
Appendix412

A Additional Experiment in Home Environment413

We conduct comparative experiments in a home environment to evaluate our method in more diverse414

and challenging environments. We select the home, which is not included in all datasets. In the415

home, we choose ten objects, make five prompts for each object, and navigate the robot toward the416

target object, similar to our evaluation in the main paper. The appearance of the target objects and417

the given prompts are shown in the Appendix below.418

The two baselines in the home perform better than the office environments. However, there is still419

an explicit advantage between our method and the baselines. Our method trained on augmented420

YouTube videos learns a general policy that can navigate towards novel objects in novel environ-421

ments. Here, “novel” indicates that the training dataset does not include images of the object in422

question in the environment seen during evaluation.423

More evaluations in novel environments are shown in our supplemental material video.

Table 3: Quantitative results using a prototype real robot in home environment. We show the goal success
rate. A success if determined by the robot reaching within a 0.2 [m] radius of the target object.

Method Total Simple prompts Noisy prompts Multiple objects

CoW 0.72 0.80 0.67 0.53
Owl-ViT + ViNT 0.60 0.60 0.60 0.40
Our method 0.84 0.85 0.83 0.80

424

B Additional Data Ablation425

In addition to the robot dataset ablation study in Fig. 6, we conduct an additional dataset abla-426

tion study for the YouTube Tour Dataset and our Human-walking Dataset. By including more data427

sources in our augmented dataset, the performance of the trained language-conditioned navigation428

policy improves. We show an improvement in the performance of the policy by adding the In-429

door Navigation Dataset and our Human-Walking Dataset. We hypothesize that improvements from430

adding more data from YouTube saturate the least as due to the broad distribution of environments431

and objects within the dataset. We can use YouTube video data because of our data augmentation432

approach, which enables us to leverage the diverse in-the-wild video. Note that we add the test433

dataset to the YouTube Tour Dataset and Human-Walking Dataset due to make the balance of data434

between the three sources more even Fig. 7.

Figure 7: Data Ablation. An ablation of the percent of each dataset included in training data
mixture, while keeping the entirety of the other datasets in the data mixture. The data ablation that
studies the Indoor Navigation Dataset and Human-Walking Dataset use 76% of the YouTube dataset
due to the addition of new YouTube data during the course of the project.

435
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C Model Ablations436

We also study how ablations of our model architecture impact the performance of our policy while437

training on the LeLaN dataset. For the visual encoder, we replace ”ResNet-FiLM” in our method438

with ”ViT-B32” and ”ViT-ResNet50” of the pre-trained CLIP. For the text encoder, we employ larger439

pre-trained CLIP text encoder ”ViT-ResNet50” instead of ”ViT-B32”.440

In this ablation study, we evaluate each model on the test dataset. Similar to the objective in training,441

we calculate the mean square error between the generated virtual robot pose from the control pol-442

icy and the target object pose. From Table 4, the pre-trained visual encoders from CLIP are worse443

than the ResNet-FiLM trained on our augmented dataset. The visual features from the CLIP visual444

encoder are insufficient to derive time-series velocity commands because they do not include geo-445

metric information. Furthermore, the ResNet-FiLM inserts the text features from the text encoder446

for low-level visual features, which helps to understand the target objects in the image view. In447

addition, the larger CLIP text encoder helps with learning a precise control policy. However, the448

advantage of a larger encoder is not significant on the test dataset. Furthermore, when navigating449

with a real robot, its difference was trivial and, in fact, increased the computational load on the robot450

controller. This not only reduced the frame rate, but also increased battery consumption. Therefore,451

we used the the pre-trained text encoder from the ”ViT-B32” CLIP model for the main model in the452

paper.

Table 4: Ablation study of our model architecture. We use the pre-trained weights of ViT-B32 and ViT-
ResNet50 from CLIP for both the visual and text encoders. When using ResNet-FiLM, we train our model
from scratch.

Visual encoder Text encoder MSE
ResNet-FiLM ViT-B32 ViT-ResNet50 ViT-B32 ViT-ResNet50

✓ ✓ 1.291
✓ ✓ 1.202

✓ ✓ 1.690
✓ ✓ 1.673

453

D Target Objects and Prompts in Evaluation454

In our evaluation, we select 18 objects in the university campus environment (inside and outside)455

and 10 additional objects in the home environment and prompt the robot to navigate towards the456

target objects. For each object, we feed 5 or 6 trials with different prompts (some of which are457

noisy) and evaluate the robustness of the policy. Here we show the overview of the target objects458

and the prompts in our evaluation. First 18 objects are from the university campus. The rest are from459

a home environment.460

First, two prompts for each object are for the simple prompts and the others are for noisy prompts,461

which includes wrong adjectives (red) long prompts, or the prompts without the target object’s462

noun. The red border in the image indicates the presence of multiple corresponding objects in the463

experimental environment. If the objects can be distinguished by prompts, success is considered only464

if the robot reaches the correct object; if the objects cannot be distinguished by prompts, success is465

considered if the robot reaches one of the objects that fits the description of the prompt.

466
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Figure 8: Overview of 28 target objects and various prompts in our evaluation.
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E Baseline Method467

In our evaluation, we conduct a comparative evaluation with two strong baselines trained on the468

internet scale datasets. Here we explain the details of each of their implementations.469

CLIP on Wheels (CoW) We implement the best-performing CoW baseline with the OWL-ViT470

B/32 detector [51]. Similar to our method, we feed the current observation and the prompts corre-471

sponding to the target object into the OWL-ViT B/32 detector [51], which was trained an internet472

scale dataset to estimate the boundary box for the target object. We crop the estimated point clouds473

by the estimated boundary box and take the median value as the target object pose. To have a fair474

comparison without method using a single camera image only (no depth camera and LiDAR), we475

estimate the depth with Depth360 [45] and project it to estimate the point clouds. To control the476

robot toward the detected object, we use a state lattice motion planner to generate the linear and477

angular velocity commands. The details of the implemted state lattice motion planning are shown478

in this appendix below. We limit the scope of instructions to object navigation for objects within479

view from the starting point of the robot trajectory. Therefore, we do not implement the exploration480

portion of CoW.481

OWL-ViT + ViNT To compare our method with a learning-based method, we leverage the foun-482

dation model for the vision-based navigation, which can navigate the robot towards a goal position483

conditioned on a goal image view. To take a goal image view corresponding a target object, this484

baseline leverages Owl-ViT, a VLM trained on internet-scale data and combine it with ViNT, a con-485

trol policy trained on multiple dataset collected by various mobile robots. Specifically, we feed the486

cropped image from the Owl-ViT into the ViNT as a goal image.487

F Implementation details488

We show the details of our training and the evaluation setup using a real prototype robot in language-489

conditioned navigation.490

F.1 Training491

To train our control policy, we randomly choose 256 observations from our whole dataset. Since492

one observation contains multiple objects and each object contains multiple prompts, in almost all493

cases, we randomly select the object and prompt (which is based on the object).494

By feeding the observations and the prompts into the model, we calculate our model and generate495

a sequence of the velocity commands for N (=24) steps. Then, we estimate the virtual robot pose496

N steps in the future via our kinematic model (integration of the velocity commands in our case).497

Finally, we calculate the objective J in Eqn. 1 and update our policy πθ. Our training is with an498

Adam optimizer using a learning rate 0.0001 on a workstation with a Intel i9 CPU, 96GB RAM and499

an NVIDIA RTX 4090 GPU.500

F.2 Robot experiment501

Figure 9 shows the overview of a prototype mobile robot in navigation. We calculate the control502

polcy on the edge robot controller, Nvidia Orin AGX, with the best frame rate for each method. We503

mount the omnidirectional camera, a RICOH Theta S on the robot and only use the front-side fisheye504

camera as the observation. Since we learn the visual encoder from scratch, there are no restrictions505

on the camera on the robot, but we use cameras with a wide FOV to reduce blind spots and make506

object detection easier.507

In the evaluation, we provide the language instruction to the policy once at the beginning of naviga-508

tion to reduce the computational load in each step. To control the real robot, we repeatedly calculate509

our control policy at the best frame rate on the robot edge controller and feed the first step veloc-510
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ity command {v0, ω0} in the generated sequence of the velocity commands {vi, ωi}i=0...N , similar511

to the receding horizon control. We test our method against two baselines, CLIP on Wheels and512

OWL-ViT + ViNT.

Figure 9: Overview of the prototype mobile robot. Note that we only use the front side camera of
the omnidirectional camera, Ricoh Theta S, to navigate the robot.

513

G YouTube Video List514

We list all URLs of the YouTube video in our YouTube Tour Dataset below.515

• https://www.youtube.com/watch?v=vQU_QydOUIw516

• https://www.youtube.com/watch?v=5J2Wsvnk-Ec517

• https://www.youtube.com/watch?v=b9thcSOI8bw518

• https://www.youtube.com/watch?v=V511PNMx2uw519

• https://www.youtube.com/watch?v=DO-JDTu_h5I520

• https://www.youtube.com/watch?v=oQ61ijCHego521

• https://www.youtube.com/watch?v=EwJQG74bl74522

• https://www.youtube.com/watch?v=rMOlDH0bv1o523

• https://www.youtube.com/watch?v=9MWWZeCr3QE524

• https://www.youtube.com/watch?v=-3vt2Mylvsw525

• https://www.youtube.com/watch?v=HknDp84cFBM526

• https://www.youtube.com/watch?v=l_s9YAluXBY527

• https://www.youtube.com/watch?v=k3Q1vse7In8528

• https://www.youtube.com/watch?v=ISNDJ2Pjq34529

• https://www.youtube.com/watch?v=4jDa_5S-0W4530

• https://www.youtube.com/watch?v=2O7JrGu_mVk531

• https://www.youtube.com/watch?v=je8267s9z38532

• https://www.youtube.com/watch?v=tWovplr-ois533

• https://www.youtube.com/watch?v=UmCbkpRUOA4534

• https://www.youtube.com/watch?v=Ea2yExKlg7w535

• https://www.youtube.com/watch?v=1Zu6Xct5bLQ536

• https://www.youtube.com/watch?v=9IluzedLtYs537

• https://www.youtube.com/watch?v=lnYfw_ryOdQ538

• https://www.youtube.com/watch?v=9r5eK5JXzLo539

• https://www.youtube.com/watch?v=LdWHy-f3jYg540

• https://www.youtube.com/watch?v=Kcc7zuQDlpE541

• https://www.youtube.com/watch?v=r-98ADAXxQM542

• https://www.youtube.com/watch?v=iRfQa2SEu0Q543

• https://www.youtube.com/watch?v=NzFbFARYhfE544

• https://www.youtube.com/watch?v=i3QkZ0xW92Y545

• https://www.youtube.com/watch?v=stUYODYcPCI546

• https://www.youtube.com/watch?v=GCkYfI5LRYM547

• https://www.youtube.com/watch?v=848EpwPmQfA548

• https://www.youtube.com/watch?v=Bq4rmeIvJbs549
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• https://www.youtube.com/watch?v=uVy9TKMA-f8550

• https://www.youtube.com/watch?v=_OZhGsKdBYY551

H State lattice motion planning552

We implemented sampling-based motion planning as the local miton planner in CLIP on Wheels553

(CoW) baseline. We generated 15 motion primitives assuming steady linear and angular velocity554

commands for 8 steps (2.664 s). The pairs of linear and angular velocity commands are (vs, ωs) =555

(0.0, 0.0), (0.2, 0.0), (0.2, 0.3), (0.2, 0.6), (0.2, 0.9), (0.2, −0.3), (0.2, −0.6), (0.2, −0.9), (0.5, 0.0),556

(0.5, 0.3), (0.5, 0.6), (0.5, 0.9), (0.5, −0.3), (0.5, −0.6), (0.5, −0.9). We selected these 15 motion557

primitives by balancing computational load and navigation performance.558

By integrating these velocity commands for 8 steps, we obtained 15 trajectories such as559

{{spji}i=1...8}j=1...15, where spji is the i-the virtual robot pose on the j-th motion primitive. To560

select the best motion primitive, we calculated the following cost value for each primitive.561

Jj
s = mini(p̂obj −

spji )
2 (2)

Here, p̂obj indicates the estimated target object pose in CLIP on Wheels (CoW) baseline. This562

objective calculates the squared errors between all 8 poses in the j-th motion primitive and the goal563

pose and selects the minimum one to evaluate the goal-reaching performance. Then, we choose the564

motion primitive with the minimum {Jj
s}j=1...15 and assign the corresponding velocity commands565

vs and ωs to control the robot during navigation.566
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