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Abstract

Fairness in machine learning is of growing concern as more instances of biased1

model behavior are documented while their adoption continues to rise. The majority2

of studies have focused on binary classification settings, despite the fact that many3

real-world problems are inherently multi-class. This paper considers fairness4

in multi-class classification under the notion of parity of true positive rates—an5

extension of binary class equalized odds [25]—which ensures equal opportunity6

to qualified individuals regardless of their demographics. We focus on algorithm7

design and provide a post-processing method that derives fair classifiers from pre-8

trained score functions. The method is developed by analyzing the representation9

of the optimal fair classifier, and is efficient in both sample and time complexity,10

as it is implemented by linear programs on finite samples. We demonstrate its11

effectiveness at reducing disparity on benchmark datasets, particularly under large12

numbers of classes, where existing methods fall short.13

1 Introduction14

Algorithmic fairness has emerged as a topic of significant concern in the field of machine learning,15

due to the potential for models to exhibit discriminatory behavior towards historically disadvantaged16

demographics [11, 5, 7], all while their adoption continues to rise in domains including high-stakes17

areas such as criminal justice, healthcare, and finance [4, 8]. To address the concern, a variety of18

fairness criteria have been proposed (e.g., demographic parity, equalized odds) along with mitigation19

methods [12, 21, 25, 28]. On classification problems, the majority of work focuses on the binary class20

setting [2, Table 1], where one class is typically considered to be more favorable (e.g., the approval21

vs. rejection of a credit card application).22

Yet, many real-world problems are multi-class in nature. In the case of credit card applications, issuers23

may prefer assigning higher-tier interest rates to high-risk applicants compared to outright rejection,24

which creates opportunities to applicants who would otherwise be denied credit and also generates25

returns for the banks. Similarly, in online advertising, recruiting platforms can employ machine26

learning models to match users to relevant job postings across multiple occupation categories. There27

are evidences, however, for such systems to exhibit gender bias [9, 15, 49]; for instance, models28

that are trained to identify occupation from biography tend to show higher accuracy (recall) on male29

biographies than on their female counterparts in occupations that are historically male-dominated [16].30

In the example above, unfairness is manifested in a disparity of true positive rates (TPRs) across31

demographic groups A (generalizing the true positive and negative rates in binary classification),32

TPRa(Ŷ )y := P(Ŷ = y | Y = y,A = a), ∀y ∈ [k], a ∈ [m].

A classifier satisfying parity of TPRs, i.e., TPRa = TPRa′ for all a, a′, ensures that individuals with33

the same qualification (Y ) will have equal opportunity of receiving their favorable outcome (Ŷ = Y )34
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Figure 1: Feasible region of TPRs on a binary class (left) and a three-class problem (right). The
black (resp. colored) arrow indicates the utility-maximizing direction (of each group).

regardless of demographics [22], e.g., being shown job postings on recruiting platforms for which the35

user is qualified. When the classes are binary, this fairness notion recovers equalized odds [25].36

In this paper, we focus on the design of algorithm for mitigating TPR disparity and provide an efficient37

post-processing method that derives attribute-aware fair classifiers from (pre-trained) scoring models.38

Our method works on multi-class and multi-group classification problems, guarantees fairness by a39

sample complexity bound, can be implemented by linear programs, and achieves higher reductions in40

disparity compared to existing algorithms that are applicable to multi-class—a recently proposed post-41

processing method based on model projection [2], and adversarial debiasing [46], an in-processing42

method—especially when the number of classes is large.43

Organization. We introduce the problem setup and objectives in Section 2, then describe our44

post-processing method for TPR parity in Section 3, along with suboptimality analyses; in particular,45

our method yields the optimal fair classifier when applied to the Bayes optimal score function.46

Our method is instantiated for finite sample estimation in Section 4, and we also provide sample47

complexity bounds to complete the analysis. Finally, in Section 5, we compare our algorithm with48

existing methods for disparity reduction on benchmark datasets.1 A high-level summary of our results49

is provided in Section 1.1.50

1.1 Summary of Results51

One way to interpret and understand TPR parity is through visualizing the feasible regions of TPRs.52

In Fig. 1, we plot the feasible regions (achievable by probabilistic classifiers) of two groups on a53

(hypothetical) binary classification problem on the left, and those on a three-class problem on the54

right, where each axis represents the TPR of a class. Achieving optimal TPR parity amounts to55

first finding the TPR that maximizes the overall utility (e.g., accuracy) in the intersection of feasible56

regions, and subsequently an (attribute-aware) classifier attaining that target TPR on all groups. Note57

that the left figure is equivalent to the ROC curve (with a flip of the horizontal axis, because the TPR58

of class 1 equals one minus the false negative rate by treating class-1 as the negative class), which59

was used by Hardt et al. [25] for studying equalized odds. And thus, the TPR (hyper)surface plots in60

higher dimensions are a natural generalization of the ROC curve to multi-class settings.61

Step one of finding the optimal fair TPR can be formulated as a linear program when estimating from62

finite samples. For the second step, our method derives a classifier attaining the target TPR from the63

score function; in particular, it yields the optimal fair classifier when the score is Bayes optimal:64

Theorem 1.1. Let f∗
1 , · · · , f∗

m : X → ∆k denote the Bayes score function on each group, f∗
a (x) :=

E[Y | X = x,A = a], and q1, · · · , qm ∈ ∆k be arbitrary. Then under a continuity assumption (2.4),
∃β1, · · · , βm ∈ [0, 1] and λ1, · · · , λm ∈ Rk s.t. the probabilistic attribute-aware classifier

(x, a) 7→
{ arg maxy′(λa)y′ · f∗

a (x)y′ w.p. 1− βa (1a)

y w.p. βa · (qa)y , ∀y ∈ [k] (1b)

achieves the maximum utility subject to TPR parity.65

1Our code is provided in the supplemental material.
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The post-processed classifier returned by our method is a mixture of two models (weighted by66

β). Eq. (1a) returns the class with the highest likelihood after a class-wise rescaling, called a67

tilting [2], which generalizes the concept of thresholding in binary classifiers. Eq. (1b) makes random68

assignments sampled from a Multinoulli(q) distribution, which handles situations where the fair TPR69

lies in the interior of the feasible region (see Fig. 1, where the optimum is located within the interior70

of group 2 feasible region). To alleviate potential ethical concerns regarding this randomization, we71

point out that the parameter qa’s used in class sampling can be specified per-group by the practitioner72

responsibly, e.g., uniform 1/k, or ey′ with y′ being an advantaged outcome.73

Among the possibly infinitely many fair classifiers derived from the score function f , we specifically74

seek the simplistic representation in Eq. (1) because it immediately extrapolates to unseen exam-75

ples, can be estimated via linear programs from finite samples, and provides good generalization76

performance at the rate of Õ(
√
k/n) thanks to its low function complexity (Theorem 4.2).77

When the score function being post-processed is not Bayes optimal, our method is still applicable,78

but the result may not be optimal nor exactly achieve TPR parity (without leveraging labeled79

data or additional knowledge of the model, as our method only needs unlabeled data). But these80

suboptimalities are minimized if the model is calibrated (Theorem 3.5); this answers the question81

raised in [2] about the effects of base model inaccuracies on downstream post-processing.82

1.2 Related Work83

Fairness Critetia. The notion of TPR parity has appeared in the literature as conditional procedure84

accuracy equality [8], avoiding disparate mistreatment [44], and (multi-class) equal opportunity [16,85

33, 35] (to be distinguished from the fairness criterion with the same name in [25]). Other group86

fairness notions that extend to multi-class include (but not limited to) equalized odds [25] (of which87

TPR parity is a necessary condition), and demographic parity (DP) [12] (where Xian et al. [40]88

recently proposed an optimal post-processing method). However, DP may be less desirable than TPR89

parity in some use cases because the perfect classifier is not permitted under DP when the base rates90

differ [47]. It is worth noting that TPR parity implies accuracy parity [11]. In addition to group91

fairness, there are notions defined on the individual level [21].92

Mitigation Methods. Our method is based on post-processing [27, 25]. There are also in-93

processing methods via fair representation learning [45, 46, 48, 34], solving zero-sum games [1, 41],94

and pre-processing methods that debias the data prior to training [13, 49]; see [5, 14] for a survey.95

For multi-class TPR parity, the only applicable post-processing method to date, to our knowledge,96

is due to Alghamdi et al. [2] (which is the primary baseline for our method in our experiments).97

It is a general-purpose method that transforms the scores to satisfy fairness while minimizing the98

distributional divergence (e.g., KL) between the transformed scores and the original. However, the99

tradeoff between model performance and fairness is unclear as they did not relate the divergence to100

utility. Furthermore, while the authors provided a sample complexity bound for their optimization101

objective, it is not explicitly related to the violation of the fairness criteria.102

2 Preliminaries103

A k-class classification problem is defined by a joint distribution µ of input X ∈ X , demographic104

group membership A ∈ [m] := {1, · · · ,m} (a.k.a. the sensitive attribute), and class label Y ∈ [k].105

We assume that all classes have nonzero probability on each group, otherwise TPR would not be well-106

defined. Denote the joint distribution of (X,A) by µX,A, and, the (k − 1)-dimensional probability107

simplex by ∆k := {z ∈ Rk
≥0 : ‖z‖1 = 1}.108

Assumption 2.1. Pµ(Y = y | A = a) > 0, for all y ∈ [k], a ∈ [m].109

Let f : X ×A → ∆k be an attribute-aware (pre-trained) score function, whose outputs are probability110

vectors that estimate the class probabilities as in f(x, a)y ≈ Pµ(Y = y | X = x,A = a). We will111

write fa : X → ∆k to denote the component of f associated with group a, i.e., fa(x) ≡ f(x, a). Our112

goal is to find fair (probabilistic) post-processing maps g1, · · · , gm : ∆k → Y to derive a classifier113

(x, a) 7→ ga ◦ fa(x) that satisfies TPR parity while maximizing utility (e.g., classification accuracy).114

We will sometimes write R := f(X,A).115
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We allow for controllable tradeoffs between utility and fairness through the following relaxation of116

TPR parity, and call a classifier α-fair if it satisfies α-TPR parity:117

Definition 2.2 (Approximate TPR Parity). Let α ∈ [0, 1]. A predictor Ŷ is said to satisfy α-TPR118

parity if ∆TPR(Ŷ ) ≤ α, where119

∆TPR(Ŷ ) := max
a,a′∈A

∥∥∥TPRa(Ŷ )− TPRa′(Ŷ )
∥∥∥
∞
, (2)

and TPRa(Ŷ ) := P(Ŷ | Y = y,A = a) ∈ [0, 1]k; P includes the randomness of the predictor.120

Beyond classification accuracy, we also allow for any utility functions that depend only on the TPRs:2121

Definition 2.3 (Utility). The utility function u : [k]× [k]→ R is defined for some υ ∈ Rk by122

u(ŷ, y) :=
∑
y′∈[k]

υy′ 1[y = y′, ŷ = y′].

E.g., accuracy, 1[y = ŷ], is obtained by setting υ = 1k. The term υ will appear in our analyses,123

and the significance of considering utilities of this form is that we could evaluate a classifier by a124

weighted sum of its TPRs. Define pay := Pµ(A = a, Y = y), then125

U(Ŷ ) = Eu(Ŷ , Y ) =
∑

a∈[m],y∈[k]

υypay TPRa(Ŷ )y ≡ U(TPR1(Ŷ ), · · · ,TPRm(Ŷ )). (3)

Finally, we make the following continuity assumption on the distributions of score to avoid technical126

complexities related to tie-breaking (on the atoms). This assumption has also appeared in prior work127

on fair post-processing [17, 23, 40]; it holds when the input distributions are continuous and the score128

function is injective, or can be satisfied by adding small random perturbations to the scores.129

Assumption 2.4. The conditional distribution of score, P(fa(X) | A = a), is (Lebesgue absolutely)130

continuous, for all a ∈ [m].131

3 TPR Parity via Post-Processing132

Given a score function f : X ×A → ∆k, and access to the (unlabeled) joint distribution µX,A (i.e.,133

no estimation error), we describe a method for deriving an attribute-aware α-fair classifier while134

maximizing utility, in the form of (x, a) 7→ ga ◦ fa(x), where the ga’s are (probabilistic) fair135

post-processing maps for each group. That is, we want to solve136

max
g1,··· ,gm

U(Ŷ ) s.t. ∆TPR(Ŷ ) ≤ α where Ŷ = gA ◦ fA(X).

Although the method only returns classifiers derived from f as opposed to searching over the space of137

all classifiers h : X ×A → Y , it would yield the optimal fair classifier provided that the information138

of (A, Y ) is preserved in the output of f ; this is the case when the score function is Bayes optimal.139

3.1 Deriving Optimal Fair Classifier From Bayes Score Function140

In this section, we explain how to obtain an optimal fair classifier by deriving from the Bayes score141

function f∗, thereby providing a proof of Theorem 1.1 (omitted proofs are in Appendices A and B).142

Step 1 (Finding Utility-Maximizing Fair TPRs). Let Da ⊆ [0, 1]k denote the set of feasible TPRs143

on group a achieved by probabilistic classifiers. The first step is to find utility-maximizing fair TPRs144

contained in an `∞-ball of diameter α per Definition 2.2 of α-TPR parity (left figure of Fig. 2):145

max
t1∈D1,··· ,tm∈Dm

U(t1, · · · , tm) s.t. ‖ta − ta′‖∞ ≤ α, ∀a, a′ ∈ [m]. (4)

When α = 0, this reduces to finding a single t ∈
⋂

a Da, and because each Da is convex (since146

probabilistic classifiers are allowed), it can be found with ternary search as suggested in [25]. If147

2This includes all possible utility/loss functions in binary classification, since TPR(Ŷ )1 (true negative rate)
and TPR(Ŷ )2 (true positive rate) fully determine the 2× 2 confusion matrix.
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Figure 2: Achieving α-TPR parity on a binary class problem. First, the utility-maximizing TPRs
residing in an `∞-ball of diameter α are found (left). Then, classifiers achieving the fair TPRs are
obtained: a tilting of the scores when the TPR lies on the boundary (middle), otherwise, a mixture of
tilting and randomization (right). The simplex ∆k is always inscribed in the feasible region.

instead the ta’s are to be estimated from finite samples, then the empirical D̂a’s are described by148

polytopes and the problem can be formulated as a linear program (Section 4).149

The feasible regions of TPR generally differ across groups, due to uncertainties inherent to the task150

of interest, or to inadequate and biased sourcing of data. The more the Da’s differ, the greater the151

tradeoff between fairness and utility. Hence TPR parity incentivizes the learner to improve data152

collection and aspects of modeling that induces a balanced predictive capability on all groups [25].153

Because f∗(X,A) is sufficient statistic for Y , the fair TPRs we found above are always achievable154

by classifiers derived from f∗. Or more concretely,155

Proposition 3.1. Let f∗ : X → ∆k denote the Bayes score function, then D := {TPR(h) ∈ [0, 1]k |156

h : X → Y (probabilistic)} = {TPR(g ◦ f∗) ∈ [0, 1]k | g : ∆k → Y (probabilistic)}.157

Step 2 (Obtaining Fair Classifier of Desired Form). Having found the utility-maximizing fair TPR158

ta’s, the next step is to derive a classifier that attains ta on each group:159

Theorem 3.2. Let f∗ : X → ∆k denote the Bayes score function, and q ∈ ∆k be arbitrary. Then160

under Assumptions 2.1 and 2.4, ∀t ∈ D, there exists β ∈ [0, 1] and λ ∈ Rk s.t. TPR(h) = t, where161

h(x) =

{
arg maxy′ λy′f∗(x)y′ w.p. 1− β

y w.p. βqy , ∀y ∈ [k].

The construction uses the observation that the boundary of D, denoted by ∂D, is given by the set of162

TPRs attained by tiltings of the Bayes score:163

Proposition 3.3. Let f∗ : X → ∆k denote the Bayes score function. Then under Assumption 2.1,164

h : X → Y (probabilistic) satisfies TPR(h) ∈ ∂D if and only if ∃λ ∈ Rk, λ 6= 0 s.t. h(x) ∈165

arg maxy λyf
∗(x)y almost surely.166

Proof of Theorem 3.2. If the target TPR lies on the boundary of D, then by Proposition 3.3, it is167

achieved by a tilting of the Bayes score without any randomization (i.e., β = 0; center figure of168

Fig. 2). This holds due to Assumption 2.4, because we may break ties arbitrarily without affecting169

TPR, since the set of tied scores (finite union of (k − 2)-d subspaces) has (Lebesgue) measure zero.170

Otherwise, and generally, there must exists t′ ∈ ∂D and β ∈ [0, 1] s.t. t can be written as a linear171

combination of t = βq + (1− β)t′. This is simply because q ∈ ∆k ⊆ D, and the line connecting q172

and t must intersect ∂D at some point t′ (right figure of Fig. 2). Since the TPR of the input-agnostic173

randomization according to Multinoulli(q) equals q, and t′ is achieved by a tilting of the score per174

Proposition 3.3, their β-mixture achieves the target TPR t by linearity.175

3.2 Deriving From Any Score Function176

The post-processing method described in the previous section, which only requires unlabeled data177

(X,A), yields the optimal α-fair classifier when applied to Bayes scores f∗. Yet, in practice, there178

5



Algorithm 1 Post-Process Score Function for α-TPR parity
1: Input: α ∈ [0, 1], q1, · · · , qm ∈ ∆k, score function f : X ×A → ∆k, distribution µX,A

2: D̃a := {T̃PRa(h) | h : X → Y (probabilistic)} . Eq. (5), induced TPR feasible region
3: t̃1, · · · , t̃m ← arg maxt̃1∈D̃1,··· ,t̃m∈D̃m

U(t̃1, · · · , t̃m) s.t. ‖t̃a − t̃a′‖∞ ≤ α, ∀a, a′ ∈ [m]

. utility-maximizing fair TPRs
4: for a = 1 to m do
5: Find ha, βa ∈ [0, 1] s.t. T̃PRa(ha) ∈ ∂D̃a and t̃a = (1− βa)T̃PRa(ha) + βaqa
6: Find λa ∈ Rk s.t. ha(x) ∈ arg maxy′(λa)y′ · fa(x)y′ , ∀x ∈ supp(µX

a )
7: end for
8: Return: (x, a) 7→ arg maxy′(λa)y′ · fa(x) w.p. 1− βa, and y w.p. βa · (qa)y for each y ∈ [k]

is the concern that Bayes score functions could be arbitrarily complex and are often not exactly179

learnable due to limited data or computational constraints [39].180

Nonetheless, our method is still applicable to arbitrary (approximations to the Bayes) score functions181

f : X ×A → ∆k for deriving classifiers that are approximately fair and optimal, by treating them182

as if they were Bayes optimal (Algorithm 1). Where, the only tweak we made is replacing the183

ground-truth TPRs and feasible regions (which are unknown without access to the Bayes score) by184

approximations induced by f , i.e.,185

D̃a :=
{

T̃PRa(h) ∈ [0, 1]k
∣∣∣ h : X → Y (probabilistic)

}
, (5)

where186

T̃PRa(h)y :=
1

p̃ay

∫
x∈X

fa(x)y P(h(x) = y)dµX,A(x, a), p̃ay :=

∫
x∈X

fa(x)y dµX,A(x, a).

(6)
It is not hard to show that they are equal to their ground-truth counterparts when f = f∗.187

The suboptimalities of the classifier returned from Algorithm 1 are upper bounded by the L1 difference188

between the score function f and a group-wise distribution calibrated reference score with finer189

granularity. In other words, better results can be obtained by recalibrating f prior to post-processing.190

Definition 3.4. A score R is said to be (group-wise) distribution calibrated if P(Y = y | R = s) = sy ,191

∀s ∈ ∆k, y ∈ [k] (resp. P(Y = y | R = s,A = a) = sy, ∀a ∈ [m]). Furthermore, it is said to have192

finer granularity than score R if P(Y = y | R = s,R = s′) = sy , ∀s, s′ ∈ ∆k, y ∈ [k].193

Distribution calibration is a multi-class generalization of the original definition of calibration for194

binary predictors [30, 37], requiring the predicted score to match the underlying class distribution195

conditioned on the score across all classes, not just the most confident one [24]. Although this196

definition is convenient to work with mathematically, it could be difficult to achieve in practice. We197

will relax it to the notion of decision calibration [50] when we prove our results in Appendix B (w.r.t.198

the set of all tiltings; derived from multicalibration [26]), which can be achieved in polynomial time.199

Theorem 3.5. Let h : X × A → Y be the (probabilistic) classifier derived from a score function200

f : X × A → ∆k using Algorithm 1. Then under Assumptions 2.1 and 2.4, for any group-wise201

distribution calibrated reference score function f̄ : X ×A → ∆k with finer granularity than f ,202 ∣∣U − U(h)∣∣ ≤ 6‖υ‖1 max
a,y

εay
pay

, ∆TPR(h) ≤ α+ 4max
a,y

4εay
pay

,

where pay := Pµ(A = a, Y = y), υ is from Definition 2.3 of the utility, U denotes the utility of the203

optimal α-fair classifier derived from the reference f̄ , and204

εay := E
[∣∣f̄a(X)y − fa(X)y

∣∣1[A = a]
]

(7)

measures the miscalibration of f w.r.t. f̄ on group a and class y.205

We draw two conclusions from this result. First, by using the Bayes score function f∗ as the reference,206

it states that the suboptimality of the derived classifier when f 6= f∗ is upper bounded by the L1207

difference between the approximate scores and the ground-truth; this answers the question raised208
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in [2] regarding the impact of base model inaccuracies. Second, if f satisfies calibration, then by209

using itself as the reference, the result guarantees that the classifier derived using Algorithm 1 exactly210

achieves the desired level of fairness, and is optimal among all fair classifiers derived from f (which211

can only be further improved using labeled data).212

4 Finite-Sample Algorithm and Guarantees213

We instantiate the post-processing method above for TPR parity to the case where we do not have214

access to the distribution µX,A but only samples drawn from it (i.e., to perform estimation), and215

analyze the sample complexity.216

Assumption 4.1. We have n i.i.d. samples of (X,A) that are independent of the score function f217

being post-processed. Denote the samples from group a by (xa,i)i∈[na], and their number by na.218

4.1 Algorithm219

We adapt Algorithm 1 to handle finite samples by replacing D̃a and U with their empirical counterparts220

(essentially calling it with the empirical distribution µ̂X,A formed by the samples as the argument),221

and implement the optimization problems on Lines 3, 5 and 6 using linear programs.222

Step 1 (Finding Utility-Maximizing Fair TPRs). The empirical induced feasible region of TPRs,223

D̂a, can be computed via evaluating the TPRs of all (probabilistic) classifiers acting on the samples—224

by representing them using na × k lookup tables (each row gives the probabilities of the random225

class assignment on the corresponding sample):226

D̂a :=
{

T̂PRa(γa)
∣∣∣ γa ∈ Rna×k

≥0 ,
∑

y∈[k](γa)i,y = 1, ∀i ∈ [na]
}
,

where227

T̂PRa(γ)y :=
1

np̂ay

∑
i∈[na]

fa(xa,i)y · (γa)i,y, p̂ay :=
1

n

∑
i∈[na]

fa(xa,i)y (8)

(cf. Line 2 and Eqs. (5) and (6)). Note that D̂a is a polygon, since it is specified by linear constraints.228

To obtain the utility-maximizing fair TPR t̂a’s, we take the empirical maximizer subject to the α-TPR229

constraint via solving a linear program (cf. Line 3 and Eqs. (3) and (4)):230

LP1(α) : max
t̂1∈D̂1,··· ,t̂m∈D̂m

Û(t̂1, · · · , t̂m) s.t. ‖t̂a − t̂a′‖∞ ≤ α, ∀a, a′ ∈ [m],

where Û(t̂1, · · · , t̂m) :=
∑

a,y υyp̂ay(t̂a)y is the empirical utility.231

Step 2 (Obtaining Fair Classifier of Desired Form). The next step is finding a classifier that achieves232

t̃a’s on the empirical distribution, i.e., Lines 5 and 6. To implement Line 5, note that another way of233

approaching this problem is to realize that among all eligible (βa, ha)-pairs, the ha associated with234

the maximum βa value must satisfy T̃PRa(ha) ∈ ∂D̃a (otherwise, a contradiction can be reached235

using the fact that D̃a ⊆ [0, 1]k is compact; also see the right figure of Fig. 2). Combined with the236

strategy above of representing classifiers using lookup tables, we get the following linear program:237

LP2(t, q) : max
γ,β

β s.t. t = (1− β)T̂PR(γ) + βq and γ ∈ Rn×k
≥0 ,

∑
y∈[k]

γi,y = 1, ∀i ∈ [n].

Finally, on Line 6, we find a tilting λa s.t. after coordinate-wise multiplied by the scores, the argmax238

class assignment has nonzero probability according to the classifier γa found in the preceding step:239

LP3(γ) : min
λ

0 s.t. λyf(xi)y ≥ λy′f(xi)y′ ∀i ∈ [n], y, y′ ∈ [k], γi,y > 0.

The feasible set of this problem is nonempty by Proposition 3.1, because we are treating f as if it240

were the Bayes score function, and the empirical distribution µ̂X,A as the population.241

All combined, our algorithm involves solving (2m+1) linear programs, where LP1 is the dominating242

one with O(nk) variables and constraints; solving which (to near-optimality) takes, e.g., Õ(poly(nk))243

time using interior point methods [38].244
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4.2 Sample Complexity245

Thanks to the low function complexity of the post-processing maps (Proposition B.12) used in our246

algorithm to derive classifiers of the form in Eq. (1), it has the following sample complexity:247

Theorem 4.2. Let h : X × A → Y be the (probabilistic) classifier derived from a score function248

f : X ×A → ∆k using Algorithm 1 with the empirical distribution of samples in Assumption 4.1249

as the argument. Then under Assumptions 2.1 and 2.4, for any group-wise distribution calibrated250

reference score function f̄ : X × A → ∆k with finer granularity than f (Definition 3.4), and251

n ≥ Ω(maxa,y ln(mk/δ)/pay),252

∣∣U − U(h)∣∣ ≤ ‖υ‖1 O(max
a,y

1

pay

(
ε′ay +

√
k lnmk/δ

n
+

k

n

))
,

∆TPR(h) ≤ α+O

(
max
a,y

1

pay

(
ε′ay +

√
k lnmk/δ

n
+

k

n

))
,

where pay := Pµ(A = a, Y = y), υ is from Definition 2.3 of the utility, U denotes the utility of the253

optimal α-fair classifier derived from the reference f̄ , and εay := E[|f̄a(X)y − fa(X)y|1[A = a]]254

measures the miscalibration of f w.r.t. f̄ on group a and class y.255

The bound consists of a calibration error εay as discussed in the remarks of Theorem 3.5, an estimation256

error from applying uniform convergence (the Natarajan dimension of the set of tiltings is O(k)), and257

a k/n term that comes from the disagreement over class assignments on the samples between the258

(deterministic) tilting found on Line 6 and the (probabilistic) classifier on Line 5 due to tie-breaking.259

5 Experiments260

We evaluate Algorithm 1 for reducing TPR disparity on benchmark datasets, and demonstrate its261

effectiveness compared to existing post-processing as well as in-processing bias mitigation methods.262

Datasets. The first task is income prediction, for which, we use the ACSIncome dataset [20]—an263

extension of the UCI Adult dataset [29] with much more examples (1.6 million vs. 30,162), allowing264

us to compare methods confidently. We consider a binary setting where the sensitive attribute is265

gender and the target is whether the income is over $50k, as well as a multi-group multi-class setting266

with five race categories and five income buckets. The second is text classification, of identifying267

occupations (28 in total) from biographies in the BiasBios dataset [16]; sensitive attribute is gender.268

Baselines and Setup. The main baseline is FairProjection [2]—the only post-processing algo-269

rithm applicable for multi-class TPR parity to our knowledge.3 In the binary setting, we also compare270

to RejectOption [27]. To demonstrate the deficiencies of existing methods at reducing TPR dispar-271

ity, we additionally include in-processing results using Reductions [1] and Adversarial [46].45272

On each task, we first create a pre-training split from the dataset and train a linear logistic regression273

scoring model (with isotonic calibration and five-fold cross-validation as implemented in scikit-274

learn [42, 43, 32]), then randomly split the remaining data for post-processing and testing with 10275

different seeds and aggregate the results (the pre-trained model remains the same). For in-processing,276

we use the same splits but merge the pre-training and post-processing data for training. On BiasBios,277

linear logistic regression is performed on embeddings of biographies computed by a pre-trained BERT278

model from the bert-base-uncased checkpoint [18] (in other words, head-tuning). Additional279

details, including hyperparameters, are included in Appendix C.1.280

Results. In Fig. 3, we plot the tradeoff curves from varying the fairness tolerance (α for our281

method). Our method is consistently the most effective at minimizing TPR disparity, particularly282

under multi-class settings, where existing algorithms only manage to partially reduce ∆TPR (and283

3We use the authors’ code, where TPR parity is equivalent to the meo constraint. The results from using the
KL divergence variant is included, which are better than the cross-entropy variant in our experiments.

4Although Reductions is extended to multi-class by Yang et al. [41], an implementation was not provided.
5The implementation (with minor modifications) in the AIF360 library is used for the latter methods [6].
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Figure 3: Tradeoff curves between accuracy and ∆TPR (Eq. (2)). Base model is logistic regression,
except for Adversarial, which uses a feedforward network. Error bars indicate the standard
deviation over 10 runs with different random splits. Running time is reported in appendix Table 1.

at a greater cost to accuracy when using FairProject and RejectOption). It also outperforms284

the in-processing Reductions on binary ACSIncome, and Adversarial in terms of ∆TPR, which,285

although enjoys higher accuracies because of the use of the more expressive feedforward networks286

as the prediction model, fails to reduce TPR parity. Sharper drops in accuracies are observed when287

applying our method with small α settings, e.g., ≤ 0.02. We saw this happen when the randomized288

component in Eq. (1b) is activated (i.e., β > 0), meaning that Line 3 has found fair TPRs that lie in289

the interior of the feasible region of the better-performing group in order to match the feasible TPR290

on the worse-performing one(s). Hence the drop is expected because utility is being sacrificed to291

achieve TPR parity.292

Although our method greatly reduces TPR disparity, there remains a gap to reaching ∆TPR = 0,293

especially on tasks with more classes (i.e., BiasBios, where a higher variance is also observed).294

While this could be due to miscalibration, or potentially a violation of Assumption 2.4, the main295

reason is suspected to be insufficient sample size. Recall from Theorem 4.2 that the sample complexity296

for ∆TPR scales as Õ(
√
k/npay) in the worse-case (a, y), which is itself at least Õ(

√
mk2/n).297

Thus, learning generalizable classifiers that satisfy TPR parity under more groups and classes is much298

harder in terms of data requirement (and by extension, computing resource).299

Lastly, we emphasize the necessity of group-wise calibration for achieving low ∆TPR, as the300

definition of the criterion involves conditioning on the true label (it is also reflected by the calibration301

error term εay in Theorem 4.2). In an ablation study (appendix Fig. 4), a larger (minimum achievable)302

∆TPR is observed when no efforts are made to calibrate the scoring model. It is therefore necessary303

for model vendors to provide accurate uncertainty quantifications, and for practitioners building fair304

classifiers to verify and improve calibration.305

6 Conclusions and Limitations306

We described a post-processing method for reducing TPR disparity for equal opportunity in multi-class307

classification, and demonstrated its performance in comparison to existing algorithms on benchmarks308

datasets, especially when the number of classes is large. We analyzed the sample complexity of our309

method, and established its optimality under model calibration.310

The effectiveness of our method at reducing TPR disparity is largely contributed to the tailored311

analysis, although it limits our method to this fairness notion only. Some use cases may demand312

equalized odds (Ŷ ⊥ A | Y ) beyond TPR parity (1[Ŷ = Y ] ⊥ A | Y ), which is a more stringent313

criterion: TPR parity only needs to match the main diagonal of the (conditional) confusion matrix314

across groups, whereas equalized odds requires matching all k2 entries. The design of efficient315

algorithms for achieving equalized odds remains an open problem.6316

6Most algorithms, e.g., [2], are only evaluated for TPR parity but not (multi-class) equalized odds.
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A Omitted Proofs for Section 3.1461

Proof of Proposition 3.1. For the only if direction, let h be a probabilistic classifier, then set g s.t.462

P(g(s) = y) = P(h(X) = y | f∗(X) = s), ∀s ∈ ∆k.

We verify that463

TPR(g ◦ f∗)y = P(g ◦ f∗(X) = y | Y = y)

=
1

py

∫
s∈∆k

P(g(s) = y, f∗(X) = s, Y = y)

=
1

py

∫
s∈∆k

P(g(s) = y, Y = y | f∗(X) = s)P(f∗(X) = s)

=
1

py

∫
s∈∆k

P(g(s) = y)P(Y = y | f∗(X) = s)P(f∗(X) = s)

=
1

py

∫
s∈∆k

P(h(X) = y | f∗(X) = s)P(Y = y | f∗(X) = s)P(f∗(X) = s)

=
1

py

∫
s∈∆k

P(h(X) = y, f∗(X) = s, Y = y)

= P(h(X) = y | Y = y)

= TPR(h)y.

For the only if direction, let g be a probabilistic post-processing map, then set h s.t.464

P(h(x) = y) = P(g ◦ f∗(x) = y), ∀x ∈ X .

Since the two classifiers agree (probabilistically), TPR(h)y = TPR(g ◦ f∗)y .465

The proof of Proposition 3.3 makes use of the supporting hyperplane of the convex set D, which466

could be proved from the separating hyperplane theorem [10, Section 2.5.2]:467

Theorem A.1 (Supporting Hyperplane). Let C ⊂ Rd be a nonempty convex set, and x ∈ ∂C a point468

on its boundary, then ∃v ∈ Rd, v 6= 0, s.t. v>x ≥ v>x′ for all x ∈ C.469

Proof of Proposition 3.3. First of all, recall that D is a convex set because randomized classifiers are470

allowed. Let f∗ denote the Bayes score function on µ, and note that the ground-truth TPR can be471

computed via472

TPR(h)y = P(h(X) = y | Y = y)

=
1

py
P(h(X) = y, Y = y)

=
1

py

∫
x∈X

f∗(x)y P(h(x) = y)dµX(x) (9)

where py = E[f∗(x)y]. Also, for all υ ∈ Rk, υ 6= 0, the classifier h∗
υ maximizes the utility473 ∑

y υypy TPR(h∗
υ)y if and only if474

h∗
υ(x) ∈ arg max

y
υy P(Y = y | X = x), ∀x ∈ X . (10)

For the only if direction, let h be s.t. TPR(h) ∈ ∂D, and suppose to the contrary that ∀λ ∈ Rk,475

λ 6= 0, ∃Aλ ⊆ X with measure nonzero s.t. h(x) /∈ arg maxy λyf
∗(x)y, ∀x ∈ Aλ. This implies476
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that for all υ ∈ ∆k, by Eqs. (9) and (10),477 ∑
y∈[k]

υypy TPR(h∗
υ)y −

∑
y∈[k]

υypy TPR(h)y

=
∑
y∈[k]

υypy(P(h∗
υ(X) = y | Y = y)− P(h(X) = y | Y = y))

=

∫
x∈Aυ/p

∑
y∈[k]

υyf
∗(x)y(P(h∗

υ(X) = y)− P(h(X) = y))dµX(x)

> 0;

given that p ∈ Rk
>0, this contradicts the fact that since TPR(h) ∈ ∂D, by Theorem A.1, ∃v ∈ ∆k,478

v 6= 0, s.t.
∑

y vy TPR(h)y ≥
∑

y vy TPR(h′)y for all h′.479

For the if direction, let h be s.t. ∃λ ∈ Rk, λ 6= 0 s.t. h(x) ∈ arg maxy λyf
∗(x)y. Then we know480

from Eq. (10) that481 ∑
y∈[k]

λypy TPR(h)y ≥
∑
y∈[k]

λypy TPR(h′)y, ∀h′ : X → Y,

which implies that TPR(h) ∈ ∂D.482

B Omitted Proofs for Sections 3.2 and 4483

In this section, we provide the proofs to Theorems 3.5 and 4.2. As mentioned in the remarks following484

Definition 3.4, we relax the requirement for distribution calibration by replacing the miscalibration485

measure in Eq. (7) with486

ε′ay := max
g∈Λk

∣∣E[(f̄a(X)y − fa(X)y
)
1[g ◦ fa(X) = y]1[A = a]

]∣∣, (11)

where487

Λk :=

{
s 7→ arg max

y′
λy′sy′ : λ ∈ Rk

}
is the set of tilings. The relaxed measure ε′ay is clearly upper bounded by Eq. (7).488

When ε′ay = 0, f is said to satisfy the notion of (group-wise) Lk-decision calibration proposed by489

Zhao et al. [50, Definition 2 and Proposition 2], who also provided a polynomial time post-processing490

algorithm for recalibration.491

We restate and prove Theorems 3.5 and 4.2 with the relaxed miscalibration measure defined in492

Eq. (11):493

Theorem B.1. Let h : X × A → Y be the (probabilistic) classifier derived from a score function494

f : X × A → ∆k using Algorithm 1. Then under Assumptions 2.1 and 2.4, for any group-wise495

distribution calibrated reference score function f̄ : X × A → ∆k with finer granularity than496

f (Definition 3.4),497 ∣∣U − U(h)∣∣ ≤ 6‖υ‖1 max
a,y

ε′ay
pay

,

∆TPR(h) ≤ α+ 4max
a,y

4ε′ay
pay

,

where pay := Pµ(A = a, Y = y), υ is from Definition 2.3 of the utility, U denotes the utility of the498

optimal α-fair classifier derived from the reference f̄ , and ε′ay is defined in Eq. (11).499

Theorem B.2. Let h : X × A → Y be the (probabilistic) classifier derived from a score function500

f : X ×A → ∆k using Algorithm 1 with the empirical distribution of samples in Assumption 4.1501

as the argument. Then under Assumptions 2.1 and 2.4, for any group-wise distribution calibrated502
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reference score function f̄ : X × A → ∆k with finer granularity than f (Definition 3.4), and503

n ≥ Ω(maxa,y ln(mk/δ)/pay),504 ∣∣U − U(h)∣∣ ≤ ‖υ‖1 O(max
a,y

1

pay

(
ε′ay +

√
k lnmk/δ

n
+

k

n

))
,

∆TPR(h) ≤ α+O

(
max
a,y

1

pay

(
ε′ay +

√
k lnmk/δ

n
+

k

n

))
,

where pay := Pµ(A = a, Y = y), υ is from Definition 2.3 of the utility, U denotes the utility of the505

optimal α-fair classifier derived from the reference f̄ , and ε′ay is defined in Eq. (11).506

We first state and prove Lemmas B.3, B.4 and B.13 below that we will use when proving the theorems.507

Lemma B.3. Let f : X → ∆k be a score function, f̄ a distribution calibrated reference score508

function with finer granularity, and509

h(x) =

{
arg maxy′ λy′f(x)y′ w.p. 1− β

y w.p. βqy , ∀y ∈ [k]

for some β ∈ [0, 1] and λ ∈ Rk (as in Theorem 3.2). Then under Assumptions 2.1 and 2.4, ∀y ∈ [k],510 ∣∣∣p̃yT̃PR(h)y − py TPR(h)y

∣∣∣ ≤ ε′y,∣∣∣T̃PR(h)y − TPR(h)y

∣∣∣ ≤ 2ε′y
py

,

where py := P(Y = y), T̃PR and p̃y are quantities induced by f as defined in Eq. (6), and511

ε′y := maxg∈Λk
|E[(f̄(X)y − f(X)y)1[g ◦ f(X) = y]]|.512

Proof. Define β̄ := 1− ‖β‖1, g(s) := arg maxy′ λy′sy′ , and let f∗(x) := E[Y | X = x] denote the513

Bayes score function. Note from Eq. (9) that514

TPR(h)y =
1

py

∫
x∈X

f∗(x)y P(h(x) = y)dµX(x) = βy +
β̄

py
E[f∗(X)y 1[g ◦ f(X) = y]]

and py = E[f∗(x)y] = E[f̄(x)y] by calibration; on the other hand, by definition of T̃PR in Eq. (6),515

T̃PR(h)y :=
1

p̃y

∫
x∈X

f(x)y P(h(x) = y)dµX(x) = βy +
β̄

p̃y
E[f(X)y 1[g ◦ f(X) = y]]

and p̃y := E[f(x)y].516

Therefore,517 ∣∣∣p̃yT̃PR(h)y − py TPR(h)y

∣∣∣ = βy|py − p̃y|+ β̄|E[(f∗(X)y − f(X)y)1[g ◦ f(X) = y]]|; (12)

where, for the first term, using the fact that the constant function s 7→ y ∈ Λ (via setting, e.g.,518

λ = ey),519

|py − p̃y| =
∣∣E[f̄(X)y − f(X)y

]∣∣
≤ max

g′∈Λ

∣∣E[(f̄(X)y − f(X)y
)
1[g′ ◦ f(X) = y]

]∣∣
≤ ε′y, (13)

and for the second term,520

|E[(f∗(X)y − f(X)y)1[g ◦ f(X) = y]]|
≤
∣∣E[(f∗(X)y − f̄(X)y

)
1[g ◦ f(X) = y]

]∣∣+ ∣∣E[(f̄(X)y − f(X)y
)
1[g ◦ f(X) = y]

]∣∣
≤

∣∣∣∣∣E
[(
1[Y = y]− f̄(X)y

)
1

[ ∨
s∈∆k

f(X) = s and y ∈ arg max
y′

λy′sy′

]]∣∣∣∣∣+ ε′y

= ε′y (14)
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by Definition 3.4, because f̄ is calibrated and has finer granularity than f . In the arguments above,521

ties can be arbitrarily broken because by Assumption 2.4, the contribution from the set of tied522

scores—which has measure zero—can be ignored. Then the first claim follows by plugging Eqs. (13)523

and (14) back into Eq. (12) and using the fact that β̄ +
∑

y′ βy′ = 1.524

For the second claim, we have525 ∣∣∣T̃PR(h)y − TPR(h)y

∣∣∣
= β̄

∣∣∣∣ 1py E[f∗(X)y 1[g ◦ f(X) = y]]− 1

p̃y
E[f(X)y 1[g ◦ f(X) = y]]

∣∣∣∣
= β̄

∣∣∣∣E[(f∗(X)y
py

− f(X)y
p̃y

)
1[g ◦ f(X) = y]

]∣∣∣∣
≤ β̄

py
|E[(f∗(X)y − f(X)y)1[g ◦ f(X) = y]]|+ β̄

py

∣∣∣∣1− py
p̃y

∣∣∣∣E[f(X)y 1[g ◦ f(X) = y]]

≤ β̄

py
ε′y +

β̄

py

∣∣∣∣1− py
p̃y

∣∣∣∣E[f(X)y]

=
β̄

py
ε′y +

β̄

py
|py − p̃y|

≤ 2β̄

py
ε′y (15)

by Eqs. (13) and (14). The claim then follows by noting that β̄ ≤ 1.526

Lemma B.4. Let f : X → ∆k be a score function, x1, · · · , xn ∼ µX i.i.d. samples, and527

h(x) =

{
arg maxy′ λy′f(x)y′ w.p. 1− β

y w.p. βqy , ∀y ∈ [k]

for some β ∈ [0, 1] and λ ∈ Rk (as in Theorem 3.2). Then under Assumptions 2.1 and 2.4, w.p. at528

least 1− δ, ∀y ∈ [k],529 ∣∣∣p̃yT̃PR(h)y − p̂yT̂PR(h)y

∣∣∣ ≤ O

(√
k ln k/δ

n

)
,

∣∣∣T̃PR(h)y − T̂PR(h)y

∣∣∣ ≤ O

(
1

p̃y

√
k ln k/δ

n

)
,

where p̃y := E[f(x)y], T̃PR is induced by f as defined in Eq. (6), and T̂PR and p̂y their finite530

sample estimates as defined in Eq. (8).531

The proof to this lemma requires concentration inequality and uniform convergence results.532

Theorem B.5 (Hoeffding’s Inequality). Let x1, · · · , xn ∈ R be i.i.d. random variables s.t. ai ≤ xi ≤533

bi almost surely. Then w.p. at least 1− δ, | 1n
∑n

i=1(xi − Exi)| ≤
√∑n

i=1(bi − ai)2/2n2 · ln 2/δ.534

Definition B.6 (Shattering). Let H be a class of binary functions from X to {0, 1}. A set535

{x1, · · · , xn} ⊆ X is said to be pseudo-shattered by H if ∀b1, · · · , bn ∈ {0, 1} binary labels,536

∃h ∈ H s.t. h(xi) = bi for all i ∈ [n].537

Definition B.7 (VC Dimension). Let H be a class of binary functions from X to {0, 1}. The VC538

dimension ofH, denoted by dVC(H), is the size of the largest subset of X shattered byH.539

Definition B.8 (Pseudo-Shattering). LetF be a class of functions fromX to R. A set {x1, · · · , xn} ⊆540

X is said to be pseudo-shattered by F if ∃t1, · · · , tn ∈ R threshold values s.t. ∀b1, · · · , bn ∈ {0, 1}541

binary labels, ∃f ∈ F s.t. 1[f(xi) ≥ ti] = bi for all i ∈ [n].542

Definition B.9 (Pseudo-Dimension). Let F be a class of functions from X to R. The pseudo-543

dimension of F , denoted by dP(F), is the size of the largest subset of X pseudo-shattered by544

F .545
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Theorem B.10 (Pseudo-Dimension Uniform Convergence). LetH be a class of functions from X to546

R, ` : X ×Y → R≥0 a nonnegative loss function upper bounded by M , p a distribution over X ×Y ,547

of which (x1, y1), · · · , (xn, yn) ∼ p are i.i.d. samples. Then w.p. at least 1 − δ over the random548

draw of the samples, ∀h ∈ H,549 ∣∣∣∣∣E(X,Y )∼p `(h(X), Y )− 1

n

n∑
i=1

`(h(xi), yi)

∣∣∣∣∣ ≤ cM

√
d+ ln 1/δ

n

for some universal constant c, where d := dP({(x, y) 7→ `(h(x), y) : h ∈ H}).550

This can be proved via a reduction to the VC uniform convergence bound; see [36, Theorem 6.8] and551

[31, Theorem 11.8]. We will use this theorem to establish the following VC bound for weighted 0-1552

error:553

Theorem B.11. Let H be a class of binary functions from X to {0, 1}, p a distribution over554

X × Y , of which (x1, y1), · · · , (xn, yn) ∼ p are i.i.d. samples. Define nonnegative weighting555

w(x, y) : X × Y → R≥0, and let M := supx,y w(x, y). Then w.p. at least 1 − δ over the random556

draw of the samples, ∀h ∈ H,557 ∣∣∣∣∣E(X,Y )∼p[w(X,Y )1[h(X) 6= Y ]]− 1

n

n∑
i=1

w(xi, yi)1[h(xi) 6= yi]

∣∣∣∣∣ ≤ cM

√
dVC(H) + ln 1/δ

n

for some universal constant c.558

Proof. We are essentially considering a weighted variant of the 0-1 loss, for which Theorem B.10559

can be applied. We only need to show that the weighting does not increase the complexity ofH.560

Let d := dVC(H), and {(x1, y1), · · · , (xd+1, yd+1)} ⊆ X × {0, 1} s.t. the xi’s are distinct w.l.o.g.561

Suppose F := {(x, y) 7→ w(x, y)1[h(x) 6= y]} pseudo-shatters this set, then ∃t1, · · · , td+1 s.t.562

∀b1, · · · , bd+1 ∈ {0, 1} and for all i,563

∃f ∈ F , 1[f(xi, yi) ≥ ti] = bi

⇐⇒ ∃h ∈ H,
{
1[h(xi) 6= yi] ≥ ti/w(xi, yi) if bi = 1

1[h(xi) 6= yi] < ti/w(xi, yi) if bi = 0

⇐⇒ ∃h ∈ H, 1[h(xi) 6= yi] = bi
⇐⇒ ∃h ∈ H, h(xi) = bi XOR yi,

where the third line follows from realizing that ti/w(xi, yi) ∈ (0, 1], otherwise the inequality will564

always fail in one direction regardless of h (note that bi can be arbitrary). Since the xi’s are distinct,565

the above implies thatH shatters a set of size (d+ 1) > dVC(H) = d, which is a contradiction, so566

dP(F) < d+ 1.567

Last but not least, we bound the VC dimension of tiltings in one-vs.-all mode by k.568

Proposition B.12. Let k ≥ 2, and fix y ∈ [k]. Let d denote the VC dimension of the class of binary569

functions from ∆k to {0, 1} given by {s 7→ 1[λysy ∈ maxy′ λy′sy′ ] : λ ∈ Rk}, then d ≤ O(k ln k).570

Proof. Note that any g ∈ {s 7→ 1[λysy ∈ maxy′ λy′sy′ ] : λ ∈ Rk} can be written as571

s 7→ 1

∑
y′

1[λysy − λy′sy′ ≥ 0] ≥ k

,
which is implemented by a two-layer feed-forward linear threshold network with (3k + 1) weights572

and thresholds in total and (2k + 1) computation units, so d ≤ 2(3k + 1) log2(2(2k + 1)/ ln 2);573

see[3, Chapter 6 and Theorem 6.1].574
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Proof of Lemma B.4. Define β̄ := 1−‖β‖1, g(s) := arg maxy′ λy′sy′ . Recall from Eqs. (6) and (8)575

that576

T̃PR(h)y :=
1

p̃y

∫
x∈X

f(x)y P(h(x) = y)dµX(x) = βy +
β̄

p̃y
E[f(X)y 1[g ◦ f(X) = y]],

T̂PR(h)y :=
1

np̂y

∑
i∈[n]

f(xi)y P(h(xi) = y) = βy +
β̄

np̂y

∑
i∈[n]

f(xi)y 1[g ◦ f(xi) = y],

where577

p̃y := E[f(x)y], p̂y :=
1

n

∑
i∈[n]

f(xi)y.

Therefore,578 ∣∣∣p̃yT̃PR(h)y − p̂yT̂PR(h)y

∣∣∣
= βy|p̃y − p̂y|+ β̄

∣∣∣∣∣∣E[f(X)y 1[g ◦ f(X) = y]]− 1

n

∑
i∈[n]

f(xi)y 1[g ◦ f(xi) = y]

∣∣∣∣∣∣; (16)

where, for the first term, by Theorem B.5, w.p. at least 1− δ, ∀y,579

|p̃y − p̂y| ≤
√

ln 2k/δ

2n
, (17)

and for the second term, by Theorem B.11 and Proposition B.12, w.p. at least 1− δ, ∀g, y,580 ∣∣∣∣∣∣E[f(X)y 1[g ◦ f(X) = y]]− 1

n

∑
i∈[n]

f(xi)y 1[g ◦ f(xi) = y]

∣∣∣∣∣∣ ≤ c

√
O(k ln k) + ln k/δ

n
(18)

since f(xi)y ∈ [0, 1]. Then the first claim follows by plugging Eqs. (17) and (18) back into Eq. (16).581

Again, ties that arise when applying the tilting g can be arbitrarily broken because by Assumption 2.4,582

the contribution from the set of tied scores—which has measure zero—can be ignored.583

For the second claim, we have w.p. at least 1− δ, ∀y,584 ∣∣∣T̃PR(h)y − T̂PR(h)y

∣∣∣
= β̄

∣∣∣∣∣∣ 1p̃y E[f(X)y 1[g ◦ f(X) = y]]− 1

np̂y

∑
i∈[n]

f(xi)y 1[g ◦ f(xi) = y]

∣∣∣∣∣∣
≤ β̄

p̃y

∣∣∣∣∣∣E[f(X)y 1[g ◦ f(X) = y]]− 1

n

∑
i∈[n]

f(xi)y 1[g ◦ f(xi) = y]

∣∣∣∣∣∣
+

β̄

p̃y

∣∣∣∣1− p̃y
p̂y

∣∣∣∣ 1n ∑
i∈[n]

f(xi)y 1[g ◦ f(xi) = y]

≤ β̄

p̃y
c

√
O(k ln k) + ln k/δ

n
+

β̄

p̃y

∣∣∣∣1− p̃y
p̂y

∣∣∣∣ 1n ∑
i∈[n]

f(xi)y

=
β̄

p̃y
c

√
O(k ln k) + ln k/δ

n
+

β̄

p̃y
|p̂y − p̃y|

≤ β̄

p̃y

(
c

√
O(k ln k) + ln k/δ

n
+

√
ln 2k/δ

2n

)
by Eqs. (17) and (18). The claim then follows by noting that β̄ ≤ 1.585
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We combine Lemma B.4 and the analysis of Lemma B.3 to obtain the following lemma that will be586

applied directly in the proof of Theorem B.2:587

Lemma B.13. Let f : X → ∆k be a score function, f̄ a distribution calibrated reference score588

function with finer granularity, x1, · · · , xn ∼ µX i.i.d. samples, and589

h(x) =

{
arg maxy′ λy′f(x)y′ w.p. 1− β

y w.p. βqy , ∀y ∈ [k]

for some β ∈ [0, 1] and λ ∈ Rk (as in Theorem 3.2). Then under Assumptions 2.1 and 2.4, w.p. at590

least 1− δ, ∀y ∈ [k],591 ∣∣∣p̂yT̂PR(h)y − py TPR(h)y

∣∣∣ ≤ ε′y +O

(√
k ln k/δ

n

)
,

and for all n ≥ Ω(maxy ln(k/δ)/py),592 ∣∣∣T̂PR(h)y − TPR(h)y

∣∣∣ ≤ O

(
ε′y
py

+
1

py

√
k ln k/δ

n

)
,

where py := P(Y = y), T̂PR and p̂y are finite sample estimates of quantities induced by f as defined593

in Eq. (8), and ε′y := maxg∈Λk
|E[(f̄(X)y − f(X)y)1[g ◦ f(X) = y]]|.594

Proof. Define β̄ := 1− ‖β‖1, g(s) := arg maxy′ λy′sy′ , and let f∗(x) := E[Y | X = x] denote the595

Bayes score function. Note that the ground-truth TPR can be computed as follows, where we also596

define its finite sample estimate:597

TPR(h)y = βy +
β̄

py
E[f∗(X)y 1[g ◦ f(X) = y]],

~TPR(h)y := βy +
β̄

np̌y

∑
i∈[n]

f∗(xi)y 1[g ◦ f(xi) = y],

where py := P(Y = y) = E[f∗(x)y] = E[f̄(x)y] by calibration, and p̌y := 1
n

∑
i∈[n] f

∗(xi)y; on598

the other hand, recall from Eq. (8) that599

T̂PR(h)y :=
1

np̂y

∑
i∈[n]

f(xi)y P(h(xi) = y) = βy +
β̄

np̂y

∑
i∈[n]

f(xi)y 1[g ◦ f(xi) = y],

where p̂y := 1
n

∑
i∈[n] f(xi)y .600

Applying Lemma B.4 to f∗, we get w.p. at least 1− δ, ∀y ∈ [k],601 ∣∣∣py TPR(h)y − p̌y ~TPR(h)y

∣∣∣ ≤ O

(√
k ln k/δ

n

)
, (19)

∣∣∣TPR(h)y − ~TPR(h)y

∣∣∣ ≤ O

(
1

py

√
k ln k/δ

n

)
. (20)

Now, for the first claim,7602

∣∣∣p̌y ~TPR(h)y − p̂yT̂PR(h)y

∣∣∣ = βy|p̌y − p̂y|+ β̄

∣∣∣∣∣∣ 1n
∑
i∈[n]

(f∗(xi)y − f(xi)y)1[g ◦ f(xi) = y]

∣∣∣∣∣∣;
(21)

7The indicator in the summation should have been 1[g ◦ f∗(xi) = y], but the score function in that term is
decoupled in the analysis of Theorem B.2, hence interchangeable.
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where, for the first term, by applying Theorem B.5 twice and following the same analysis in Eq. (13),603

w.p. at least 1− δ, ∀y,604

|p̌y − p̂y| =

∣∣∣∣∣∣ 1n
∑
i∈[n]

(
f̄(xi)y − f(xi)y

)∣∣∣∣∣∣
≤
∣∣E[f̄(X)y − f(X)y

]∣∣+O

(√
ln k/δ

n

)

≤ ε′y +O

(√
ln k/δ

n

)
, (22)

and for the second term, by Theorem B.11 and Proposition B.12,8 followed by the same analysis in605

Eq. (14), w.p. at least 1− δ, ∀g, y,606 ∣∣∣∣∣∣ 1n
∑
i∈[n]

(f∗(xi)y − f(xi)y)1[g ◦ f(xi) = y]

∣∣∣∣∣∣
≤ |E[(f∗(X)y − f(X)y)1[g ◦ f(X) = y]]|+O

(√
k ln k/δ

n

)

≤ ε′y +O

(√
k ln k/δ

n

)
. (23)

Again, we have relied on Assumption 2.4 to avoid tie-breaking issues. Then the first claim follows607

by plugging Eqs. (22) and (23) back into Eq. (21), combining with Eq. (19), and using the fact that608

β̄ +
∑

y′ βy′ = 1.609

For the second claim, by Eqs. (22) and (23) and the same analysis in Eq. (15), w.p. at least 1 − δ,610

∀g, y,611 ∣∣∣~TPR(h)y − T̂PR(h)y

∣∣∣ ≤ O

(
β̄

p̌y
ε′y +

β̄

p̌y

√
k ln k/δ

n

)

The claim then follows by noting that β̄ ≤ 1, combining with Eq. (20), and the fact that p̌y = Θ(py)612

when n ≥ Ω(maxy ln(k/δ)/py) by Theorem B.5.613

Finally, we get back to the proofs of Theorems B.1 and B.2.614

Proof of Theorem B.1. We begin with the second claim, where by Lemma B.3, ∀a, a′, y,615

|TPRa(h)y − TPRa′(h)y|

≤
∣∣∣T̃PRa(h)y − T̃PRa′(h)y

∣∣∣+ ∣∣∣T̃PRa(h)y − TPRa(h)y

∣∣∣+ ∣∣∣T̃PRa′(h)y − TPRa′(h)y

∣∣∣
≤ α+

2ε′ay
pay

+
2ε′a′y

pa′y
,

and the claim follows by taking the max over a, a′, y.616

For the first claim, let h̄ := arg max∆TPR(h′)≤α

∑
a,y υypay TPRa(h

′)y denote the classifier that617

achieves U , and recall that h := arg max∆T̃PR(h′)≤α

∑
a,y υypayT̃PRa(h

′)y, where analogous to618

Eq. (2) we defined619

∆T̃PR(Ŷ ) := max
a,a′∈A

∥∥∥T̃PRa(Ŷ )− T̃PRa′(Ŷ )
∥∥∥
∞
.

8Note that the weight (f∗(xi)y − f(xi)y) ∈ [−1, 1] can be made nonnegative by adding 1.
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Then by Lemma B.3,620

U − U(h) =
∑

a∈[m],y∈[k]

υypay
(
TPRa(h̄)y − TPRa(h)y

)
≤

∑
a∈[m],y∈[k]

υyp̃ay

(
T̃PRa(h̄)y − T̃PRa(h)y

)
+

∑
a∈[m],y∈[k]

2υyε
′
ay

≤
∑

a∈[m],y∈[k]

υyp̃ay

(
T̃PRa(h̄)y − T̃PRa(h)y

)
+

∑
a∈[m],y∈[k]

2υypay max
a′,y′

ε′a′y′

pa′y′

≤
∑

a∈[m],y∈[k]

υyp̃ay

(
T̃PRa(h̄)y − T̃PRa(h)y

)
+ 2‖υ‖1 max

a,y

ε′ay
pay

(24)

by Hölder’s inequality, since
∑

a pay ≤ 1 for all y.621

Our next step is to use the fact that h is the maximizer of Ũ subject to ∆T̃PR(h) ≤ α to eliminate622

the first summation, except that the constraint may not be satisfied by h̄. So we introduce a third623

classifier h′ s.t.624

T̃PRa(h
′)y = proj[ty−α,ty+α]

(
T̃PRa(h)y

)
, ∀y ∈ [k],

where ty := T̃PRb(h)y with b satisfying T̃PRb(h)y ∈ {ty : t ∈
⋂

a∈[m] D̃a}, the intersection of625

the feasible regions restricted to coordinate y; or in other words, ty is the T̃PR of class y on the626

worst-performing group b. Because |T̃PRa(h̄)y − T̃PRb(h̄)y| ≤ α + 2ε′ay/pay + 2ε′by/pby (by a627

similar argument to the one above) for all a, y, it follows by a case analysis that628 ∣∣∣T̃PRa(h̄)y − T̃PRa(h
′)y

∣∣∣ ≤ 2ε′ay
pay

+
2ε′by
pby
≤ 4max

a′,y′

ε′a′y′

pa′y′
, ∀a ∈ [m], y ∈ [k].

Then,629 ∑
a∈[m],y∈[k]

υypay

(
T̃PRa(h̄)y − T̃PRa(h)y

)
=

∑
a∈[m],y∈[k]

υypay

(
T̃PRa(h̄)y − T̃PRa(h

′)y + T̃PRa(h
′)y − T̃PRa(h)y

)
≤

∑
a∈[m],y∈[k]

υypay

(
T̃PRa(h̄)y − T̃PRa(h

′)y

)
≤

∑
a∈[m],y∈[k]

4υypay max
a′,y′

ε′a′y′

pa′y′

≤ 4‖υ‖1 max
a,y

ε′ay
pay

, (25)

then one side of the claim follows from plugging this back into Eq. (24); the other side follows630

symmetrically by using the fact that h̄ is the maximizer of U subject to ∆TPR(h̄) ≤ α.631

Proof of Theorem B.2. Let γ denote the probabilistic classifier found on Line 5 of Algorithm 1 that632

operates on the samples. We begin with the second claim, where by Lemma B.13, w.p. at least 1− δ,633

∀a, a′, y and n ≥ Ω(maxa,y ln(mk/δ)/pay),634

|TPRa(h)y − TPRa′(h)y|

≤
∣∣∣T̂PRa(γ)y − T̂PRa′(γ)y

∣∣∣+ ∣∣∣T̂PRa(h)y − TPRa(h)y

∣∣∣+ ∣∣∣T̂PRa′(h)y − TPRa′(h)y

∣∣∣
+
∣∣∣T̂PRa(h)y − T̂PRa(γ)y

∣∣∣+ ∣∣∣T̂PRa′(h)y − T̂PRa′(γ)y

∣∣∣
≤ α+O

(
ε′ay
pay

+
ε′a′y

pa′y
+

(
1

pay
+

1

pa′y

)(√
k lnmk/δ

n
+

k

n

))
,
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where the last two terms are upper bounded via635

∣∣∣T̂PRa(h)y − T̂PRa(γ)y

∣∣∣ =
∣∣∣∣∣∣ β̄

nap̂y|a

∑
i∈[na]

fa(xi)y(1[ha(xi) = y]− P(γa(xi) = y))

∣∣∣∣∣∣
≤ kβ̄

nap̂y|a
,

since by construction, the interior of the set {s ∈ ∆k | ∃x ∈ X : fa(x) = s, ha(x) = y} is636

equivalent to that of {s ∈ ∆k | ∃x ∈ X : fa(x) = s,P(γa(x) = y) = 1}, so ha disagrees with637

γa only on the boundary, when λyfa(x)y = λy′fa(x)y′ for some y′ (i.e., there is a tie). Because638

locations where ties can occur is specified by k hyperplanes, and the probability of having two639

random samples fa(xi), fa(xj), i 6= j lying on the same hyperplane is zero by Assumption 2.4, the640

number of disagreements on the samples is no more than k. Finally, note that nap̂y|a = Θ(np̂ya)641

when n ≥ Ω(maxa,y ln(mk/δ)/pay).642

The first claim then follows by taking the max over a, a′, y.643

For the first claim, applying Lemma B.13 followed by the same analysis above and in Eq. (25),644

U − U(h)

=
∑

a∈[m],y∈[k]

υypay
(
TPRa(h̄)y − TPRa(h)y

)
≤

∑
a∈[m],y∈[k]

υyp̂ay

(
T̂PRa(h̄)y − T̂PRa(γ)y +O

(
1

pay

(
ε′ay +

√
k lnmk/δ

n
+

k

n

)))

≤
∑

a∈[m],y∈[k]

υyp̂ay O

(
max
a′,y′

ε′a′y′

p̂a′y′
+

1

pay

(
ε′ay +

√
k lnmk/δ

n
+

k

n

))

≤ ‖υ‖1 O

(
max
a,y

1

pay

(
ε′ay +

√
k lnmk/δ

n
+

k

n

))
;

again, we have used the fact that p̌ay = Θ(pay) when n ≥ Ω(maxa,y ln(mk/δ)/pay) by Theo-645

rem B.5. The other side follows symmetrically.646

C Additional Experiment Details and Results647

C.1 Experiment Setup648

Dataset. On ACSIncome, the dataset is randomly split 0.63/0.07/0.3 for training and calibrating649

the score function, post-processing, and testing, respectively. On BiasBios, it is split 0.35/0.35/0.3.650

In-processing methods are run on the two training splits merged.651

We use the version of BiasBios scrapped and prepared by Ravfogel et al. [34], which contains652

393,423 examples in total (vs. the 397,340 gathered by De-Arteaga et al. [16]).653

Scoring Model. For training the logistic regression scoring model on which the post-654

processing methods are based, and to achieve (some level of) group-wise calibration, we use655

CalibratedClassifierCV (with one-vs.-all isotonic calibration method) from the scikit-learn656

package using logistic regression as the base model (with 10,000 iterations), which trains the logistic657

regression model while performing isotonic calibration with five-fold cross validation [42, 43]. In658

addition, to achieve group-wise calibration, we train one CalibratedClassifierCV on each group659

separately.660

In Fig. 4, we compare the post-processing results of our algorithm to those applied on a scoring661

method without any attempts at calibration. The uncalibrated scoring model is trained directly with662

LogisticRegression on all groups in aggregate.663
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Figure 4: Tradeoff curves between accuracy and ∆TPR (Eq. (2)) by Algorithm 1 on a group-wise
calibrated logistic regression scoring model and an uncalibrated one. Error bars indicate the standard
deviation over 10 runs with different random splits.

Table 1: Running time of post-processing methods, averaged over three random splits.

ACSIncome BiasBios

Groups 2 5 2
Classes 2 5 28
Examples (post-processing split) 116,515 137,698

Ours 137 1829 4764
RejectOption 75 - -
FairProject-KL (GPU) 22 30 84

Hyperparameters. For all baseline methods, we use default settings that came with the code/pack-664

age. In particular, for FairProject, increasing the number of iterations to over 1,000 did not665

improve performance. The tradeoff curves in Fig. 3 are generated with the following fairness666

tolerance/strictness settings.667

For our method, α is set to:668

• ACSIncome (binary). 0.14, 0.12, 0.1, 0.08, 0.05, 0.02, 0.01, 0.008, 0.005, 0.002, 0.001,669

0.0001.670

• ACSIncome (5-group, 5-class). 0.6, 0.55, 0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1, 0.08,671

0.05, 0.02, 0.01, 0.008, 0.005, 0.002, 0.001, 0.0001.672

• BiasBios. 0.5, 0.45, 0.3, 0.25, 0.2, 0.15, 0.1, 0.08, 0.05, 0.02, 0.01, 0.008, 0.005, 0.002.673

For FairProject-KL, tolerance is set to:674

• ACSIncome (binary). 0.2, 0.12, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01,675

0.005, 0.0.676

• ACSIncome (5-group, 5-class). 0.6, 0.55, 0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1, 0.08,677

0.05, 0.02, 0.01, 0.008, 0.005, 0.002, 0.001, 0.0001.678

• BiasBios. 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.0.679

For RejectOption on binary ACSIncome, metric_ub and metric_lb are set to plus/minus 200,680

100, 50, 40, 35, 30, 20, 27, 15, 10, 5, 1.681

For Reductions on binary ACSIncome, tolerance is set to 1.0, 0.14, 0.12, 0.1, 0.08, 0.05, 0.02, 0.01,682

0.001, 0.0001. We use LogisticRegression as the base model.683

For Adversarial, the strength of the adversarial loss is set to 0.0001, 0.001, 0.01, 0.1, 0.2, 0.5, 1.684

The base model is a one-hidden-layer feedforward ReLU network.685
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Algorithm 1 Implementation. In our code, the linear programs of Algorithm 1 introduced when686

it is instantiated to finite sample estimation in Section 4 are implemented through the cvxpy [19]687

interface, and for solving which we use the COIN-OR Cbc solver based on branch and cut.9688

C.2 Additional Results689

Running Time. We report the running time of the post-processing algorithms considered in690

Section 5 in Table 1. The experiments are run on an Intel Xeon Silver 4314 for CPU implementations,691

and an NVIDIA RTX A6000 for GPU implementations (namely, FairProject). Note that our692

method runs on a single core, so multiple experiments with different levels of fairness constraint α can693

be run in parallel. The times are recorded under the strictest tolerance setting (see Hyperparameters694

in the previous section).695

Calibration. In Fig. 4, we compare the results of our post-processing Algorithm 1 on a score696

function trained with group-wise calibration in mind to those of an uncalibrated one. It is observed697

that under smaller settings of α, TPR disparity increases instead of seeing further reductions. This is698

because when the scores are uncalibrated, they do not reflect the true class probabilities, and on the699

other hand, smaller α settings means the algorithm will have less tolerance to errors of the scores;700

these two reasons combined cause the rebound of ∆TPR observed with the uncalibrated model.701

9https://github.com/coin-or/Cbc.
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