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1 THE INFLUENCE OF NOISE ON TASK COMPLEXITY

This section shows the detailed derivations of the conclusion of three kinds of noise on the variations
of task entropy. As stated in this paper, the noises can be categorized into additive and multiplicative
noise. We list the original definition of task complexity and rewrite task complexity with additive and
multiplicative noise, separately.

The original task complexity is formulated as Li (2022):

H(T ;X) = −
∑
Y ∈Y

p(Y |X) log p(Y |X) (1)

The images X in the dataset are supposed to be independent of each other, as are the labels Y .
However, X and Y are not independent because of the correlation between a data sample X and
its corresponding label Y , the conditional distribution of Y given X will depend on the joint
distribution of X and Y . Without knowing the joint distribution of X and Y , we can not determine
the conditional distribution of Y and X . Here, we make some slacks for the distribution of X and
Y . We can transform the unknown distributions of X and Y to approximately conform to normality
by utilizing some techniques, such as Box-Cox transformation, log transform, etc Box & Cox (1964)
Feng et al. (2014). After approximate transformation, the distribution of X and Y can be expressed
as:

X ∼ N (µX ,ΣX),Y ∼ N (µY ,ΣY ) (2)

where

µX = E[X] = (E[X1],E[X2], ...,E[Xk]])
T

µY = E[Y ] = (E[Y1],E[Y2], ...,E[Yk]])
T

ΣX = E[(X − µX)(X − µX)T ]

ΣY = E[(Y − µY )(Y − µY )T ]

(3)

k is the number of samples in the dataset, and T represents the transpose of the matrix.

After transformation, the X and Y are subjected to multivairate normal distribution distribution.
Then the conditional distribution of Y given X is also normally distributed Mood (1950) Johnson
et al. (1995), which can be formulated as:

Y |X ∼ N (E(Y |X = x), var(Y |X = x)) (4)

where E(Y |X = x) is the mean of the label set Y given a sample X = x from the dataset, and
var(Y |X = x) is the variance of Y given a sample from the dataset. The conditional mean
E[(Y |X = x)] and conditional variance var(Y |X = X) can be calculated as:

µY |X=x = E[(Y |X = x)] = µY +ΣY XΣ−1
X (x− µX) (5)

ΣY |X=x = var(Y |X = x) = ΣY − ΣY XΣ−1
X ΣXY (6)

where ΣY X and ΣXY are the cross-covariance matrices between Y and X , and between X and Y ,
respectively, and Σ−1

X denotes the inverse of the covariance matrix of X .
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Now, let Z = Y |X , we shall obtain the task complexity:

H(T ;X) =−
∑
Y ∈Y

p(Y |X) log p(Y |X)

=− E[log p(Y |X)]

=− E[log[(2π)−k/2|ΣZ |−1/2 exp(−1

2
(Z − µZ)

T
Σ−1

Z (Z − µZ))]]

=
k

2
log(2π) +

1

2
log |ΣZ |+

1

2
E[(Z − µZ)

T
Σ−1

Z (Z − µZ)]

=
k

2
(1 + log(2π)) +

1

2
log |ΣZ |

(7)

where

E[(Z − µZ)
T
Σ−1

Z (Z − µZ)] =E[tr((Z − µZ)
TΣ−1

Z (Z − µZ))]

=E[tr(Σ−1
Z (Z − µZ)(Z − µZ)

T
)]

=tr(Σ−1
Z (Z − µZ)(Z − µZ)

T
)

=tr(Σ−1
Z ΣZ)

=tr(Ik)

=k

(8)

Therefore, for a specific dataset, we can find that the task entropy is only related to the variance of
the Z.

However, as we proactively inject additional information into the latent space, the task complexity
changes and is defined as :

{
HL(T ;X + ϵ) := H(Y ;X + ϵ)−H(X) ϵ is additive noise

HL(T ;Xϵ) := H(Y ;Xϵ)−H(X) ϵ is multiplicative noise
(9)

Eq. 9 differs from the conventional definition, as our method injects the noise into the latent
representations instead of the original images. If adding noise to the original images, then we have
the classic definition:{

H(T ;X + ϵ) = H(Y ;X + ϵ)−H(X + ϵ) ϵ is additive noise
H(T ;Xϵ) = H(Y ;Xϵ)−H(Xϵ) ϵ is multiplicative noise

(10)

1.1 INFLUENCE OF GAUSSIAN NOISE ON TASK COMPLEXITY

Gaussian is one of the most common noises in image processing, and it is an additive noise. The
Gaussian noise ϵ is subjected to the normal distribution of ϵ ∼ N (µϵ, σϵ) and is independent of X
and Y . As we stated the noise can be added to the original images or injected into the latent space,
therefore, we discuss the conditions separately.

1.1.1 INJECT GAUSSIAN NOISE IN LATENT SPACE

In this case, the task complexity is formulated as:

HL(T ;X + ϵ) = H(Y ;X + ϵ)−H(X). (11)
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Take advantage of Eq. 7, thus, the entropy change of injecting Gaussian noise in the latent space can
be formulated as:

△S(T , ϵ) =H(T ;X)−HL(T ;X + ϵ)

=H(Y ;X)−H(X)− (H(Y ;X + ϵ)−H(X))

=H(Y ;X)−H(Y ;X + ϵ)

=H(Y |X) +H(X)− (H(Y |X + ϵ) +H(X + ϵ))

=
1

2
log |ΣY |X |+ 1

2
log |ΣX | − 1

2
log |ΣY |X+ϵ| −

1

2
log |ΣX+ϵ|

=
1

2
log

|ΣX ||ΣY |X |
|ΣX+ϵ||ΣY |X+ϵ|

=
1

2
log

|ΣX ||ΣY − ΣY XΣ−1
X ΣXY |

|ΣX+ϵ||ΣY − ΣY XΣ−1
X+ϵΣXY |

(12)

where ΣY |X+ϵ = ΣY − ΣY (X+ϵ)Σ
−1
X+ϵΣ(X+ϵ)Y . Since the Gaussian noise is independent of

X and Y , we have ΣY (X+ϵ) = Σ(X+ϵ)Y = ΣY X . The corresponding proof is:

Σ(X+ϵ)Y =E [(X + ϵ)− µX+ϵ]E [Y − µY ]

=E [(X + ϵ)Y ]− µY E [(X + ϵ)]− µX+ϵE [Y ] + µY µX+ϵ

=E [(X + ϵ)Y ]− µY E [(X + ϵ)]

=E [XY ] + E [ϵY ]− µY µX − µY µϵ

=E [XY ]− µY µX

=ΣXY

(13)

Obviously, △S(T , ϵ) > 0 if
|ΣX ||ΣY |X |

|ΣX+ϵ||ΣY |X+ϵ| > 1

△S(T , ϵ) ≤ 0 if
|ΣX ||ΣY |X |

|ΣX+ϵ||ΣY |X+ϵ| ≤ 1
(14)

To find the relationship between |ΣX ||ΣY |X | and |ΣX+ϵ||ΣY |X+ϵ|, we need to determine the
subterms in each of them. As we mentioned in the previous section, the data samples are independent
of each other, and so are the labels.

ΣY =E[(Y − µY )(Y − µY )T ]

=E[Y Y T ]− µY µY
T

=diag(σ2
Y1
, ..., σ2

Yk
)

(15)

where {
E [YiYj ]− µYi

µYj
= 0, i ̸= j

E [YiYj ]− µYi
µYj

= σ2
Yi
, i = j

(16)

The same procedure can be applied to ΣY (X+ϵ) and ΣX+ϵ. Therefore, We can obtain that ΣY =

diag(σ2
Y1
, ..., σ2

Yk
),

ΣY (X+ϵ) = diag(cov(Y1, X1 + ϵ), ..., cov(Yk, Xk + ϵ)) (17)

and ΣX+ϵ is:

ΣX+ϵ =


σ2
X1

+ σ2
ϵ σ2

ϵ ... σ2
ϵ σ2

ϵ

σ2
ϵ σ2

X2
+ σ2

ϵ ... σ2
ϵ σ2

ϵ
...

...
...

...
σ2
ϵ σ2

ϵ ... σ2
Xk−1

+ σ2
ϵ σ2

ϵ

σ2
ϵ σ2

ϵ ... σ2
ϵ σ2

Xk
+ σ2

ϵ


=diag(σ2

X1
, ..., σ2

Xk
)Ik + σ2

ϵ1k

(18)
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where Ik is a k × k identity matrix and 1k is a all ones k × k matrix. We use U to repre-
sent diag(σ2

X1
, ..., σ2

Xk
)Ik, and u to represent a all ones vector [1, ..., 1]T . Thanks to the Sher-

man–Morrison Formula Sherman (1949) and Woodbury Formula Woodbury (1950), we can obtain
the inverse of ΣX+ϵ as:

Σ−1
X+ϵ =(U + σ2

ϵuu
T )−1

=U−1 − σ2
ϵ

1 + σ2
ϵu

TU−1u
U−1uuTU−1

=U−1 − σ2
ϵ

1 +
∑k

i=1
1

σ2
Xi

U−11kU
−1

=λ



1
λσ2

X1

− 1
σ4
X1

− 1
σ2
X1

σ2
X2

... − 1
σ2
X1

σ2
Xk−1

− 1
σ2
X1

σ2
Xk

− 1
σ2
X2

σ2
X1

1
λσ2

X2

− 1
σ4
X2

... − 1
σ2
X2

σ2
Xk−1

− 1
σ2
X2

σ2
Xk

...
...

...
...

− 1
σ2
Xk−1

σ2
X1

− 1
σ2
Xk−1

σ2
X2

... 1
λσ2

Xk−1

− 1
σ4
Xk−1

− 1
σ2
Xk−1

σ2
Xk

− 1
σ2
Xk

σ2
X1

− 1
σ2
Xk

σ2
X2

... − 1
σ2
Xk

σ2
Xk−1

1
λσ2

Xk

− 1
σ4
Xk



(19)

where U−1 = diag((σ2
X1

)−1, ..., (σ2
Xk

)−1) and λ =
σ2
ϵ

1+
∑k

i=1
1

σ2
Xi

.

Therefore, substitute Equation 19 into |ΣY − ΣY (X+ϵ)Σ
−1
X+ϵΣ(X+ϵ)Y |, we can obtain:

|ΣY − ΣY (X+ϵ)Σ
−1
X+ϵΣ(X+ϵ)Y |

=

∣∣∣∣∣∣∣
σ

2
Y1

... 0
...

. . .
...

0 ... σ2
Yk

−

cov(Y1, X1 + ϵ) ... 0
...

. . .
...

0 ... cov(Yk, Xk + ϵ)

Σ−1
X+ϵ

cov(Y1, X1 + ϵ) ... 0
...

. . .
...

0 ... cov(Yk, Xk + ϵ)


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣


σ2
Y1

− cov2(Y1, X1 + ϵ)( 1
σ2
X1

− λ
σ4
X1

) ... cov(Y1, X1 + ϵ)cov(Yk, Xk + ϵ) λ
σ2
X1

σ2
Xk

...
...

cov(Yk, Xk + ϵ)cov(Y1, X1 + ϵ) λ
σ2
Xk

σ2
X1

... σ2
Yk

− cov2(Yk, Xk + ϵ)( 1
σ2
Xk

− λ
σ4
Xk

)


∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

σ2
Y1

− 1
σ2
X1

cov2(Y1, X1)

. . .
σ2
Yk

− 1
σ2
Xk

cov2(Yk, Xk)

+ λ


1

σ4
X1

cov2(Y1, X1) ... 1
σ2
X1

σ2
Xk

cov(Y1, X1)cov(Yk, Xk)

...
...

1
σ2
Xk

σ2
X1

cov(Yk, Xk)cov(Y1, X1) ... 1
σ4
Xk

cov2(Yk, Xk)


∣∣∣∣∣∣∣∣

(20)

We use the notation v =
[

1
σ2
X1

cov(Y1, X1) · · · 1
σ2
Xk

cov(Yk, Xk)
]T

, and V =

diag( 1
σ2
X1

cov2(Y1, X1), · · · , 1
σ2
Xk

cov2(Yk, Xk)). And utilize the rule of determinants of sums Mar-

cus (1990), then we have:

|ΣY − ΣY (X+ϵ)Σ
−1
X+ϵΣ(X+ϵ)Y | =|(ΣY − V ) + λvvT |

=|ΣY − V |+ λvT (ΣY − V )∗v
(21)

where (ΣY − V )∗ is the adjoint of the matrix (ΣY − V ). For simplicity, we can rewrite
|ΣY − ΣY (X+ϵ)Σ

−1
X+ϵΣ(X+ϵ)Y | as:

|ΣY − ΣY (X+ϵ)Σ
−1
X+ϵΣ(X+ϵ)Y |

=

k∏
i=1

(σ2
Yi

− cov2(Yi, Xi)
1

σ2
Xi

) + Ω
(22)

where Ω = λvT (ΣY − V )
∗
v. The specific value of Ω can be obtained as:

Ω = λ
[

1
σ2
X1

cov(Y1, X1) · · · 1
σ2
Xk

cov(Yk, Xk)
]V11

. . .
Vkk




1
σ2
X1

cov(Y1, X1)

...
1

σ2
Xk

cov(Yk, Xk)

 (23)
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where the elements Vii, i ∈ [1, k] are minors of the matrix and expressed as:

Vii =

k∏
j=1,j ̸=i

[
σ2
Yj

− 1

σ2
Xj

cov2(Xj , Yj)

]
(24)

After some necessary steps, Equation 23 is reduced to:

Ω =λ

k∑
i=1

1
σ4
Xi

cov2(Yi, Xi)
∏k

j=1(σ
2
Yj

− cov2(Yj , Xj)
1

σ2
Xj

)

(σ2
Yi

− cov2(Yi, Xi)
1

σ2
Xi

)

=λ

k∏
i=1

(σ2
Yi

− cov2(Yi, Xi)
1

σ2
Xi

) ·
k∑

i=1

cov2(Xi, Yi)

σ2
Xi

(σ2
Xi

σ2
Yi

− cov2(Xi, Yi))

(25)

Substitute Equation 25 into Equation 22, we can get:

|ΣY − ΣY (X+ϵ)Σ
−1
X+ϵΣ(X+ϵ)Y |

=

k∏
i=1

(σ2
Yi

− cov2(Yi, Xi)
1

σ2
Xi

) · (1 + λ

k∑
i=1

cov2(Xi, Yi)

σ2
Xi

(σ2
Xi

σ2
Yi

− cov2(Xi, Yi))
)

(26)

Accordingly, |ΣY − ΣY XΣ−1
X ΣXY | is:

|ΣY − ΣY XΣ−1
X ΣXY | =

k∏
i=1

(σ2
Yi

− 1

σ2
Xi

cov2(Xi, Yi)) (27)

As a result, |ΣY |X+ϵ|
|ΣY |X | is expressed as:

|ΣY |X |
|ΣY |X+ϵ|

=

∏k
i=1(σ

2
Yi

− 1
σ2
Xi

cov2(Xi, Yi))∏k
i=1(σ

2
Yi

− cov2(Yi, Xi)
1

σ2
Xi

) · (1 + λ
∑k

i=1
cov2(Xi,Yi)

σ2
Xi

(σ2
Xi

σ2
Yi

−cov2(Xi,Yi))
)

(28)

Combine Equations 28 and 18 together, the entropy change is expressed as:

△S(T , ϵ) =
1

2
log

1

(1 + σ2
ϵ

∑k
i=1

1
σ2
Xi

)(1 + λ
∑k

i=1
cov2(Xi,Yi)

σ2
Xi

(σ2
Xi

σ2
Yi

−cov2(Xi,Yi))
) (29)

It is difficult to tell that Equation 29 is greater or smaller than 1 directly. But one thing for sure is that
when there is no Gaussian noise, Equation 29 equals 1. However, we can use another way to compare
the numerator and denominator of Equation 29. Instead, we compare the numerator and denominator
using subtraction. Let:

f(σ2
ϵ ) =1− (1 + σ2

ϵ

∑k
i=1

1
σ2
Xi

)(1 + λ

k∑
i=1

cov2(Xi, Yi)

σ2
Xi

(σ2
Xi

σ2
Yi

− cov2(Xi, Yi))
) (30)

Obviously, the variance σ2
ϵ of the Gaussian noise control the result of f(σϵ), while the mean µϵ has

no influence. When σϵ approaching 0, we have:
lim
σ2
ϵ→0

f(σ2
ϵ ) = 0 (31)

To determine if Gaussian noise can be positive noise, we need to determine whether the entropy
change is large or smaller than 0.{

△S(T , ϵ) > 0 if f(σ2
ϵ ) > 0

△S(T , ϵ) ≤ 0 if f(σ2
ϵ ) ≤ 0

(32)

From the above equations, the sign of the entropy change is determined by the statistical properties
of the data samples and labels. Since ϵ2 ≥ 0, λ ≥ 0 and

∑k
i=1

1
σ2
Xi

≥ 0, we need to have a deep dive

into the residual part, i.e.,
k∑

i=1

cov2(Xi, Yi)

σ2
Xi

(σ2
Xi

σ2
Yi

− cov2(Xi, Yi))
=

k∑
i=1

cov2(Xi, Yi)

σ4
Xi

σ2
Yi
(1− ρ2XiYi

)
(33)

where ρXiYi
is the correlation coefficient, and ρ2XiYi

∈ [0, 1]. Eq. 33 is greater than 0, As a result,
the sign of the entropy change in the Gaussian noise case is negative. We can conclude that Gaussian
noise added to the latent space is harmful to the task.
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1.1.2 ADD GAUSSIAN NOISE TO ORIGINAL IMAGES

The variation of task complexity by adding Gaussian noise to input images can be formulated as:

△S(T , ϵ) =H(T ;X)−H(T ;X + ϵ)

=
1

2
log |ΣY |X | − 1

2
log |ΣY |X+ϵ|

=
1

2
log

|ΣY |X |
|ΣY |X+ϵ|

=
1

2
log

|ΣY − ΣY XΣ−1
X ΣXY |

|ΣY − ΣY (X+ϵ)Σ
−1
X+ϵΣ(X+ϵ)Y |

=
1

2
log

|ΣY − ΣY XΣ−1
X ΣXY |

|ΣY − ΣY XΣ−1
X+ϵΣXY |

(34)

Borrow the equations from the case of Gaussian noise added to the latent space, we have:

△S(T , ϵ) =
1

2
log

1

1 + λ
∑k

i=1
cov2(Xi,Yi)

σ2
Xi

(σ2
Xi

σ2
Yi

−cov2(Xi,Yi))

(35)

Clearly, the introduction of Gaussian noise to each pixel in the original images has a detrimental
impact on the task. Note that some studies have empirically shown that adding Gaussian noise to
partial pixels of input images may be beneficial to the learning task Li (2022) Zhang et al. (2023).

1.2 INFLUENCE OF LINEAR TRANSFORM NOISE ON TASK COMPLEXITY

In our work, the linear transform noise refers to an image or the latent representation of an image that
is perturbed by the combination of other images or latent representations of other images.

1.2.1 INJECT LINEAR TRANSFORM NOISE IN LATENT SPACE

The entropy change of injecting linear transform noise can be formulated as:

△S(T , QX) =H(T ;X)−HL(T ;X +QX)

=H(Y ;X)−H(X)− (H(Y ;X +QX)−H(X))

=H(Y ;X)−H(Y ;X +QX)

=
1

2
log

|ΣX ||ΣY −ΣY XΣ−1
X ΣXY |

|Σ(I+Q)X ||ΣY − ΣY XΣ−1
X ΣXY |

=
1

2
log

1

|I +Q|2

=− log |I +Q|

(36)

Since we want the entropy change to be greater than 0, we can formulate Equation 36 as an optimiza-
tion problem:

max
Q

△S(T , QX)

s.t. rank(I +Q) = k

Q ∼ I

[I +Q]ii ≥ [I +Q]ij , i ̸= j

∥[I +Q]i∥1 = 1

(37)

where ∼ means the row equivalence. The key to determining whether the linear transform is positive
noise or not lies in the matrix of Q. The most important step is to ensure that I +Q is reversible,
which is |(I +Q)| ≠ 0. For this, we need to investigate what leads I +Q to be rank-deficient. The
third constraint is to make the trained classifier get enough information about a specific image and
correctly predict the corresponding label. For example, for an image X1 perturbed by another image
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X2, the classifier obtained dominant information from X1 so that it can predict the label Y1. However,
if the perturbed image X2 is dominant, the classifier can hardly predict the correct label Y1. The
fourth constraint is the normalization of latent representations.

Rank Deficiency Cases To avoid causing a rank deficiency of I + Q, we need to figure out the
conditions that lead to rank deficiency. Here we show a simple case causing the rank deficiency.
When the matrix Q is a backward identity matrix Horn & R. (2012),

Qi,j =

{
1, i+ j = k + 1
0, i+ j ̸= k + 1

(38)

i.e.,

Q =


0 0 ... 0 0 1
0 0 ... 0 1 0
...

...
...

...
...

0 1 ... 0 0 0
1 0 ... 0 0 0

 (39)

then (I +Q) will be:

I +Q =


1 0 ... 0 0 1
0 1 ... 0 1 0
...

...
...

...
...

0 1 ... 0 1 0
1 0 ... 0 0 1

 (40)

Thus, I + Q will be rank-deficient when Q is a backward identity. In fact, when the following
constraints are satisfied, the I +Q will be rank-deficient:

HermiteForm(I +Q)i = 0, ∃i ∈ [1, k] (41)

where index i is the row index, in this paper, the row index starts from 1, and HermiteForm is the
Hermite normal form Kannan & Bachem (1979).

Full Rank Cases Except for the rank deficiency cases, I +Q has full rank and is reversible. Since Q
is a row equivalent to the identity matrix, we need to introduce the three types of elementary row
operations as follows Shores (2007).

▷ 1 Row Swap Exchange rows.
Row swap here allows exchanging any number of rows. This is slightly different from the
original one that only allows any two rows exchange since following the original row swap
will lead to a rank deficiency. When the Q is derived from I with Row Swap, it will break
the third constraint. Therefore, Row Swap merely is considered harmful and would degrade
the deep model.

▷ 2 Scalar Multiplication Multiply any row by a constant β. This breaks the fourth constraint,
thus degrading the deep models.

▷ 3 Row Sum Add a multiple of one row to another row. Then the matrix I +Q would be like:

I +Q =


1

.
.

.
1

+


1

. β
.

.
1



=


2

. β
.

.
2


(42)

where β can be at a random position beside the diagonal. As we can see from the simple
example, Row Sum breaks the fourth constraint and makes entropy change smaller than 0.
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From the above discussion, none of the single elementary row operations can guarantee positive
effects on deep models.

However, if we combine the elementary row operations, it is possible to make the entropy change
greater than 0 as well as satisfy the constraints. For example, we combine the Row Swap and Scalar
Multiplication to generate the Q:

I +Q =


1

.
.

.
1

+


−0.5 0.5

. .
. .

. 0.5
0.5 −0.5



=


0.5 0.5

. .
. .

. 0.5
0.5 0.5


(43)

In this case, △S(T , QX) > 0 when Q = −0.5I . The constraints are satisfied. This is just a simple
case of adding linear transform noise that benefits deep models. Actually, there exists a design space
of Q that within the design space, deep models can reduce task entropy by injecting linear transform
noise. To this end, we demonstrate that linear transform can be positive noise.

1.2.2 ADD LINEAR TRANSFORM NOISE TO ORIGINAL IMAGES

The task entropy with linear transform noise can be formulated as:

H(T ;X +QX) =−
∑
Y ∈Y

p(Y |X +QX) log p(Y |X +QX)

=−
∑
Y ∈Y

p(Y |(I +Q)X) log p(Y |(I +Q)X)
(44)

where I is an identity matrix, and Q is derived from I using elementary row operations. The
conditional distribution of Y given X +QX is also multivariate subjected to the normal distribution,
which can be formulated as:

Y |(I +Q)X ∼ N (E(Y |(I +Q)X), var(Y |(I +Q)X)) (45)
The linear transform on X does not change the distribution of the X . It is not difficult to obtain:

µY |(I+Q)X = µY +ΣY XΣ−1
X (I +Q)−1((I +Q)X − (I +Q)µX) (46)

Σ(Y |(I+Q)X) = ΣY − ΣY XΣ−1
X ΣXY (47)

Thus, the variation of task entropy adding linear transform noise can be formulated as:
△S(T , QX) =H(T ;X)−H(T ;X +QX)

=
1

2
log |ΣY |X | − 1

2
log |ΣY |X+QX |

=
1

2
log

|ΣY |X |
|ΣY |X+QX |

=
1

2
log

|ΣY − ΣY XΣ−1
X ΣXY |

|ΣY − ΣY XΣ−1
X ΣXY |

=0

(48)

The entropy change of 0 indicates that the implementation of linear transformation to the original
images could not reduce the complexity of the task.

1.3 INFLUENCE OF SALT-AND-PEPPER NOISE ON TASK ENTROPY

Salt-and-pepper noise is a common type of noise that can occur in images due to various factors,
such as signal transmission errors, faulty sensors, or other environmental factors Chan et al. (2005).
Salt-and-pepper noise is often considered to be an independent process because it is a type of random
noise that affects individual pixels in an image independently of each other Gonzales & Wintz (1987).
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1.3.1 INJECT SALT-AND-PEPPER NOISE IN LATENT SPACE

The entropy change of injecting salt-and-pepper noise can be formulated as:

△S(T , QX) =H(T ;X)−HL(T ;Xϵ)

=H(Y ;X)−H(X)− (H(Y ;Xϵ)−H(X))

=H(Y ;X)−H(Y ;Xϵ)

=−
∑
X∈X

∑
Y ∈Y

p(X,Y ) log p(X,Y ) +
∑
X∈X

∑
Y ∈Y

∑
ϵ∈E

p(Xϵ,Y ) log p(Xϵ,Y )

=E
[
log

1

p(X,Y )

]
− E

[
log

1

p(Xϵ,Y )

]
=E

[
log

1

p(X,Y )

]
− E

[
log

1

p(X,Y )

]
− E

[
log

1

p(ϵ)

]
=− E

[
log

1

p(ϵ)

]
=−H(ϵ)

(49)

The entropy change is smaller than 0, therefore, the salt-and-pepper is a pure detrimental noise to the
learning task.

1.3.2 ADD SALT-AND-PEPPER NOISE TO ORIGINAL IMAGES

The task entropy with salt-and-pepper noise is rewritten as:

H(T ;Xϵ) =−
∑
Y ∈Y

p(Y |Xϵ) log p(Y |Xϵ) (50)

Since ϵ is independent of X and Y , the above equation can be expanded as:

H(T ;Xϵ) =−
∑
Y ∈Y

p(Y ,Xϵ)

p(X)p(ϵ)
log

p(Y ,Xϵ)

p(X)p(ϵ)

=−
∑
Y ∈Y

p(Y ,X)p(ϵ)

p(X)p(ϵ)
log

p(Y ,X)p(ϵ)

p(X)p(ϵ)

=−
∑
Y ∈Y

p(Y |X) log p(Y |X)

(51)

where

p(Xϵ,Y ) =p(Xϵ|Y )p(Y )

=p(X|Y )p(ϵ|Y )p(Y )

=p(X|Y )p(ϵ)p(Y )

=p(X,Y )p(ϵ)

(52)

Therefore, the entropy change with salt-and-pepper noise is:

△S(T , QX) = H(T ;X)−H(T ;Xϵ) = 0 (53)

Salt-and-pepper noise can not help reduce the complexity of the task, and therefore, it is considered a
type of pure detrimental noise.

From the discussion in this section, we can draw conclusions that Linear Transform Noise can be
positive under certain conditions, while Gaussian Noise and Salt-and-pepper Noise are harmful
noise. From the above analysis, the conditions that satisfy positive noise are forming a design space.
Exploring the positive noise space is an important topic for future work.
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2 OPTIMAL QUALITY MATRIX OF LINEAR TRANSFORM NOISE

The optimal quality matrix should maximize the entropy change that leads toward the minimum of
the task complexity. The optimization problem as formulated in Equation 37 is:

max
Q

− log |I +Q|

s.t. rank(I +Q) = k

Q ∼ I

[I +Q]ii ≥ [I +Q]ij , i ̸= j

∥[I +Q]i∥1 = 1

(54)

Maximizing the entropy change is to minimize the determinant of the matrix sum of I and Q. A
simple but straight way is to design the matrix Q that makes the elements in I +Q equal, i.e.,

I +Q =

1/k · · · 1/k
... · · ·

...
1/k · · · 1/k

 (55)

The determinant of the above equation is 0, but it breaks the first constraint of rank(I +Q) = k.
However, by adding a small constant into the diagonal, and minus another constant by other elements,
we can get:

I +Q =


1/k + c1 · · · 1/k − c2

1/k − c2
. . .

...
...

. . . 1/k − c2
1/k − c2 · · · 1/k − c2 1/k + c1

 (56)

Under the constraints, we can obtain the two constants that fulfill the requirements:

c1 =
k − 1

k(k + 1)
, c2 =

1

k(k + 1)
(57)

Therefore, the corresponding Q is:

Qoptimal = diag

(
1

k + 1
− 1, . . . ,

1

k + 1
− 1

)
+

1

k + 1
1k×k (58)

and the corresponding I +Q is:

I +Q =


2/(k + 1) · · · 1/(k + 1)

1/(k + 1)
. . .

...
...

. . . 1/(k + 1)
1/(k + 1) · · · 1/(k + 1) 2/(k + 1)

 (59)

As a result, the determinant of optimal I +Q can be obtained by following the identical procedure as
Equation 21:

|I +Q| = 1

(k + 1)k−1
(60)

The upper boundary of entropy change, i.e., the minimum of the task complexity of linear transform
noise is determined:

△S(T , QX)upper = (k − 1) log (k + 1) (61)

3 EXPERIMENTAL SETTING

We introduce the implementation details in this part. Model details are shown in Table 1 and 2. The
image resolution is 224× 224 for all the experiments. Pre-trained models on ImageNet are used as
the backbone. We train all ResNet and ViT-based models using AdamW optimizer Loshchilov &
Hutter (2017). We set the learning rate of each parameter group using a cosine annealing schedule
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Table 1: Details of ResNet Models. The columns "18-layer", "34-layer", "50-layer", and "101-layer"
show the specifications of ResNet-18, ResNet-34, ResNet-50, and ResNet-101, separately.

Layer name Output size 18-layer 34-layer 50-layer 101-layer
conv1 112 × 112 7 × 7, 64, stride 2

3 × 3, max pool, stride 2

conv2_x 56 × 56
[
3× 3 64
3× 3 64

]
× 2

[
3× 3 64
3× 3 64

]
× 3

[
1× 1 64
3× 3 64
1× 1 256

]
× 3

[
1× 1 64
3× 3 64
1× 1 256

]
× 3

conv3_x 28 × 28
[
3× 3 128
3× 3 128

]
× 2

[
3× 3 128
3× 3 128

]
× 4

[
1× 1 128
3× 3 128
1× 1 512

]
× 4

[
1× 1 128
3× 3 128
1× 1 512

]
× 4

conv4_x 14 × 14
[
3× 3 256
3× 3 256

]
× 2

[
3× 3 256
3× 3 256

]
× 6

[
1× 1 256
3× 3 256
1× 1 1024

]
× 6

[
1× 1 256
3× 3 256
1× 1 1024

]
× 23

conv5_x 7 × 7
[
3× 3 512
3× 3 512

]
× 2

[
3× 3 512
3× 3 512

]
× 3

[
1× 1 512
3× 3 512
1× 1 2048

]
× 3

[
1× 1 512
3× 3 512
1× 1 2048

]
× 3

1 × 1 average pool, 1000-d fc, softmax
Params 11M 22M 26M 45M

Table 2: Details of ViT Models. Each row shows the specifications of a kind of ViT model. ViT-T,
ViT-S, ViT-B, and ViT-L represent ViT Tiny, ViT Small, ViT Base, and ViT Large, separately.

ViT Model Layers Hidden size MLP size Heads Params
ViT-T 12 192 768 3 5.7M
ViT-S 12 384 1536 6 22M
ViT-B 12 768 3072 12 86M
ViT-L 12 1024 4096 16 307M

Table 3: Variants of ViT with different kinds of noise on TinyImageNet. Vanilla means the vanilla
model without noise. Accuracy is shown in percentage. Gaussian noise used here is subjected to
standard normal distribution. Linear transform noise used in this table is designed to be positive noise.
The difference is shown in the bracket.

Model DeiT SwinTransformer BeiT ConViT
Vanilla 85.02 (+0.00) 90.84 (+0.00) 88.64 (+0.00) 90.69 (+0.00)

+ Gaussian Noise 84.70 (-0.32) 90.34 (-0.50) 88.40 (-0.24) 90.40 (-0.29)
+ Linear Transform Noise 86.50 (+1.48) 95.68 (+4.84) 91.78 (+3.14) 93.07 (+2.38)
+ Salt-and-pepper Noise 84.03 (-1.01) 87.12 (-3.72) 42.18 (-46.46) 89.93 (-0.76)

Params. 86M 87M 86M 86M

Table 4: ResNet with different kinds of noise on TinyImageNet. Vanilla means the vanilla model
without noise. Accuracy is shown in percentage. Gaussian noise used here is subjected to standard
normal distribution. Linear transform noise used in this table is designed to be positive noise. The
difference is shown in the bracket.

Model ResNet-18 ResNet-34 ResNet-50 ResNet-101
Vanilla 64.01 (+0.00) 67.04 (+0.00) 69.47 (+0.00) 70.66 (+0.00)

+ Gaussian Noise 63.23 (-0.78) 65.71 (-1.33) 68.17 (-1.30) 69.13 (-1.53)
+ Linear Transform Noise 73.32 (+9.31) 76.70 (+9.66) 76.88 (+7.41) 77.30 (+6.64)
+ Salt-and-pepper Noise 55.97 (-8.04) 63.52 (-3.52) 49.42 (-20.25) 53.88 (-16.78)
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Table 5: ViT with different kinds of noise on TinyImageNet. Vanilla means the vanilla model without
injecting noise. Accuracy is shown in percentage. Gaussian noise used here is subjected to standard
normal distribution. Linear transform noise used in this table is designed to be positive noise. The
difference is shown in the bracket. Note ViT-L is overfitting on TinyImageNet Dosovitskiy et al.
(2020) Steiner et al. (2021).

Model ViT-T ViT-S ViT-B ViT-L
Vanilla 81.75 (+0.00) 86.78 (+0.00) 90.48 (+0.00) 93.32 (+0.00)

+ Gaussian Noise 80.95 (-0.80) 85.66 (-1.12) 89.61 (-0.87) 92.31 (-1.01)
+ Linear Transform Noise 82.50 (+0.75) 91.62 (+4.84) 94.92 (+4.44) 93.63 (+0.31)
+ Salt-and-pepper Noise 79.34 (-2.41) 84.66 (-2.12) 87.45 (-3.03) 83.48 (-9.84)

Table 6: Top 1 accuracy on ImageNet V2 with positive linear transform noise.
Model Top1 Acc. Params. Image Res. Pretrained Dataset

ViT-B/16-SAM 67.50 86M 224 × 224 ImageNet 21k
LeViT-256 69.90 86M 224 × 224 ImageNet 21k
LeViT-384 71.40 86M 384 × 384 ImageNet 21k
ViT-B+PN 82.23 86M 224 × 224 ImageNet 21k
ViT-B+PN 84.85 86M 384 × 384 ImageNet 21k

with a minimum of 1e− 7. The data augmentation for training only includes the random resized crop
and normalization.

CNN(ResNet) Setting The training epoch is set to 100. We initialized the learning rate as 0 and
linearly increase it to 0.001 after 10 warmup steps. All the experiments of CNNs are trained on
a single Tesla V100 GPU with 32 GB. The batch size for ResNet18, ResNet34, ResNet50, and
ResNet101 are 1024, 512, 256, and 128, respectively.

ViT and Variants Setting All the experiments of ViT and its variants are trained on a single machine
with 8 Tesla V100 GPUs. For vanilla ViTs, including ViT-T, ViT-S, ViT-B, and ViT-L, the training
epoch is set to 50 and the input patch size is 16× 16. We initialized the learning rate as 0 and linearly
increase it to 0.0001 after 10 warmup steps. We then decrease it by the cosine decay strategy. For
experiments on the variants of ViT, the training epoch is set to 100 and the learning rate is set to
0.0005 with 10 warmup steps.

4 MORE EXPERIMENT RESULTS

We show more experiment results of injecting positive noise to other variants of the ViT family,
such as SwinTransformer, DeiT, ConViT, and BeiT, and implement them on the smaller dataset,
i.e., TinyImageNet. Note, considering limited computational resources, all the experiments in the
supplementary are on the TinyImageNet. The strength of positive noise is set to 0.3. The noise is
injected into the last layer.

4.1 INJECT POSITIVE NOISE TO VARIANTS OF VIT

As demonstrated in the paper, the positive noise can be injected into the ViT family. Therefore, in
this section, we explore the influence of positive noise on the variants of the ViT. The positive noise
used here is identical to that in the paper. For this, we comprehensively compare noise injection
to ConViT d’Ascoli et al. (2021), BeiT Bao et al. (2021), DeiT Touvron et al. (2021), and Swin
Transformer Liu et al. (2021), and comparisons results are reported in Tabel 3. As expected, these
variants of ViTs get benefit from the positive noise. The additional four ViT variants are at the base
scale, whose parameters are listed in the table’s last row. For a fair comparison, we use identical
experimental settings for each kind of experiment. For example, we use the identical setting for
vanilla ConViT, ConViT with different kinds of noise. From the experimental results, we can observe
that the different variants of ViT benefit from positive noise and significantly improve prediction
accuracy. The results on different scale datasets and variants of the ViT family demonstrate that
positive noise can universally improve the model performance by a wide margin.
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Table 7: Comparison with SOTA methods on Office-Home. The best performance is marked in red.
Method Ar→ClAr→PrAr→ReCl→ArCl→PrCl→RePr→ArPr→ClPr→ReRe→ArRe→ClRe→PrAvg.

ResNet-50 44.9 66.3 74.3 51.8 61.9 63.6 52.4 39.1 71.2 63.8 45.9 77.2 59.4
MinEnt 51.0 71.9 77.1 61.2 69.1 70.1 59.3 48.7 77.0 70.4 53.0 81.0 65.8
SAFN 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3

CDAN+E 54.6 74.1 78.1 63.0 72.2 74.1 61.6 52.3 79.1 72.3 57.3 82.8 68.5
DCAN 54.5 75.7 81.2 67.4 74.0 76.3 67.4 52.7 80.6 74.1 59.1 83.5 70.5
BNM 56.7 77.5 81.0 67.3 76.3 77.1 65.3 55.1 82.0 73.6 57.0 84.3 71.1
SHOT 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8

ATDOC-NA 58.3 78.8 82.3 69.4 78.2 78.2 67.1 56.0 82.7 72.0 58.2 85.5 72.2
ViT-B 54.7 83.0 87.2 77.3 83.4 85.6 74.4 50.9 87.2 79.6 54.8 88.8 75.5
TVT-B 74.9 86.8 89.5 82.8 88.0 88.3 79.8 71.9 90.1 85.5 74.6 90.6 83.6

CDTrans-B 68.8 85.0 86.9 81.5 87.1 87.3 79.6 63.3 88.2 82.0 66.0 90.6 80.5
SSRT-B 75.2 89.0 91.1 85.1 88.3 90.0 85.0 74.2 91.3 85.7 78.6 91.8 85.4

TVT-B+PN 78.3 90.6 91.9 87.8 92.1 91.9 85.8 78.7 93.0 88.6 80.6 93.5 87.7

Table 8: Comparison with SOTA methods on Visda2017. The best performance is marked in red.
Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.

ResNet-50 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DANN 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4
MinEnt 80.3 75.5 75.8 48.3 77.9 27.3 69.7 40.2 46.5 46.6 79.3 16.0 57.0
SAFN 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1

CDAN+E 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
BNM 89.6 61.5 76.9 55.0 89.3 69.1 81.3 65.5 90.0 47.3 89.1 30.1 70.4

CGDM 93.7 82.7 73.2 68.4 92.9 94.5 88.7 82.1 93.4 82.5 86.8 49.2 82.3
SHOT 94.3 88.5 80.1 57.3 93.1 93.1 80.7 80.3 91.5 89.1 86.3 58.2 82.9
ViT-B 97.7 48.1 86.6 61.6 78.1 63.4 94.7 10.3 87.7 47.7 94.4 35.5 67.1
TVT-B 92.9 85.6 77.5 60.5 93.6 98.2 89.4 76.4 93.6 92.0 91.7 55.7 83.9

CDTrans-B 97.1 90.5 82.4 77.5 96.6 96.1 93.6 88.6 97.9 86.9 90.3 62.8 88.4
SSRT-B 98.9 87.6 89.1 84.8 98.3 98.7 96.3 81.1 94.9 97.9 94.5 43.1 88.8

TVT-B+PN 98.8 95.5 84.8 73.7 98.5 97.2 95.1 76.5 95.9 98.4 98.3 67.2 90.0

4.2 POSITIVE NOISE ON TINYIMAGENET

We also implement experiments of ResNet and ViT on the smaller dataset TinyImageNet, and the
results are shown in Table 4 and 5. As shown in the tables, positive noise also benefits the deep
models on the small dataset. From the experiment results of CNN and ViT family on ImageNet and
TinyImageNet, we can find that the positive noise has better effects on larger datasets than smaller
ones. This makes sense because as shown in the section on optimal quality matrix, the upper boundary
of the entropy change is determined by the size, i.e., the number of data samples, of the dataset,
smaller datasets have less number of data samples, which means the upper boundary of the small
datasets is lower than the large datasets. Therefore, the positive noise of linear transform noise has
better influences on large than small datasets.

4.3 EXPERIMENTS IN IMAGENET V2

We also implement additional experiments on ImageNet V2. The results are shown in Table 6.
Compared to existing methods based on ViT with similar parameters, the ViT enhanced by positive
noise demonstrates a significant improvement in performance.

4.4 POSITIVE NOISE FOR DOMAIN ADAPTATION

Unsupervised domain adaptation (UDA) aims to learn transferable knowledge across the source
and target domains with different distributions Pan & Yang (2009) Wei et al. (2018). There are
mainly two kinds of deep neural networks for UDA, which are CNN-based and Transformer-based
methods Sun et al. (2022) Yang et al. (2023). Various techniques for UDA are adopted on these
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backbone architectures. For example, the discrepancy techniques measure the distribution divergence
between source and target domains Long et al. (2018) Sun & Saenko (2016). Adversarial adaptation
discriminates domain-invariant and domain-specific representations by playing an adversarial game
between the feature extractor and a domain discriminator Ganin & Lempitsky (2015).

Recently, transformer-based methods achieved SOTA results on UDA, therefore, we evaluate the
ViT-B with the positive noise on widely used UDA benchmarks. Here the positive noise is the linear
transform noise identical to that used in the classification task. The positive noise is injected into
the last layer of the model, the same as the classification task. The datasets include Office Home
Venkateswara et al. (2017) and VisDA2017 Peng et al. (2017). Office-HomeVenkateswara et al.
(2017) has 15,500 images of 65 classes from four domains: Artistic (Ar), Clip Art (Cl), Product (Pr),
and Real-world (Rw) images. VisDA2017 is a Synthetic-to-Real object recognition dataset, with
more than 0.2 million images in 12 classes. We use the ViT-B with a 16× 16 patch size, pre-trained
on ImageNet. We use minibatch Stochastic Gradient Descent (SGD) optimizer Ruder (2016) with
a momentum of 0.9 as the optimizer. The batch size is set to 32. We initialized the learning rate
as 0 and linearly warm up to 0.05 after 500 training steps. The results are shown in Table 7 and
8. The methods above the black line are based on CNN architecture, while those under the black
line are developed from the Transformer architecture. The ViT-B with positive noise achieves better
performance than the existing works. These results show that positive noise can improve model
generality, therefore, benefit deep models in domain adaptation tasks.
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