

ac
c.

 g
ai

n

(a) Contribution of last k biases Δaccb[:k] (b) Contribution of a certain weight ΔaccWi,r

MBV2

0%
2%
4%
6%
8%

10%
12%

0 10 20 30 40 50
#layers to update bias

re
la

tiv
e 

ac
c.

 g
ai

n

-3%

0%

3%

6%

9%

12%

15%

0 10 20 30 40 50

update all channels
update 1/2 channels
update 1/4 channels
update 1/8 channels

layer index to update weight

re
la

tiv
e 

ac
c.

 g
ai

n

(a) Contribution of last k biases Δaccb[:k] (b) Contribution of a certain weight ΔaccWi,r

Proxyless

Figure S4. Contribution analysis of updating biases and weights for ProxylessNAS-w0.3 [1].

5



G Other Partial Update Methods That Did Not Work

During our experiments, we also considered other efficient partial update methods (apart from sparse
layer/tensor update) but they did not work well. Here are a few methods we tried but failed:

1. Low-rank update. LoRA [5] aims to adapt a model by adding a low-rank decomposed weight
to each of the original weight matrix. It is designed for adapting large language models, but could
potentially be applied here. Specifically, LoRA freezes the original weight W ∈ Rc×c but trains
a small ∆W = MN, where M ∈ Rc×c′ ,N ∈ Rc′×c, c′ << c. The low-rank decomposed ∆W
has much fewer parameters compared to W. After training, we can merge ∆W so that no extra
computation is incurred: y = (W +∆W)x. However, such method does not work in our case:

1. The weights are quantized in our models. If we merge ∆W and W, we will produce a
new weight W′ = ∆W +W that has the same size as W, taking up a large space on the
SRAM (that is why we need the sparse tensor update).

2. Even if we can tolerate the extra memory overhead by running y = Wx + ∆Wx, the
∆W is randomly initialized and we empirically find that it is difficult to update a quantized
weight from scratch, leading to worse performance.

2. Replacing convolutions with lighter alternatives. As shown in the contribution curves (Figure
4 in the main paper, Figure S3, and Figure S4), the first point-wise convolutional layer in each block
has the highest contribution to accuracy. We tried replacing the first point-wise convolutional layer
with a lighter alternative, like grouped convolutions. However, although such replacement greatly
reduces the cost to update the layers, it also hinders transfer learning accuracy significantly. Therefore,
we did not choose to use such modification. It also involves extra complexity by changing model
architectures, which is not desired.

6



References

[1] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct Neural Architecture Search on Target Task
and Hardware. In ICLR, 2019.

[2] Aakanksha Chowdhery, Pete Warden, Jonathon Shlens, Andrew Howard, and Rocky Rhodes. Visual wake
words dataset. arXiv preprint arXiv:1906.05721, 2019.

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR, 2009.

[4] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew
Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet in 1 hour. arXiv
preprint arXiv:1706.02677, 2017.

[5] Edward Hu, Yelong Shen, Phil Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Lu Wang, and Weizhu Chen. Lora:
Low-rank adaptation of large language models, 2021.

[6] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, and Neil
Houlsby. Big transfer (bit): General visual representation learning. In European conference on computer
vision, pages 491–507. Springer, 2020.

[7] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision workshops, pages
554–561, 2013.

[8] Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song Han. Mcunet: Tiny deep learning
on iot devices. In NeurIPS, 2020.

[9] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang, Melih
Elibol, Zongheng Yang, William Paul, Michael I Jordan, et al. Ray: A distributed framework for emerging
{AI} applications. In 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI
18), pages 561–577, 2018.

[10] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. MobileNetV2:
Inverted Residuals and Linear Bottlenecks. In CVPR, 2018.

7


	Video Demo
	Variance of Different Runs
	Training Setups & Discussions
	Evolutionary Search vs@汥瑀瑯步渠. Random Search
	Amount of Compute
	More Contribution Analysis Results
	Other Partial Update Methods That Did Not Work

