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APPENDIX

A TRAINING VISUO-TACTILE WORLD MODEL

A.0.1 TRAINING DATASET

Press button Place fruits on plate Push fruits

Wipe with cloth

Stack cubes Scribble with marker Insert lampshade

Insert table leg

Figure 9: Multitask Vision-Tactile Dataset.
Trajectories for training the world model
collected via teleoperation, including both
successful and failure sequences.

To train our multi-task visuo-tactile world model, we
collect a dataset of teleoperated robot arm trajecto-
ries performing fundamental contact-rich manipula-
tion actions, such as pick and place, pushing, and in-
sertion. Our hardware setup consists of a table-top
Franka Panda arm with an Allegro Hand as the end-
effector and a Digit 360 sensor mounted on each fin-
gertip. An exocentric view from a camera captures the
global context of the robot’s interaction with objects
on the table.

Through teleoperation, we collect a diverse set of tra-
jectories, without discriminating between successes
and failures, for eight distinct contact-rich tasks (see
Fig. 9): pick and place on a plate, reach and press a
button, push, wipe with a cloth, lampshade insertion,
table leg insertion, cube stacking, and scribbling with a marker. For each task, we recorded approxi-
mately 25 sequences. Each sequence contains multimodal data streams: proprioceptive information
(wrist pose, joint positions), exocentric video from the camera, and video from each Digit 360 fin-
gertip sensor. All data streams were synchronized using timestamps and downsampled to 6 FPS for
training the world model.

A.1 TRAINING PARAMETERS

The model is optimized using AdamW (Loshchilov & Hutter, 2019) with parameters ω1 = 0.9,ω2 =
0.95 and a weight decay of 0.01. We use a learning rate scheduler with linear warmup for the first
10,000 gradient updates to a peak learning rate of 3e → 4, followed by cosine decay to 3e → 7 over
a total of 80,000 updates. We use an effective batch size of 64 distributed over 32 A100 GPUs. We
found that fine-tuning the Sparsh-X encoder was beneficial to account for sensor-specific variations,
such as those arising from manufacturing tolerances and elastomer wear, while the Cosmos Tok-
enizer (Agarwal et al., 2025) was kept frozen during training. Our visuo-tactile world model has a
total of 173M parameters, of which 96M were trained.

B CONTACT PERCEPTION WITH VISUO-TACTILE WORLD MODEL

We corroborate the world model’s capacity to generate future states that are a reliable and predictable
consequence of the given action conditioning. We study action controllability qualitatively by vi-
sualizing rollouts under simple, disentangled action commands: moving the end-effector along the
Cartesian axes (±x, ±y, ±z) and opening/closing the hand. Actions conditioning is given to the
VT-WM as deltas in the robot’s proprioceptive state.

We observe in Fig. 10 that the VT-WM produces coherent rollouts aligned with the commanded ac-
tions. Translations along each axis result in consistent directional displacements of the end-effector
in imagination (notice the reference frame in the figure), while hand open/close commands lead to
corresponding changes in finger configurations. Notably, these behaviors emerge from the learned
dynamics rather than explicit supervision of axis-aligned motion, indicating that the model internal-
izes the action-conditioned structure of the robot’s kinematics. We compare ground-truth trajectories
with VT-WM rollouts under the same action sequences and illustrate what the world model imagines

in terms of contact.

To illustrate the predictive capability of the visuo-tactile world model, we evaluate rollouts con-
ditioned on real robot action sequences. Specifically, we use held-out demonstrations from two
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Initial state

!Move in 
-x

! Move in 
-y

!Move in 
-z

!Move in 
+x

!Move in 
+y

!Move in 
+z

Initial state
! Open hand

Initial state

+x
+y

+z

! Close hand

Figure 10: Visuo-Tactile World Model generates rollouts aligned with commanded actions along
reference axes (±x, ±y, ±z) and for hand open/close.

Figure 11: Visuo-Tactile World Model rollouts conditioned on ground-truth action sequences. Pre-
dicted visual states closely match the final RGB observations, while predicted tactile states capture
plausible contact events and finger–object interactions.

tasks in our dataset: press button and scribble with marker. For each task, the VT-WM is queried
autoregressively using the ground-truth sequence of control deltas.

Fig. 11 compares the final predicted states with the corresponding real-world outcomes. Since the
model produces latent representations of future visual and tactile observations, we employ pretrained
decoders to reconstruct these latents for visualization. Across both tasks, the predicted visual states
closely resemble the final RGB images of the real trajectories. The predicted tactile states also
capture the key interaction events: although slight differences appear in the precise location of
per-finger contacts, the rollouts consistently indicate whether contact occurs and depict plausible
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patterns of hand–object interaction. This demonstrates that the VT-WM, when guided by real action
sequences, generates in imagination physically meaningful futures across both visual and tactile
modalities.

By producing consistent visuo-tactile rollouts under real control sequences, VT-WM demonstrates
the ability to represent both global visual context and local contact dynamics in a unified predictive
framework useful for planning.

C ZERO-SHOT PLANNING WITH WORLD MODELS

Reach Button: In this task, the robot must approach and press the center of a button starting from
varied initial poses directly above it. Success therefore requires planning a sequence of actions
that align the end-effector laterally with the button and then move downward to establish contact.
Fig. 12 illustrated the plans produced by each world model using CEM rollouts in imagination,
alongside the corresponding executions on the real robot. We observe that both V-WM and VT-
WM generate feasible trajectories that transfer zero-shot to the real system. This is expected since
reaching primarily involves spatial reasoning and gross kinematic alignment, which vision alone can
capture reliably.

V-
W
M

!  Plan in 
imagination

"  Real execution

V
T
-W

M

"  Real execution

!  Plan in 
imagination

Figure 12: Reach Button task. Plans generated by V-WM and VT-WM with CEM in imagination
(top) and their zero-shot executions on the real robot (bottom). Both models produce feasible trajec-
tories, as reaching relies mainly on spatial reasoning and kinematic alignment.

Push Fruits: In this task, the robot hand begins directly in front of a target object that must be
pushed downwards (toward the robot base). A successful plan requires maintaining persistent but
gentle contact, allowing the object to slide across the table rather than topple.

Fig. 13 compares imagined rollouts and real executions for both models. While both V-WM and
VT-WM produce plausible plans, we observe notable artifacts in the imagined rollouts, most promi-
nently visual distortions of the green fruit when the hand occludes it. These artifacts are less pro-
nounced in VT-WM, which better preserves the object’s geometry in imagination. The deployment
of the V-WM plan not only results in shorter object displacement but also lead to physical failures
in execution, where the object occasionally topples instead of sliding without orientation changes.
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Figure 13: Push Fruits task. VT-WM preserves object geometry in imagination and transfers to
stable sliding, while V-WM introduces distortions and often causes toppling in execution.
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Reach & Push: This task requires a two-stage plan, first reaching the object to establish contact,
then pushing it downward toward the robot base. Both subgoals are illustrated in Fig. 14, which
shows the imagined plans and real executions.

In the V-WM rollout, the hand consistently hovers slightly above the object during the reach phase.
As a result, the subsequent push proceeds without contact, and the execution on the real robot fails to
move the object. By contrast, the VT-WM rollout explicitly brings the hand into contact during the
reach, enabling the push plan to apply move the object effectively. When deployed, this produces
the desired behavior, with both the reach and push subgoals successfully achieved. This highlights
how tactile grounding resolves cases of visual aliasing, ensuring reliable contact in imagination and
execution.
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!  Real execution

"  Plan in 
imagination
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!  Real execution

"  Plan in 
imagination

Reach Goal Push Goal

Figure 14: Reach & Push task. V-WM fails to establish contact, leading to ineffective pushes, while
VT-WM ensures contact in imagination and execution, successfully completing both subgoals.

Wipe Cloth: This task consists of two subgoals, first reaching the cloth to establish contact, and
then wiping it horizontally across the table. Both stages are illustrated in Fig. 15, which compares
imagined rollouts with real executions.

In the V-WM rollout, the reach phase frequently results in the hand hovering slightly above the
cloth, leading to ineffective wiping during execution. Even when a wiping trajectory is imagined,
the visualizations exhibit noticeable artifacts such as geometric distortions of the cloth and hand.
These artifacts reflect the model’s uncertainty about contact dynamics and correspond to execution
failures where the cloth barely moves.

In contrast, the VT-WM rollout shows clearer geometry and maintains consistent contact with the
cloth in imagination. As a result, the subsequent wiping action produces a stable horizontal dis-
placement of the cloth when deployed on the real robot. This example underscores the advantages
of visuo-tactile world model in tasks that require sustained contact to manipulate objects.

Stack Cubes: This task requires transporting a blue cube to the stacking location and then placing
it stably on top of a yellow cube. Both subgoals are illustrated in Fig. 16, which shows imagined
rollouts alongside real executions.

While the V-WM generates reasonable transport trajectories, failures arise during placement. In
imagination, the cube intermittently disappears from the hand, revealing artifacts that indicate the
model is tracking only the hand–scene geometry (e.g., alignment with the target yellow cube) rather
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Figure 15: Wipe Cloth task. V-WM rollouts show artifacts and miss contact, leading to ineffective
wiping, while VT-WM maintains contact and produces consistent cloth displacement in execution.

than maintaining a consistent hand–object relationship. This disconnect leads to execution failures,
where the cube is not reliably placed.

However, visuo-tactile world model accurately captures the object–hand interaction, throughout both
transport and placement, the cube remains consistently represented in the rollout. When transferred
zero-shot to the real robot, these plans result in stable stacking, highlighting the advantage of VT-
WM for tasks that demand precise, contact-rich manipulation.
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Figure 16: Stack Cubes task. V-WM imagined rollouts during planning lose track of the cube for
the placement subgoal, leading to failed stacking, while VT-WM preserves hand–object interaction
and transfers to successful stacks.
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D LIMITATIONS

While our results demonstrate clear benefits of visuo-tactile world model, following limitations point
to promising directions for future research. First, our evaluation of contact perception uses unseen
robot trajectories but only within tasks from the training distribution, leaving open the question
of how well the model generalizes to entirely novel manipulation tasks or object characteristics.
Second, our planning experiments randomize initial robot states but are limited to the same scene
and objects, without testing generalization to objects with different visual or physical properties
such as size, shape, or color. Finally, planning with world models via CEM remains computationally
expensive, as it requires generating many autoregressive rollouts per particle. This leads to open-
loop execution in trajectory chunks, unlike classical policies that operate in closed-loop at higher
control frequencies.

E ADDITIONAL NOTES

About the use of large language models: Large Language Models (LLMs) were used exclu-
sively to assist with grammar correction and refinement of writing style (flow, academic tone, and
conciseness), based on drafts authored by the researchers. LLMs were not employed for data gener-
ation, or in any stage of the proposed model’s design, training, or evaluation.
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