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ABSTRACT

Coarse-grained(CG) molecular dynamics simulations offer computational effi-
ciency for exploring protein conformational ensembles and thermodynamic prop-
erties. Though coarse representations enable large-scale simulations across ex-
tended temporal and spatial ranges, the sacrifice of atomic-level details limits
their utility in tasks such as ligand docking and protein-protein interaction predic-
tion. Backmapping, the process of reconstructing all-atom structures from coarse-
grained representations, is crucial for recovering these fine details. While recent
machine learning methods have made strides in protein structure generation, chal-
lenges persist in reconstructing diverse atomistic conformations that maintain ge-
ometric accuracy and chemical validity. In this paper, we present Latent Diffusion
Backmapping (LDB), a novel approach leveraging denoising diffusion within la-
tent space to address these challenges. By combining discrete latent encoding
with diffusion, LDB bypasses the need for equivariant and internal coordinate ma-
nipulation, significantly simplifying the training and sampling processes as well
as facilitating better and wider exploration in configuration space. We evaluate
LDB’s state-of-the-art performance on three distinct protein datasets, demonstrat-
ing its ability to efficiently reconstruct structures with high structural accuracy
and chemical validity. Moreover, LDB shows exceptional versatility in capturing
diverse protein ensembles, highlighting its capability to explore intricate confor-
mational spaces. Our results position LDB as a powerful and scalable approach for
backmapping, effectively bridging the gap between CG simulations and atomic-
level analyses in computational biology.

1 INTRODUCTION

Coarse-Grained Molecular Dynamics (CG-MD) simulation has become an indispensable tool in
computational biology for simulating large biomolecular systems (Das & Baker, 2008; Liwo et al.,
2014; Kmiecik et al., 2016; Souza et al., 2021; Majewski et al., 2023; Arts et al., 2023). Through
grouping atoms into super-atoms or beads, CG models significantly decrease computational require-
ments and allow the observation of long-time processes such as folding, aggregation, and self-
assembly (Lequieu et al., 2019; Shmilovich et al., 2020; Mohr et al., 2022). However, CG rep-
resentations inherently sacrifice atomistic details of protein structures, limiting their application to
a bunch of important downstream tasks in drug discovery, such as molecular recognition, signaling
pathways deciphering, and allosteric sites prediction (Badaczewska-Dawid et al., 2020; Vickery &
Stansfeld, 2021; Zambaldi et al., 2024). Under such circumstances, backmapping, i.e., reconstruct-
ing all-atom structures from CG representations, is essential for a comprehensive understanding and
wider applications of CG-MD (Huang et al., 2016; Śledź & Caflisch, 2018; Peng et al., 2019; Kim,
2023).

Two primary challenges are faced with backmapping coarse-grained protein representations to
all-atom structures. The first challenge is the high dimensionality involved in modeling large
biomolecules. Proteins, in particular, consist of thousands of atoms and intricate structural patterns,
making it difficult for models to learn and extract relevant features effectively (Rogers et al., 2023;
Fu et al., 2024; Wuyun et al., 2024). This complexity also leads to issues during sampling, where
directly generating 3D coordinates for numerous atoms can result in chemically invalid structures,
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Figure 1: The overall framework of our Latent Diffusion Backmapping (LDB) method. After VQ-
VAE training, the protein structure is encoded into a discrete low-dimensional representation without
graph structure. The latent vector z, after being perturbed with noise, is passed to the denoising
network ϵθ, conditioned on a CG graph structure. The noisy sample zt is progressively denoised, and
in the final decoding step, the CG structure guides the reconstruction of the full-atom representation.

such as bond length violations and incorrect valency, thus compromising the physical and chemical
fidelity of the protein models (Luo & Ji, 2022; Qiang et al., 2023).

The second challenge is the vast and dynamic conformational space that proteins can occupy. Such
dynamics result in unique conformational changes, which play a critical role in enabling the di-
verse functions of proteins and are essential for maintaining the proper physiological functions of
living organisms (Miller & Phillips, 2021). Though CG simulations allow us to observe and study
these special conformations across temporal and spatial scales, they make an obstacle for struc-
ture backmapping. When generative models are provided with multiple CG representations that are
topologically similar, the models must not only distinguishing among these simplified inputs, but
also reconstruct the all-atom variations in the 3D conformational space with structural and chemical
accuracy (Yang & Gómez-Bombarelli, 2023).

Traditional backmapping methods often rely on heuristics to generate initial structures, but these
approaches frequently result in non-physical artifacts and fail to capture the thermodynamic diversity
of protein conformations (Nicholson & Greene, 2020). Early machine learning approaches, such as
generative adversarial networks (Li et al., 2020; Stieffenhofer et al., 2020; 2021; Shmilovich et al.,
2022) and variational autoencoders (Wang & Gómez-Bombarelli, 2019; Wang et al., 2022; Yang
& Gómez-Bombarelli, 2023), align all-atom structures with the prior distribution of coarse-grained
models. However, such methods typically approximate only the most probable conformations and
struggle to capture the complex dynamics of structural distributions (Murphy, 2012; Yang & Gómez-
Bombarelli, 2023).

Denoising diffusion models (Ho et al., 2020) offer a stochastic approach for sampling protein en-
sembles. Diffusion over local structural relationships, like bond angles, often requires complex
approximations and post-processing for structural validity (Jing et al., 2022; Yim et al., 2023). La-
tent space methods, while promising, handle both node and edge features, constraining network
design and limiting their use to small molecules or backbone-only structures (Xu et al., 2023; Fu
et al., 2024). DiAMONDBack (Jones et al., 2023) uses an autoregressive approach to backmap
atom coordinates sequentially, but this complicates sampling, reducing both efficiency and quality,
particularly with large biomolecules.

In this paper, we propose Latent Diffusion Backmapping (LDB) to address the above challenges.
LDB begins by encoding the all-atom structures into a node-level latent representation, captur-
ing equivariance and local structural relationships. By applying physical constraints such as bond
lengths and angles, the method ensures chemical validity, thereby eliminating the need for extensive
post-processing. Furthermore, the node-level representation allows for greater flexibility in the de-
noising network architecture, removing the requirement for explicit edge modeling. Finally, LDB
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translates these embeddings into discrete, low-dimensional codes, reducing the dimensionality of
the generative task and enabling a more efficient and stable training process.

To further improve modeling precision and diversity, LDB incorporates a conditional diffusion
model that operates in the discrete latent codes. By introducing conditional diffusion, we enhance
the exploration of the latent space, allowing the model to generate diverse and valid conformations
while maintaining high accuracy.

We evaluate LDB on widely-used protein dynamics datasets PED (Ghafouri et al., 2024), demon-
strating its state-of-the-art performance in reconstructing conformations with high fidelity and chem-
ical correctness. Further experiments on large protein dynamic datasets ATLAS (Vander Meersche
et al., 2024) and static proteins datasets PDB (Berman et al., 2000) highlight LDB’s superior abil-
ity to model protein ensembles, showcasing its potential for practical applications in computational
biology.

Our contributions are as follows:
• We introduce LDB, a novel approach designed to address the challenge of limited explo-

ration in conformational space, enabling accurate reconstruction of all-atom 3D protein
structures from coarse-grained representations.

• Our method leverages discrete, low-dimensional latent representations that capture struc-
tural relationships with inherent equivariance, simplifying the diffusion process and im-
proving overall efficiency.

• By integrating these latent representations with diffusion, our approach significantly en-
hances structural accuracy and chemical fidelity, making it a robust solution for protein
backmapping across diverse datasets.

2 RELATED WORK

Traditional Methods. Traditional backmapping methods utilize rule-based heuristics to generate
initial atomic structures (Lombardi et al., 2016), which are subsequently refined through geometric
optimization or energy minimization (Vickery & Stansfeld, 2021). However, these approaches often
result in non-physical imperfections, such as atomic clashes and abnormal bond angles (Xu et al.,
2019), and the refinement process can be computationally expensive and biased toward specific min-
imization schemes (Badaczewska-Dawid et al., 2020). Additionally, these methods are deterministic
and do not capture the thermodynamic diversity of atomic structures that correspond to a single CG
representation (Yang & Gómez-Bombarelli, 2023).

Data-driven Methods. Data-driven approaches aim to overcome these limitations by predicting
atomic structures from CG representations. While deterministic models like MLPs (An & Desh-
mukh, 2020) and SE(3)-Transformers (Heo & Feig, 2023) offer high precision, they struggle with
the one-to-many nature of backmapping, leading to reduced structural diversity. Chennakesavalu
& Rotskoff (2024) uses Gaussian Mixture Models (GMMs) for local rotamer states and a predic-
tion model for global coupling to generate protein conformations. Compared to direct distribution-
learning models, it relies more on physical constraints and statistical models, lacking end-to-end
optimization of the target distribution, resulting in lower accuracy.

Generative models, including GANs (Li et al., 2020; Stieffenhofer et al., 2020; 2021; Shmilovich
et al., 2022) and VAEs (Wang & Gómez-Bombarelli, 2019; Wang et al., 2022; Yang & Gómez-
Bombarelli, 2023), address these challenges by learning multimodal distributions of atomic struc-
tures. However, GANs are often ineffective at modeling complex distributions, and VAEs tend to
prioritize common structures, limiting their ability to generate diverse conformations.

Recent work has shown that diffusion models, such as those proposed by Li et al. (2024) and Jones
et al. (2023), are particularly effective for backmapping. These models condition on CG inputs to
generate diverse and detailed atomic structures. However, diffusion in atomic space suffers from
high computational cost and limited flexibility, particularly for large systems. Moreover, the exces-
sive freedom in exploration can lead to generated structures that deviate from the target conforma-
tions.
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3 BACKGROUND

3.1 PROBLEM DEFINITION

Notations: Consider an all-atom protein structure as a set of atoms AA = {(xi, vi)}ni=1, where
n denotes the number of protein atoms. The vector x = {x1, . . . , xn} ∈ Rn×3 represents their
three-dimensional coordinates, and v represents the atomic types of the protein (Guan et al., 2023).
The coarse-grained structure of the AA is represented as CG = {(Xi, Vi)}Ni=1, where N < n and
X = {X1, . . . , XN} ∈ RN×3 indicates the CG coordinates, with V ∈ RNf denoting the amino
acid types. We define the sets [n] and [N ] as {1, 2, . . . , n} and {1, 2, . . . , N}, respectively. The CG
operation is then characterized by a surjective mapping m : [n] → [N ], which assigns each FG atom
to a CG atom.

Internal Coordinates representation: To reconstruct FG structures from CG models, we utilize
an internal coordinate representation that describes the adjacency relationships among points as
T = {(di, θi, τi)}N×13

i=1 , where di denotes bond lengths, θi represents bond angles, and τi indicates
dihedral angles. For each point, we specifically calculate its relative relationships with neighboring
points: the bond length to one neighbor, the angle formed with two neighboring points, and the
dihedral angle involving three surrounding points. Residues with fewer than 13 heavy atoms are
padded to reach the maximum length of 13 heavy atoms. See Appendix A.7 for further details.

Problem Definition: Given a protein’s coarse-grained structure, defined by coordinates X and the
corresponding amino acid types V , the task of protein backmapping is to generate the corresponding
all-atom coordinates x, where the atom types v are determined by the amino acid sequence. The goal
is to learn and efficiently sample from the conditional distribution p(x | X,V ). In this work, we rely
on the Cα atoms as they provide a robust representation of protein-protein interactions and serve as
a reliable granularity for reverse mapping, following established methods in the field (Badaczewska-
Dawid et al., 2020; Yang & Gómez-Bombarelli, 2023; Jones et al., 2023).

3.2 DIFFUSION MODEL FOR CONTINUOUS FEATURES

The Denoising Diffusion Probabilistic Model (DDPM) (Sohl-Dickstein et al., 2015; Ho et al., 2020)
is a generative modeling framework that transforms complex data distributions into Gaussian noise
through a forward diffusion process and subsequently learns to reverse this process to generate new
data samples. This model leverages the principles of diffusion processes and denoising autoencoders
to achieve high-quality generative performance.

Forward Diffusion Process: Given a data point x0 ∼ q(x0), the forward diffusion process pro-
gressively and independently adds a small amount of Gaussian noise to the data over T time steps.
Utilizing the properties of Gaussian distributions, we can express the noise adding process and the
distribution of xt given x0 as:

q(xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
, q(xt | x0) = N

(
xt;

√
ᾱtx0, (1− ᾱt)I

)
, (1)

where βt ∈ (0, 1) is a predefined variance schedule controlling the noise amount added at each
step, I is the identity matrix, αt = 1 − βt and ᾱt =

∏t
s=1 αs is the cumulative product up to time

t. As t approaches T , the distribution of xt converges to a standard normal distribution due to the
cumulative effect of the added noise.

Reverse Diffusion Process: The reverse diffusion process aims to recover x0 from xT by sequen-
tially removing the added noise. This process is also modeled as a Markov chain but with learned
parameters:

pθ(xt−1 | xt) = N
(
xt−1;µθ(xt, t), σ

2
t I
)
, (2)

where µθ(xt, t) is a neural network parameterized by θ, predicting the mean of the reverse transition,
and σ2

t is the variance, often set to βt or learned separately.

Training Objective: To streamline the learning process, up-to-date methods (Ho et al., 2020) usu-
ally parameterize µθ(xt, t) with the noise component at t timestep with ϵθ(xt, t), and train the
denoising model ϵθ by minimizing the variational bound on the negative log-likelihood:

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
, L(θ) = Ex0,ϵ,t

[
∥ϵ− ϵθ (xt, t)∥2

]
. (3)
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4 METHOD

In this section, we introduce the proposed Latent Diffusion Backmapping (LDB) framework. Our
work is inspired by the success of Stable Diffusion (Rombach et al., 2022), which has demonstrated
the effectiveness of generating high-resolution images in latent space. However, extending this
concept to complex protein structures presents unique challenges (Winter et al., 2022; Xu et al.,
2023; Hayes et al., 2024). We address these challenges by first compress the complex all-atom
protein structure into discrete latent codes, and then apply conditional diffusion in the latent space.

In the following sections, we detail the design of the discrete latent encoding and latent diffusion in
Sections 4.1 and 4.2, respectively. An overview of the framework is provided in Figure 1.

4.1 DISCRETE LATENT AUTOENCODING

Codebook
C!!O

C
N

CC

O

N

τ

θ d

C!!"# C!!$#

Figure 2: Illustration of protein structure to dis-
crete latent codes. The all-atom structure of three
adjacent residues is encoded into a latent space,
capturing their relative spatial relationships. Each
residue is mapped to a latent code, which is fur-
ther compressed and discretized via a codebook,
yielding a lower-dimensional representation.

We designed a node-level latent representation
to efficiently compress and represent protein
structures, as shown in Figure 2. Unlike tradi-
tional methods that extract both node and edge
features, our approach focuses solely on node-
level representations, improving flexibility and
reducing complexity. This allows the diffu-
sion model to avoid simultaneous processing of
noise addition and removal for both nodes and
edges, simplifying the architecture.

To construct this latent space, we treat each
amino acid as a minimal compression unit, re-
ducing the dimensionality of full-atom struc-
tures. Given the invariance of protein struc-
tures under geometric transformations like ro-
tation and translation, we employ an SE(3)-
equivariant graph neural network within the
GenzProt (Yang & Gómez-Bombarelli, 2023)
framework to extract robust node-level repre-
sentations.

We used internal coordinates as training targets for autoencoder, which include bond lengths and an-
gles, ensuring physical consistency in reconstructed structures. This approach is particularly suited
for backmapping tasks, as it reconstructs full-atom structures from coarse-grained representations.

Due to the challenges posed by the limited availability and imbalance in protein conformation
data—where some proteins have abundant dynamic structure data while others are represented by
only a few or even a single static structure—we chose to employ a Vector Quantized Variational
Autoencoder (VQ-VAE) (Van Den Oord et al., 2017). Its ability to discretize continuous features
into a fixed-size codebook makes it particularly suited to learning robust representations from such
unevenly distributed datasets.

To further enhance efficiency, we compressed the latent representation by mapping it to a lower-
dimensional space. This decouples the code lookup from the high-dimensional embedding, allowing
for the retrieval of latent variables in a lower-dimensional space, which are then projected back into
the original embedding. This method improves the training and diffusion processes.

The encoder Eϕ encodes the all-atom structure into latent space z, preserving rotation and transla-
tion consistency. The latent variables are quantized via a codebook, and the decoder Dψ generates
internal coordinates, which are used to reconstruct the full-atom structure based on predefined an-
chor points, following the hierarchical placement algorithm described by (Jing et al., 2022).

4.2 GRAPH LATENT DIFFUSION

In this section, we describe the noise addition and removal processes in the latent space, as derived
earlier. Unlike traditional diffusion models that operate in high-dimensional coordinate space, our
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approach simplifies diffusion by leveraging a lower-dimensional discrete latent codes, avoiding the
complexity of geometric parameters, as shown in Figure 1.

Traditional diffusion methods face challenges when applied to protein structures, as they often op-
erate in three-dimensional space or rely on relative distances and angles. This increases complexity
and makes it harder to capture the symmetry and physical constraints inherent in protein structures.
Moreover, performing diffusion in high-dimensional spaces complicates the multi-step denoising
process, making it difficult to accurately model subtle conformational differences.

To overcome these challenges, we focus on node-level latent representations, which embed the nec-
essary structural information. This eliminates the need for explicit geometric constraints, simpli-
fying the noise addition and removal processes. By performing diffusion in the latent space, our
method avoids the intricacies of handling node and edge features, resulting in a more streamlined
and efficient model.

Additionally, by compressing the latent representation into a discrete code, we mitigate the compu-
tational complexity associated with large protein structures. This compact representation allows for
efficient diffusion, reducing noise accumulation and improving overall computational efficiency.

We build our denoising network ϵθ on the ProteinMPNN framework Dauparas et al. (2022), focus-
ing on CG discrete latent codes without modeling edge information, which enhances flexibility. The
network processes three inputs: coarse-grained graph node coordinates, residue types, and an initial
noise vector. The node coordinates and residue types represent the coarse-grained protein struc-
ture and serve as conditional information to refine the noise vector during the denoising process
iteratively.

To account for varying noise levels, we modify the LayerNorm layer of ProteinMPNN to adaptive
layer norm (adaLN) (Perez et al., 2018), allowing dynamic adjustments during the denoising process.
This ensures consistent, physically plausible protein structures across all time steps.

The denoising objective minimizes the difference between predicted and actual noise, as described
by the following loss function:

Ldiffusion = Ez0,ϵ,t
[
|ϵ− ϵθ(zt, t, c)|2

]
where z0 is the initial latent variable, zt is the noisy latent variable at time step t, ϵ represents noise,
and c includes conditional information such as graph structure and residue types. This objective
enables efficient, accurate denoising while maintaining geometric and chemical consistency.

By embedding symmetry and equivariance in the node-level latent space, our method avoids han-
dling complex physical constraints explicitly, significantly enhancing both the simplicity and com-
putational efficiency of the diffusion process.

5 EXPERIMENT

In this section, we evaluate LDB across three diverse protein datasets to demonstrate its broad ap-
plicability. (1) On the widely-used PED benchmark (Lazar et al., 2021; Ghafouri et al., 2024),
which contains approximately 100 frames with each of the 85 proteins, LDB achieved state-of-the-
art (SOTA) structural and chemistry accuracy in reconstructing protein structures. (2) On the larger
ATLAS dataset (Vander Meersche et al., 2024), comprising 300 conformations with each of the
1297 proteins, LDB exhibits superior performance in generating diverse protein ensembles, show-
casing its capability in capturing conformational variability. (3) Finally, We demonstrate LDB’s
ability to generalize across the extensive PDB dataset (Berman et al., 2000), containing 62,105
real-world, single-conformation proteins, highlighting its potential for practical backmapping appli-
cations. These results collectively underscore the robustness and versatility of the proposed method.
For detailed descriptions of the datasets and preprocessing steps, please refer to Appendix A.1.

5.1 EXPERIMENTAL SETTINGS

Baselines. We selected two recent SOTA backmapping methods as our baselines: GenZProt (Yang
& Gómez-Bombarelli, 2023), and DiAMoNDBack (Jones et al., 2023). GenZProt is based on the
VAE framework, which employs two encoders to map full-atom and coarse-grained structures into
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PED00055

(a) Ground truth (d) DiAMoNDBack(b) LDB (c) Genzprot

Figure 3: Visualization of PED00055 protein structure generation from the PED dataset. Our method
(b) maintains accurate structural integrity near flexible side chains (red circles), closely matching the
ground truth (a). In contrast, Genzprot (c) and DiAMoNDBAck (d) generate conflicting side chain
atoms in these regions. See Appendix A.5 for further details.

a latent space, aligning the two representations. Due to its learning mechanism, the model’s learned
prior distribution does not extend into low-probability regions, limiting its ability to capture the full
diversity of protein ensembles. DiAMoNDBack utilizes a diffusion-based framework that defines
an auto-regressive structure generation process, leading to the accumulation of errors and significant
computational demands. We reproduce all baseline methods following their experimental settings.

Evaluation Metrics. We evaluate the generated structures based on two key aspects: (1) structural
accuracy, i.e., the similarity of the generated conformations to the original fine-grained structures,
where Root Mean Squared Distance (RMSD) and Graph Edit Distance (GED) are applied. (2) chem-
ical validity, i.e., the extent to which the generated structures adhere to realistic chemical properties
and constraints, such as bond lengths and angles. Specifically, Steric Clash Score, Interaction Score,
and Graph Difference Ratio (GDR) are employed to assess chemical validity. See appendix A.2 for
detailed description for these metrics.

Model Implementations For the autoencoder in LDB, we adopted the parameter settings from
Genzprot, setting the dimensionality of the output node features to 36. The vector quantization
employs a codebook size of 4096 with an embedding dimension of 3. Learning rate reduction and
early stopping were controlled based on validation loss. The network was trained with a batch size
of 4 and an initial learning rate of 0.001 for the PED and PDB datasets, while using 0.0005 for the
ATLAS dataset

For the diffusion framework, we used a linear variance schedule, setting tmax = 1000, with the
variance ranging from 1× 10−4 to 2× 10−2. A learned covariance Σθ was utilized as described by
(Peebles & Xie, 2023). During sampling, 100 steps were used to balance computational efficiency
and output quality. The denoising neural network employs a 3-layer encoder-decoder architecture
with a hidden layer size of 128. The training process utilized a learning rate of 3×10−4 with a batch
size of 128, followed by a warmup period of 20,000 steps and a linear schedule up to 300,000 steps,
with the final learning rate set to 1× 10−5. We implemented LDB using PyTorch 2.3.0 with CUDA
12.1 and Python 3.11. All models were trained and evaluated on 1 NVIDIA A100 GPUs, each with
40GB of memory.

5.2 RESULTS ON THE PED DATASET

The experimental results on the PED dataset, as shown in Table 1, highlight LDB’s SOTA perfor-
mance in addressing backmapping challenges. The PED dataset, a benchmark for medium confor-
mational space, was used to evaluate the methods. We sampled each protein structure ten times and
reported the mean and standard deviation to ensure robustness.

LDB excels in structural accuracy, outperforming GenZProt and DiAMoNDBack in RMSD for most
test proteins. It also achieves significantly lower GED scores, likely due to the internal coordinate
representation, which helps maintain valid bond lengths and preserves the original graph structure.
This enables LDB to explore a broad conformational space while maintaining fine-grained structural
precision, critical for backmapping tasks.

In terms of efficiency and structural validity, LDB consistently delivers superior or competitive re-
sults across clash, interaction, and GDR metrics. This demonstrates that LDB not only produces
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Table 1: Comparison of structural accuracy and chemical validity on the PED dataset. Our method
shows competitive or leading performance in structural accuracy (RMSD, GED) and chemical va-
lidity (Clash, Interaction, GDR) metrics.

Method PED00055 PED00090 PED00151 PED00218

RMSD (↓)
Genzprot 1.839±0.002 2.070±0.003 1.629±0.001 1.800±0.002
DiAMoNDBack 1.843±0.008 1.958±0.014 1.769±0.008 1.637±0.012
Ours 1.689±0.009 1.857±0.020 1.673±0.005 1.622±0.015

GED (10−2; ↓)
Genzprot 0.622±0.002 1.185±0.003 0.678±0.002 0.716±0.004
DiAMoNDBack 6.683±0.024 6.577±0.022 1.815±0.015 4.385±0.032
Ours 0.476±0.004 0.588±0.004 0.372±0.003 0.450±0.004

Clash (‰; ↓)
Genzprot 0.209±0.006 0.390±0.014 0.021±0.003 1.171±0.007
DiAMoNDBack 0.095±0.009 0.221±0.021 0.008±0.002 1.087±0.009
Ours 0.100±0.009 0.110±0.013 0.010±0.001 1.080±0.006

Interaction (↓)
Genzprot 1.815±0.009 1.409±0.008 1.605±0.015 3.007±0.007
DiAMoNDBack 1.613±0.050 0.945±0.020 1.468±0.056 2.627±0.068
Ours 1.621±0.078 0.969±0.028 1.485±0.051 2.789±0.036

GDR (%; ↓)
Genzprot 5.057±0.026 7.308±0.092 2.173±0.017 3.056±0.056
DiAMoNDBack 1.700±0.101 2.852±0.189 0.530±0.034 0.928±0.076
Ours 1.599±0.080 1.746±0.145 0.267±0.028 0.855±0.056

accurate structures but also ensures their chemical and physical validity. Its leading clash score in-
dicates fewer unrealistic atomic overlaps, while strong interaction and bond graph accuracy reflect
adherence to expected chemical interactions. Although DiAMoNDBack produces reasonable re-
sults, its backmapping process approximately 20 times slower than LDB,, which leverages a latent
space approach for efficient structure generation. The robustness of LDB is further confirmed by the
generated samples, as seen in Figure 3 and Figure 4.

5.3 RESULTS ON THE ATLAS DATASET

The results on the ATLAS dataset, as shown in Table 2 (left half), demonstrate LDB’s ability to
handle significantly larger and more diverse conformational spaces than PED. Given the extensive
variety of proteins in the test set, we selected examples with the best and worst clash loss generated
by our method for illustration. The ATLAS dataset includes 15 times more proteins and spans a
conformational space 300 times larger than PED, making it a considerably more complex challenge.

Importantly, we did not include DiAMoNDBack in this analysis, as its reproduced results exhibited
excessive GED errors. Upon further inspection of the generated structures, we observed frequent
graph structure disconnections, likely due to the vast conformational space of the ATLAS dataset,
which caused DiAMoNDBack to produce overly diverse and erroneous structures that deviated from
the intended targets.

Regarding structural accuracy, LDB consistently outperforms both GenZProt in RMSD across all
ATLAS test sets, particularly achieving the lowest RMSD scores in both the overall and worst-case
scenarios. This highlights LDB’s ability to accurately reconstruct protein structures across a wide
range of conformations. The GED results further reinforce this observation, where LDB exhibits
significantly lower GED values, indicating its capacity to maintain the correct bond graph structure
even in the challenging ATLAS dataset.

In terms of structural validity, LDB also leads in metrics such as Clash and Interaction scores,
achieving fewer steric clashes and preserving physical interactions more effectively than the base-
lines. The consistently lower GDR values across all test cases underline LDB’s superior capability
in generating chemically valid and physically realistic structures, ensuring that even within larger
and more diverse conformational spaces, the model remains robust and reliable.

The visualization of generated samples, as shown in Figure 5, further exemplifies LDB’s ability
to produce realistic and valid protein structures in challenging conditions. These results substan-
tiate LDB’s SOTA performance and validate the effectiveness of our approach in addressing both
challenges of large-scale conformational exploration and computational efficiency.
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Table 2: Comparison of structural accuracy and chemical validity on the ATLAS and PDB dataset.

Method ATLAS
overall

ATLAS best
(7jfl C)

ATLAS worst
(7onn A)

PDB
overall

PDB best
(T0868)

PDB worst
(T0891)

RMSD (↓)
Genzprot 1.718±0.157 1.484±0.043 1.728±0.011 1.610±0.162 1.318±0.062 1.764±0.073
DiAMoNDBack - - - 1.294±0.192 1.120±0.065 1.391±0.053
Ours 1.539±0.176 1.435±0.043 1.396±0.022 1.236±0.183 1.106±0.079 1.309±0.089

GED (10−2; ↓)
Genzprot 0.715±0.188 0.441±0.012 0.920±0.026 0.382±0.219 0.177±0.034 0.393±0.058
DiAMoNDBack - - - 0.714±0.003 0.454±0.001 0.708±0.001
Ours 0.391±0.044 0.306±0.011 0.495±0.010 0.162±0.093 0.083±0.006 0.241±0.035

Clash (‰; ↓)
Genzprot 0.232±0.265 0.060±0.039 0.294±0.245 0.660±1.123 0.046±0.043 3.602±0.076
DiAMoNDBack - - - 0.422±0.905 0.005±0.010 3.435±0.000
Ours 0.047±0.096 0.009±0.013 0.642±0.478 0.435±0.907 0.000 3.461±0.020

Interaction (↓)
Genzprot 1.627±0.346 1.042±0.123 1.589±0.041 1.577±0.708 0.745±0.087 2.114±0.141
DiAMoNDBack - - - 1.027±0.683 0.456±0.137 1.016±0.247
Ours 1.128±0.329 0.764±0.212 1.002±0.049 0.843±0.623 0.322±0.106 0.692±0.182

GDR (%; ↓)
Genzprot 4.140±1.505 1.274±0.273 5.111±0.332 3.480±1.330 1.037±0.375 2.525±0.833
DiAMoNDBack - - - 0.918±0.360 0.438±0.229 0.609±0.215
Ours 0.926±0.391 0.279±0.117 0.920±0.065 0.533±0.355 0.046±0.056 0.245±0.247

5.4 RESULTS ON THE PDB DATASET

The results on the PDB dataset, as shown in Table 2 (right half), demonstrate LDB’s robustness
in handling large static datasets with over 60,000 single-conformation proteins—700 times more
than PED. Unlike dynamic datasets such as ATLAS and PED, PDB contains steady-state structures
without molecular dynamics data, posing the challenge of reconstructing static structures in the
absence of conformational diversity.

LDB achieves superior or competitive results in RMSD and GED compared to GenZProt and Di-
AMoNDBack, particularly excelling in overall RMSD and both best- and worst-case structures.
This highlights LDB’s consistent ability to reconstruct high-fidelity structures, even without confor-
mational diversity. GED results further confirm the model’s ability to maintain structural integrity
across a wide range of protein types.

In terms of structural validity, LDB outperforms the baselines in Clash and GDR scores, ensuring
both accuracy and physical plausibility. LDB also achieves the highest Interaction scores, preserving
critical atomic interactions essential for functional analysis. These results confirm LDB’s capability
in generating chemically valid, physically realistic steady-state structures.

Figure 6 visually illustrates LDB’s effectiveness, showcasing its ability to produce structurally sound
results on real-world protein data. Overall, LDB demonstrates consistent superiority in accuracy
(RMSD, GED) and structural validity (Interaction, GDR), without sacrificing inference efficiency,
making it well-suited for large-scale applications in protein modeling and drug discovery.

5.5 ABLATION STUDIES

To evaluate the contributions of key model components, we conducted ablation studies on the PED
dataset, comparing our discrete latent space approach (VQ-VAE+diffusion) with two alternatives:
a continuous latent space model (VAE+diffusion) and a flow-based variant (VQ-VAE+flow). Flow
matching, known for balancing stochasticity and structure in recent tasks, offers efficient probability
flows (Irwin et al., 2024; Jing et al., 2024), but for protein backmapping tasks with large confor-
mational spaces, diffusion’s ability to explore diverse conformations proves more effective. Each
component plays a distinct role in improving structural accuracy and validity.

Firstly, our discrete latent space (VQ-VAE) shows clear advantages over the continuous VAE-based
method. By discretizing the latent space, our model can better preserve the bond graph consistency,
which is crucial for maintaining accurate internal structures. This is reflected in the significantly
lower GED scores as shown in Table 3. The discrete space effectively reduces errors related to bond
lengths and angles, which leads to better structural precision.

Secondly, the diffusion process proves superior to the flow-based approach (VQ-VAE+flow) in han-
dling large conformational spaces. Diffusion leverages stochastic noise, which allows for explo-
ration across diverse conformations while maintaining structure validity. This is evident in the
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Table 3: Ablation on PED dataset for the model architecture.

Method PED00055 PED00090 PED00151 PED00218

RMSD (↓)

VAE+diffusion 1.786±0.007 1.938±0.016 1.820±0.013 1.706±0.018
VQ-VAE+flow 1.794±0.008 1.918±0.015 1.838±0.011 1.674±0.013
VQ-VAE+diffusion 1.689±0.009 1.857±0.020 1.673±0.005 1.622±0.015

GED (10−2; ↓)
VAE+diffusion 1.033±0.005 1.210±0.008 0.378±0.003 0.898±0.020
VQ-VAE+flow 0.504±0.004 0.583±0.005 0.405±0.005 0.495±0.014
VQ-VAE+diffusion 0.476±0.004 0.588±0.004 0.372±0.003 0.450±0.004

Clash (‰; ↓)

VAE+diffusion 0.120±0.014 0.212±0.019 0.019±0.005 1.154±0.015
VQ-VAE+flow 0.103±0.015 0.228±0.029 0.020±0.005 1.118±0.006
VQ-VAE+diffusion 0.100±0.009 0.110±0.013 0.010±0.001 1.080±0.006

Interaction (↓)

VAE+diffusion 1.496±0.043 1.068±0.037 1.512±0.066 2.802±0.061
VQ-VAE+flow 1.423±0.080 1.113±0.052 1.547±0.055 2.763±0.057
VQ-VAE+diffusion 1.621±0.078 0.969±0.028 1.485±0.051 2.789±0.036

GDR (%; ↓)

VAE+diffusion 2.689±0.118 3.726±0.207 0.397±0.033 1.994±0.211
VQ-VAE+flow 1.890±0.107 2.823±0.286 0.406±0.039 1.426±0.052
VQ-VAE+diffusion 1.599±0.080 1.746±0.145 0.267±0.028 0.855±0.056

RMSD and Clash metrics, where our diffusion-based model consistently achieves better results.
Specifically, the diffusion process allows for finer adjustments during multi-step denoising, leading
to fewer steric clashes and better interaction preservation, as indicated by lower Clash and GDR
scores.

These results highlight the complementary strengths of discrete latent space for preserving fine struc-
tural details and diffusion for maintaining structural validity across diverse conformations. Combin-
ing these components enhances both accuracy and efficiency in protein backmapping, making our
approach robust and effective for large conformational spaces.

6 CONCLUSION

In this paper, we introduced LDB, a denoising diffusion backmapping method operating in la-
tent space. By implicitly incorporating equivariance and internal coordinates into a discrete low-
dimensional node-level latent representation, we effectively preserved structural information while
simplifying the diffusion process, thereby enhancing both efficiency and performance. This method
addresses the inefficiencies and accuracy challenges of direct diffusion in coordinate space, as well
as the difficulties in learning simple prior distributions that struggle to capture diverse conforma-
tional spaces. Our experiments demonstrate that LDB achieves SOTA accuracy across various
datasets while maintaining higher structural validity. For future work, we aim to extend this frame-
work to model continuous time trajectories, which will allow better prediction of dynamic protein
behaviors. Additionally, this versatile framework can be adapted for other tasks in protein design
and beyond.
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A APPENDIX

A.1 DATASET PREPROCCESS

PED: The PED contains structural ensembles of various proteins, including numerous intrinsi-
cally disordered proteins (IDPs). In line with the approach taken by the GenZProt model (Yang &
Gómez-Bombarelli, 2023), we initially selected 88 proteins from the PED dataset. To ensure com-
patibility with prior work, we further filtered out three proteins—PED00125e000, PED00126e000,
and PED00161e002—that contain non-canonical amino acids, following the methodology of Di-
AMoNDBAck. This left us with a total of 85 proteins for training. For evaluation purposes,
we used the same test set as previous studies, consisting of four PED proteins: PED00151ecut0,
PED00090e000, PED00055e000, and PED00218e000, which contain 20 to 140 frames, and the
remaining proteins were used for training.

ATLAS: The ATLAS dataset consists of all-atom molecular dynamics (MD) simulations for 1,390
non-membrane proteins, each chosen to represent all eligible ECOD structural classes (Schaeffer
et al., 2017). For each protein, three replicate simulations of 100 ns are provided, with each sim-
ulation containing 10,000 frames. Following the preprocessing steps used in the Alphaflow frame-
work (Jing et al., 2024), 300 conformations per protein were randomly sampled for training. To
maintain consistency in our experment, we excluded 95 sequences with lengths greater than 512
residues. The final test set was composed of proteins whose corresponding PDB entries were de-
posited after May 1, 2019.

PDB: The PDB dataset comprises protein structures from the Protein Data Bank (PDB), collated in
the SidechainNet extension of ProteinNet. In accordance with the preprocessing strategy used by
DiAMoNDBAck (Jones et al., 2023), we filtered out sequences with incomplete side-chain coordi-
nates for non-terminal residues, as well as configurations with Cα-Cα distances outside the 2.7-4.1
Å range. Additionally, we removed sequences containing four or more disconnected chains and
those with fewer than five residues. After these steps, we retained 65,360 structures for training.
Finally, we further refined the dataset by excluding 3,270 structures with sequence lengths greater
than 512 residues, ensuring a robust dataset for our experiments.

A.2 EVALUATION METRICS

Root Mean Squared Distance (RMSD): The RMSD calculates the average distance between cor-
responding atoms in two structures, effectively quantifying the difference between the reference and
generated structures, thereby assessing the quality of the reconstruction. For a generated structure
xgen and reference structure xref, RMSD is computed as:

RMSD =

√√√√ 1

n

n∑
i=1

∥xgen
i − xref

i ∥2,

where n is the total number of atoms. This metric provides a direct assessment of reconstruction
quality, with lower values indicating closer alignment to the reference structure.

Graph Edit Distance (GED): The quality of generated samples is assessed based on how well
they retain the original chemical bond graph structure, quantified by the graph edit distance ratio
λ(Ggen, Gref) between the generated graph and the reference graph. Given the generated structure
xgen and reference structure xref, and their respective edge lists edge list, the graph loss is calculated
as:

GED =
1

e

∑
(i,j)∈edge list

(
∥xgen

i − xgen
j ∥ − ∥xref

i − xref
j ∥

)2
,

where e is the number of edges. This metric evaluates the structural fidelity of the generated bond
graph relative to the reference.

Steric Clash Score: The generated structure should have a reasonable atomic distribution. We
report the ratio of steric clashes among all atom-atom pairs, where a distance smaller than 1.2 Å
between any two atoms is considered a steric clash (Yang & Gómez-Bombarelli, 2023; Jones et al.,
2023). For a generated structure xgen, the score is calculated by identifying all atom pairs within a
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distance smaller than 1.2 Å. The ratio of steric clashes is defined as:

Clash Score =
Number of clashes in xgen

Total number of atom pairs in xgen .

Interaction Score: We define the Interaction Score as a single value to evaluate the physical plau-
sibility of the generated structures. This score captures two types of interactions: (1) hydrogen
bonds, ion-ion interactions, and dipole-dipole interactions between atom pairs within 3.3 Å; and (2)
π-π stacking interactions among aromatic ring pairs (PHE, TYR, TRP, HIS) with center distances
smaller than 5.5 Å. The Interaction Score is computed as:

L =
∑

(x,y)∈A

max(∥x− y∥22 − 4.0, 0.0) +
∑

(x,y)∈P

max(∥x− y∥22 − 6.0, 0.0)

where A represents interacting atom pairs and P represents pairs of aromatic rings. Lower interac-
tion scores indicate more chemically realistic structures.

Graph Difference Ratio (GDR): The GDR measures the fidelity of generated bond graphs com-
pared to reference bond graphs, which are constructed based on covalent bond distances. A bond
is defined between two atoms if their distance is smaller than a threshold, calculated as the sum of
their covalent radii scaled by a factor of 1.3 to account for permissible bond length variations:

Gij =

{
1 if ∥xi − xj∥ < (radiusi + radiusj)× scale,
0 otherwise.

The GDR is then calculated as:

GDR =
∥Gtrue −Ggen∥1

∥Gtrue∥1
,

where Gtrue and Ggen are the reference and generated bond graphs, respectively. Lower GDR values
indicate better structural fidelity.

A.3 REPRESENTATION FOR PROTEIN STRUCTURE

Protein structure representations are essential for tasks such as protein design, folding prediction,
and structural backmapping. Numerous approaches have been developed to represent protein struc-
tures in a computationally efficient manner. Below, we discuss several common methods of repre-
sentation.

Voxel Representation Voxel representations divide 3D space into a grid, where each voxel in-
dicates the presence or absence of atoms. This method provides a clear way to capture spatial
information, but it can be computationally demanding due to the high dimensionality of the voxel
grid, especially when applied to large macromolecules. It is mainly utilized in tasks that require
explicit spatial reasoning, such as molecular docking simulations. Several studies (Masuda et al.,
2020; Stieffenhofer et al., 2020; 2021; Shmilovich et al., 2022) have implemented atomic density
grids, allowing for the entire molecule to be generated in one step by producing a density over the
voxelized 3D space. However, these grids lack the desirable property of equivariance and often
necessitate separate fitting algorithms, which adds complexity to the modeling process.

Coordinate Representation Coordinate representation captures the precise spatial arrangement
of each atom in a protein using Cartesian coordinates, making it a standard approach in many molec-
ular modeling techniques. This method effectively preserves the geometric properties of protein
structures, facilitating accurate modeling tasks. However, directly integrating Cartesian coordinates
into deep learning models presents challenges, particularly the need for translational and rotational
invariance, which necessitates specific constraints within the network. Furthermore, the high dimen-
sionality of coordinate data increases computational complexity, especially in large-scale datasets,
while uneven data distribution can impede learning efficiency. Consequently, advanced learning
strategies are often required to address these challenges (Hoogeboom et al., 2022; Wu et al., 2022).
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Internal Coordinate Representation The internal coordinate representation utilizes bond
lengths, bond angles, and dihedral angles to reduce the degrees of freedom compared to Carte-
sian coordinates, resulting in a more compact and efficient representation (Jing et al., 2022; Eguchi
et al., 2022). This approach inherently encodes the geometric constraints of molecular structures,
enhancing computational efficiency while eliminating redundant spatial information. It is particu-
larly well-suited for backmapping tasks, where known reference points facilitate the reconstruction
of full-atom coordinates. By relying on internal coordinates, the process conforms to the physical
and chemical constraints of the system, enabling the accurate and efficient generation of all-atom
structures.

Latent Representation Latent diffusion models have demonstrated significant success across var-
ious generative tasks, including image (Vahdat et al., 2021), point cloud (Zeng et al., 2022), text (Li
et al., 2022), audio (Liu et al., 2023), and molecular generation (Xu et al., 2023). In the context
of protein structures, latent representations offer a compact and efficient method for modeling by
embedding them into lower-dimensional spaces, thereby simplifying both the generation and de-
sign processes. (Xu et al., 2023) introduced a geometric latent diffusion model for 3D molecular
generation that ensures roto-translational equivariance within the latent space, enhancing the mod-
eling of small molecular geometries. (Fu et al., 2024) proposed a latent diffusion model that adeptly
captures protein geometry, facilitating the efficient generation of novel protein backbones through
latent node and edge features. Similarly, (Hayes et al., 2024) employed latent space modeling to
simulate protein evolution, showcasing its capability to co-design protein sequences and structures.
Collectively, these methods reduce computational complexity while preserving high-quality protein
generation and designability.

A.4 BASELINE MODELS

DiAMoNDBack reconstructs full-atom structures from CG representations by directly performing
diffusion on atomic coordinates. The method introduces Gaussian noise to atomic coordinates in
a forward diffusion process, transforming the data into a noise distribution. During inference, the
reverse process iteratively removes the noise to recover the original coordinates. To ensure invari-
ance to global rotations and translations, each residue is represented in a canonical reference frame
defined by its neighboring residues.

The model employs a U-Net-based denoising network to predict clean coordinates at each diffusion
step. It follows an autoregressive approach, generating the structure residue by residue, starting from
the N-terminus. Each residue is predicted conditionally based on the previously generated residues,
ensuring both local accuracy and global consistency.

DiAMoNDBack focuses on directly modeling in Cartesian coordinate space, allowing it to generate
diverse conformations while maintaining structural integrity. However, its autoregressive nature
significantly increases inference time compared to non-autoregressive models.

GenZProt reconstructs full-atom structures from CG representations using a VAE framework. In-
stead of predicting Cartesian coordinates directly, it predicts internal coordinates, including bond
lengths, bond angles, and torsion angles, ensuring chemical and physical validity while avoiding
steric clashes.

The model uses a hierarchical architecture to process input data. The encoder captures geometric
information at three levels: atomic interactions within 9 Å, residue-level interactions, and long-range
residue interactions within 21 Å. The decoder generates internal coordinates for each residue, which
are converted to Cartesian coordinates using a Z-matrix formulation. This representation reduces
the complexity of direct Cartesian prediction while preserving physical constraints.

Training is guided by physics-informed loss functions, focusing on bond lengths, bond angles, tor-
sion angles, and steric clash avoidance. GenZProt learns a prior distribution of protein structures
in the latent space, capturing the most plausible conformations for a given CG representation. This
allows it to efficiently reconstruct full-atom structures with high chemical accuracy.
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A.5 SAMPLE STRUCTURE

PED00090

PED00218

(a) Ground truth

(a) Ground truth (d) DiAMoNDBack(b) LDB (c) Genzprot

(d) DiAMoNDBack(b) LDB (c) Genzprot

PED00151

(a) Ground truth (d) DiAMoNDBack(b) LDB (c) Genzprot

PED00055

(a) Ground truth (d) DiAMoNDBack(b) LDB (c) Genzprot

Figure 4: Comparison of sample protein structures across different methods. The structures shown
are from PED. Each row represents a different protein (PED00055, PED00090, PED00151, and
PED00218), our method remain close to the reference conformation and maintain good structural
integrity
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Atlas-7jfl_C

(a) Ground truth (d) DiAMoNDBack(b) LDB (c) Genzprot

Atlas-7onn_A

(a) Ground truth (d) DiAMoNDBack(b) LDB (c) Genzprot

Figure 5: Visualization of protein structure generation from the ATLAS dataset. Our method remain
close to the reference conformation and maintain good structural integrity

PDB-T0868

(a) Ground truth (d) DiAMoNDBack(b) LDB (c) Genzprot

(a) Ground truth (d) DiAMoNDBack(b) LDB (c) Genzprot

PDB-T0891

Figure 6: Visualization of protein structure generation from the PDB dataset. Our method remain
close to the reference conformation and maintain good structural integrity

A.6 ADDITIONAL EXPERIMENTAL RESULTS

A.6.1 STRUCTURE DIVERSITY

We evaluated the diversity of the generated protein structures, acknowledging that while a single CG
model typically corresponds to a unique all-atom structure in practical applications, the inherent in-
formation compression in CG representations often allows one CG model to correspond to multiple
plausible all-atom structures. As a result, the model must learn a distribution of possible mappings,
making it important to balance structural fidelity with diversity in the generated output.

The diversity metric quantifies whether the generated structures exhibit meaningful variation while
maintaining consistency with the reference structure. To assess this, we adopted the Diversity
Score from the Diamondback framework. This score compares the structural error between the
backmapped structures (RMSDgen) and the reference structure (RMSDref) with the structural vari-
ability among the backmapped structures themselves (RMSDgen). The Diversity Score is computed
as follows:
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Table 4: Diversity scores of generated structures on the PED dataset.

Method PED00055 PED00090 PED00151 PED00218

Diversity (↓)

Genzprot 0.909±0.001 0.903±0.001 0.888±0.001 0.893±0.001
DiAMoNDBack 0.466±0.022 0.479±0.014 0.423±0.002 0.484±0.001
Ours 0.447±0.001 0.465±0.001 0.424±0.001 0.480±0.005

Table 5: Jensen-Shannon Divergence of torsion angle distributions on the PED dataset.

Method PED00055 PED00090 PED00151 PED00218

JSD (↓)

Genzprot 0.326±0.149 0.307±0.111 0.177±0.074 0.470±0.140
DiAMoNDBack 0.241±0.134 0.163±0.078 0.041±0.017 0.194±0.100
Ours 0.193±0.091 0.147±0.052 0.047±0.023 0.239±0.147

RMSDref =
1

G

G∑
i=1

RMSD(xgen
i ,xref

i )

RMSDgen =
2

G(G− 1)

G∑
i=1

∑
j<i

RMSD(xgen
i ,xgen

j )

DIV = 1−
RMSDgen

RMSDref

Here, G represents the number of all-atom structures generated from a single CG model, xgen de-
notes the predicted structure coordinates, and xref represents the reference structure coordinates.

As shown in Table 4, the Diversity Score provides insight into the variability of the generated struc-
tures relative to the reference. It is important to note, however, that higher diversity does not neces-
sarily indicate better backmapping performance. The primary objective remains to achieve a close
fit to the reference structure while allowing for a reasonable degree of diversity to reflect the distri-
bution of plausible all-atom conformations.

A.6.2 TORSION ANGLE DISTRIBUTION

Torsion angles, particularly chi1 (χ1) angles, are highly prevalent and exhibit greater degrees of free-
dom in protein residues. To analyze the distribution of χ1 angles, we excluded residues such as Gly
and Ala, which lack χ1 angles. Using kernel density estimation (KDE), we visualized the χ1 angle
distributions and quantified the differences between the predicted structures and reference structures
by calculating the Jensen-Shannon divergence (JSD). The results are summarized in Table 5.

To further evaluate the model’s performance, we visualized the χ1 angle distributions for all residues
in the first test protein, PED00055. As shown in Figure 7, our model closely aligns with the ref-
erence distribution for most residues, with no significant deviations observed. Additionally, we
selected several representative residues from this protein and visualized their fitted χ1 distributions
in Figure 8. These visualizations demonstrate the model’s ability to capture the multi-modal na-
ture of the reference distributions, accurately reflecting the inherent variability of torsion angles in
protein structures.

A.7 INTERNAL COORDINATE SYSTEM

Internal coordinates are computed for each residue to describe the geometric and chemical relation-
ships among its atoms. These coordinates include bond lengths, bond angles, and dihedral angles,
capturing the spatial arrangement of up to 13 heavy atoms (excluding the central Cα atom). Defini-
tion of Internal Coordinates:

Bond Lengths: Bond lengths represent the distances between two bonded atoms. For two atoms i
and j, the bond length dij is:

dij = ∥xi − xj∥,
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Figure 7: Residue-Wise Divergence for Protein PED00055. JSD of torsion angle distributions for
each residue in protein PED00055. Our method demonstrates better similarity to the reference
distribution compared to other methods, with no extreme outliers observed.
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Figure 8: Torsion Angle Distributions for Selected Residues. KDE of torsion angle distributions for
LEU, ILE, and ASP residues. Our method achieves better alignment with the reference distribution
and successfully captures the multi-modal nature of the torsion angle distributions.
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where xi and xj are their Cartesian coordinates.

Bond Angles: Bond angles describe the angles formed by three consecutive atoms. For atoms i, j,
and k, the bond angle θijk is calculated as:

θijk = arccos

(
(xi − xj) · (xk − xj)

∥xi − xj∥∥xk − xj∥

)
,

ensuring the spatial orientation of bonded atoms.

Dihedral Angles: Dihedral angles measure the rotation around a bond and are defined by four
consecutive atoms. For atoms i, j, k, and l, the dihedral angle τijkl is:

τijkl = arctan 2

(
(b1 × b2) · b3

∥b2∥b1 · b3
, (b1 × b2) · (b2 × b3)

)
,

where:
b1 = xj − xi, b2 = xk − xj , b3 = xl − xk.

Dihedral angles are critical for capturing the rotational flexibility of residues, particularly in side
chains.

The described methodology is applied to convert protein structures into internal coordinates in two
stages, following a predefined processing order. Typically, the backbone atoms are processed first to
establish the structural framework, which is then used as a reference for the sequential conversion
of side chain atoms.

Backbone Atoms: First, the backbone atoms of each residue are converted into internal coordinates
using the Cα atoms of the previous, current, and next residues.

Sidechain Atoms: Once the backbone coordinates are reconstructed, the side chain atoms are con-
verted. Each residue starts with known backbone atoms (N, Cα, C ), which serve as references.
Using these references, the side chain atoms are sequentially converted.

C!!"#
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C N

C𝜷
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3 2
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Figure 9: Schematic representation of internal coordinates in a protein residue

Figure 9 provides a schematic representation of the backbone and side chain atoms of a residue,
highlighting the internal coordinate framework. For illustrative purposes, the conversion process is
demonstrated using the Cβ atom (labeled as atom 5) as an example:

1. The bond length d is computed as the distance between Cβ (atom 5) and C (atom 4).

2. The bond angle θ is calculated as the angle formed by N (atom 3), C (atom 4), and Cβ
(atom 5).
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3. The dihedral angle τ is determined from the planes formed by Cα (atom 2), N (atom 3), C
(atom 4), and Cβ (atom 5).

This systematic process ensures that all atoms, including both backbone and side chain atoms, are
represented in a consistent and compact internal coordinate framework.

A.8 ABLATION MODEL DETAILS

VAE+diffusion: This ablation model removes the VQ component and directly employs diffusion
in a continuous latent space. The input to the diffusion model is a N × 36 continuous latent repre-
sentation, where N is the protein sequence length, and 36 corresponds to the dimensionality of the
continuous latent embedding for each residue.

VQVAE+flow: This ablation replaces the diffusion process with a flow-matching approach, which
interpolates between a noise-injected source and the low-dimensional discrete latent representation.
The flow matching framework learns a conditional vector field ut to align interpolated states xt with
the target latent representation x1 at different time steps t. Specifically, the interpolation is defined
as:

xt = (1− t)x0 + tx1,

where x0 is the noise and x1 is the discrete latent representation. The conditional vector field is
learned to satisfy:

ut =
x1 − (1− t)xt

t
,

allowing the model to progressively refine the interpolated states toward the target representation.
During inference, we use the dopri5 solver to integrate the learned vector field.
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