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Abstract

Fairness in machine learning is of growing concern as more instances of biased
model behavior are documented while their adoption continues to rise. The majority
of studies have focused on binary classification settings, despite the fact that many
real-world problems are inherently multi-class. This paper considers fairness
in multi-class classification under the notion of parity of true positive rates—an
extension of binary class equalized odds [25]—which ensures equal opportunity
to qualified individuals regardless of their demographics. We focus on algorithm
design and provide a post-processing method that derives fair classifiers from pre-
trained score functions. The method is developed by analyzing the representation
of the optimal fair classifier, and is efficient in both sample and time complexity,
as it is implemented by linear programs on finite samples. We demonstrate its
effectiveness at reducing disparity on benchmark datasets, particularly under large
numbers of classes, where existing methods fall short.

1 Introduction

Algorithmic fairness has emerged as a topic of significant concern in the field of machine learning,
due to the potential for models to exhibit discriminatory behavior towards historically disadvantaged
demographics [11} 5{ 7], all while their adoption continues to rise in domains including high-stakes
areas such as criminal justice, healthcare, and finance [4} |8]]. To address the concern, a variety of
fairness criteria have been proposed (e.g., demographic parity, equalized odds) along with mitigation
methods [12} 21} 25 28]]. On classification problems, the majority of work focuses on the binary class
setting [2, Table 1], where one class is typically considered to be more favorable (e.g., the approval
vs. rejection of a credit card application).

Yet, many real-world problems are multi-class in nature. In the case of credit card applications, issuers
may prefer assigning higher-tier interest rates to high-risk applicants compared to outright rejection,
which creates opportunities to applicants who would otherwise be denied credit and also generates
returns for the banks. Similarly, in online advertising, recruiting platforms can employ machine
learning models to match users to relevant job postings across multiple occupation categories. There
are evidences, however, for such systems to exhibit gender bias [9} 15 49]; for instance, models
that are trained to identify occupation from biography tend to show higher accuracy (recall) on male
biographies than on their female counterparts in occupations that are historically male-dominated [[16].

In the example above, unfairness is manifested in a disparity of true positive rates (TPRs) across
demographic groups A (generalizing the true positive and negative rates in binary classification),

~ ~

TPR.(Y), =PY =y |Y =y, A=a), Vyelk],ac[m].

A classifier satisfying parity of TPRs, i.e., TPR, = TPR, for all a, a’, ensures that individuals with
the same qualification (Y") will have equal opportunity of receiving their favorable outcome (Y = Y)
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Figure 1: Feasible region of TPRs on a binary class (left) and a three-class problem (right). The
black (resp. colored) arrow indicates the utility-maximizing direction (of each group).

regardless of demographics [22], e.g., being shown job postings on recruiting platforms for which the
user is qualified. When the classes are binary, this fairness notion recovers equalized odds [23]].

In this paper, we focus on the design of algorithm for mitigating TPR disparity and provide an efficient
post-processing method that derives attribute-aware fair classifiers from (pre-trained) scoring models.
Our method works on multi-class and multi-group classification problems, guarantees fairness by a
sample complexity bound, can be implemented by linear programs, and achieves higher reductions in
disparity compared to existing algorithms that are applicable to multi-class—a recently proposed post-
processing method based on model projection [2], and adversarial debiasing [46], an in-processing
method—especially when the number of classes is large.

Organization.  We introduce the problem setup and objectives in Section 2] then describe our
post-processing method for TPR parity in Section [3] along with suboptimality analyses; in particular,
our method yields the optimal fair classifier when applied to the Bayes optimal score function.
Our method is instantiated for finite sample estimation in Section 4} and we also provide sample
complexity bounds to complete the analysis. Finally, in Section[5} we compare our algorithm with
existing methods for disparity reduction on benchmark datasetsﬂ A high-level summary of our results
is provided in Section|[I.1]

1.1 Summary of Results

One way to interpret and understand TPR parity is through visualizing the feasible regions of TPRs.
In Fig. [} we plot the feasible regions (achievable by probabilistic classifiers) of two groups on a
(hypothetical) binary classification problem on the left, and those on a three-class problem on the
right, where each axis represents the TPR of a class. Achieving optimal TPR parity amounts to
first finding the TPR that maximizes the overall utility (e.g., accuracy) in the intersection of feasible
regions, and subsequently an (attribute-aware) classifier attaining that target TPR on all groups. Note
that the left figure is equivalent to the ROC curve (with a flip of the horizontal axis, because the TPR
of class 1 equals one minus the false negative rate by treating class-1 as the negative class), which
was used by Hardt et al. [25]] for studying equalized odds. And thus, the TPR (hyper)surface plots in
higher dimensions are a natural generalization of the ROC curve to multi-class settings.

Step one of finding the optimal fair TPR can be formulated as a linear program when estimating from
finite samples. For the second step, our method derives a classifier attaining the target TPR from the
score function; in particular, it yields the optimal fair classifier when the score is Bayes optimal:

Theorem 1.1. Let f, -, f¥ : X — Ay denote the Bayes score function on each group, fi(x) :=
(h2.4)

ElY | X =x,A=al, and q1, - ,qm € Ay, be arbitrary. Then under a continuity assumption ,
3B, Bm €[0,1] and M1, -+ , A\, € R¥ s.t. the probabilistic attribute-aware classifier

argmax,,(Ag)y * fo(x)y wp. 1— B4 la

) { I Sy w8 (1)

y wp. B+ (qa)y Yy € [K] (1b)

achieves the maximum utility subject to TPR parity.

'Our code is provided in the supplemental material.
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The post-processed classifier returned by our method is a mixture of two models (weighted by
B8). Eq. returns the class with the highest likelihood after a class-wise rescaling, called a
tilting [2]], which generalizes the concept of thresholding in binary classifiers. Eq. (Ib) makes random
assignments sampled from a Multinoulli(g) distribution, which handles situations where the fair TPR
lies in the interior of the feasible region (see Fig. [T} where the optimum is located within the interior
of group 2 feasible region). To alleviate potential ethical concerns regarding this randomization, we
point out that the parameter ¢,’s used in class sampling can be specified per-group by the practitioner
responsibly, e.g., uniform 1/, or e, with 3’ being an advantaged outcome.

Among the possibly infinitely many fair classifiers derived from the score function f, we specifically
seek the simplistic representation in Eq. (I)) because it immediately extrapolates to unseen exam-
ples, can be estimated via linear programs from finite samples, and provides good generalization

performance at the rate of O(+/%/n) thanks to its low function complexity (Theorem .

When the score function being post-processed is not Bayes optimal, our method is still applicable,
but the result may not be optimal nor exactly achieve TPR parity (without leveraging labeled
data or additional knowledge of the model, as our method only needs unlabeled data). But these
suboptimalities are minimized if the model is calibrated (Theorem ; this answers the question
raised in [2] about the effects of base model inaccuracies on downstream post-processing.

1.2 Related Work

Fairness Critetia.  The notion of TPR parity has appeared in the literature as conditional procedure
accuracy equality [8)], avoiding disparate mistreatment [44], and (multi-class) equal opportunity [16,
33, 135]] (to be distinguished from the fairness criterion with the same name in [25]). Other group
fairness notions that extend to multi-class include (but not limited to) equalized odds [25] (of which
TPR parity is a necessary condition), and demographic parity (DP) [12] (where Xian et al. [40]
recently proposed an optimal post-processing method). However, DP may be less desirable than TPR
parity in some use cases because the perfect classifier is not permitted under DP when the base rates
differ [47]. It is worth noting that TPR parity implies accuracy parity [[L1]]. In addition to group
fairness, there are notions defined on the individual level [21].

Mitigation Methods. = Our method is based on post-processing [27, 25]. There are also in-
processing methods via fair representation learning [45} 146, 48] [34]], solving zero-sum games [[1, 4 1],
and pre-processing methods that debias the data prior to training [13}49]; see [5, [14] for a survey.

For multi-class TPR parity, the only applicable post-processing method to date, to our knowledge,
is due to Alghamdi et al. [2]] (which is the primary baseline for our method in our experiments).
It is a general-purpose method that transforms the scores to satisfy fairness while minimizing the
distributional divergence (e.g., KL) between the transformed scores and the original. However, the
tradeoff between model performance and fairness is unclear as they did not relate the divergence to
utility. Furthermore, while the authors provided a sample complexity bound for their optimization
objective, it is not explicitly related to the violation of the fairness criteria.

2 Preliminaries

A k-class classification problem is defined by a joint distribution y of input X € &', demographic
group membership A € [m] := {1,--- ,m} (ak.a. the sensitive attribute), and class label Y € [k].
We assume that all classes have nonzero probability on each group, otherwise TPR would not be well-
defined. Denote the joint distribution of (X, A) by x4, and, the (k — 1)-dimensional probability
simplex by Ay, == {z € RY : ||2]|; = 1}.

Assumption 2.1. P, (Y =y | A=a) > 0,forall y € [k], a € [m].

Let f : X x A — Ay be an attribute-aware (pre-trained) score function, whose outputs are probability
vectors that estimate the class probabilities as in f(z,a), = P, (Y =y | X =2, A = a). We will
write f, : X — Ay to denote the component of f associated with group a, i.e., fo(z) = f(x,a). Our
goal is to find fair (probabilistic) post-processing maps g1, - , gm : A — ) to derive a classifier
(z,a) — gq o fo(x) that satisfies TPR parity while maximizing utility (e.g., classification accuracy).
We will sometimes write R := f(X, A).
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We allow for controllable tradeoffs between utility and fairness through the following relaxation of
TPR parity, and call a classifier a-fair if it satisfies a-TPR parity:
Definition 2.2 (Approximate TPR Parity). Let « € [0,1]. A predictor Y is said to satisfy a-TPR
parity if Arpr(Y) < «, where

Arpr(Y) = max HTPRa(?) — TPR,(Y) H , 2)

a,a’ €A 00
and TPR,(Y) :=P(Y | Y =y, A = a) € [0, 1]¥; P includes the randomness of the predictor.

Beyond classification accuracy, we also allow for any utility functions that depend only on the TPRS:H
Definition 2.3 (Utility). The utility function u : [k] x [k] — R is defined for some v € R* by

u(@y) =Y vy lly=y,95=y
y'€lk]

E.g., accuracy, 1[y = ¢, is obtained by setting v = 1. The term v will appear in our analyses,
and the significance of considering utilities of this form is that we could evaluate a classifier by a
weighted sum of its TPRs. Define poy =P, (A = a,Y = y), then

UY)=EuY,Y)= > 0ypay TPR.(Y), =U(TPRy(Y), -+ , TPR,(Y)). (3)
a€[m],y€lk]

Finally, we make the following continuity assumption on the distributions of score to avoid technical
complexities related to tie-breaking (on the atoms). This assumption has also appeared in prior work
on fair post-processing [[17, 23} 40]; it holds when the input distributions are continuous and the score
function is injective, or can be satisfied by adding small random perturbations to the scores.

Assumption 2.4. The conditional distribution of score, P(f,(X) | A = a), is (Lebesgue absolutely)
continuous, for all a € [m)].

3 TPR Parity via Post-Processing

Given a score function f : X x A — Ay, and access to the (unlabeled) joint distribution ,uX A (i.e.,
no estimation error), we describe a method for deriving an attribute-aware a-fair classifier while
maximizing utility, in the form of (x,a) — g, o f.(x), where the g,’s are (probabilistic) fair
post-processing maps for each group. That is, we want to solve
max Z/{(}A/) s.t. ATPR(?) <a where Y =gy o fa(X).
g1, ,Gm

Although the method only returns classifiers derived from f as opposed to searching over the space of
all classifiers h : X x A — ), it would yield the optimal fair classifier provided that the information
of (A,Y) is preserved in the output of f; this is the case when the score function is Bayes optimal.

3.1 Deriving Optimal Fair Classifier From Bayes Score Function

In this section, we explain how to obtain an optimal fair classifier by deriving from the Bayes score
function f*, thereby providing a proof of Theorem|I.1](omitted proofs are in Appendices[A]and [B).

Step 1 (Finding Utility-Maximizing Fair TPRs).  Let D, C [0, 1]* denote the set of feasible TPRs
on group a achieved by probabilistic classifiers. The first step is to find utility-maximizing fair TPRs
contained in an ¢ -ball of diameter « per Definition[2.2]of a-TPR parity (left figure of Fig. 2):

max Uty ytm) st |t — tarlleo < @, Va,a’ € [m]. 4)
t1€D1, - tm€Dm

When o = 0, this reduces to finding a single ¢ € ) « Da, and because each D, is convex (since
probabilistic classifiers are allowed), it can be found with ternary search as suggested in [25]. If

*This includes all possible utility/loss functions in binary classification, since TPR()A/)l (true negative rate)
and TPR(Y)2 (true positive rate) fully determine the 2 x 2 confusion matrix.
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Step 1 Step 2
Finding utility-maximizing fair TPRs Obtaining fair classifier of desired form

[y
=
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TPR of class 2
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TPR of class 2

o
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Figure 2: Achieving a-TPR parity on a binary class problem. First, the utility-maximizing TPRs
residing in an ¢,-ball of diameter « are found (left). Then, classifiers achieving the fair TPRs are
obtained: a tilting of the scores when the TPR lies on the boundary (middle), otherwise, a mixture of
tilting and randomization (right). The simplex Ay is always inscribed in the feasible region.

instead the t,’s are to be estimated from finite samples, then the empirical ﬁa’s are described by
polytopes and the problem can be formulated as a linear program (Section [4).

The feasible regions of TPR generally differ across groups, due to uncertainties inherent to the task
of interest, or to inadequate and biased sourcing of data. The more the D, ’s differ, the greater the
tradeoff between fairness and utility. Hence TPR parity incentivizes the learner to improve data
collection and aspects of modeling that induces a balanced predictive capability on all groups [25].

Because f*(X, A) is sufficient statistic for Y, the fair TPRs we found above are always achievable
by classifiers derived from f*. Or more concretely,

Proposition 3.1. Let f* : X — Ay denote the Bayes score function, then D == {TPR(h) € [0,1]* |
h: X — Y (probabilistic)} = {TPR(go f*) € [0,1]* | g : Ax — Y (probabilistic)}.

Step 2 (Obtaining Fair Classifier of Desired Form).  Having found the utility-maximizing fair TPR
t.’s, the next step is to derive a classifier that attains ¢, on each group:

Theorem 3.2. Let f* : X — Ay denote the Bayes score function, and q € Ay, be arbitrary. Then
under Assumptions and Vt € D, there exists 3 € [0,1] and X € R¥ 5.t. TPR(h) = t, where

W) = { argmax,, Ay f*(x), wp. 1 -0
y wp. Bgy, Yy € [k].

The construction uses the observation that the boundary of D, denoted by 0D, is given by the set of
TPRs attained by tiltings of the Bayes score:

Proposition 3.3. Let f* : X — Ay denote the Bayes score function. Then under Assumption|2.1
h : X — Y (probabilistic) satisfies TPR(h) € 0D if and only if I\ € R¥, X\ # 0 s.t. h(x) €
argmax, A f* (x)y almost surely.

Proof of Theorem[3.2] If the target TPR lies on the boundary of D, then by Proposition it is
achieved by a tilting of the Bayes score without any randomization (i.e., 5 = 0; center figure of
Fig.[2). This holds due to Assumption [2.4] because we may break ties arbitrarily without affecting
TPR, since the set of tied scores (finite union of (k — 2)-d subspaces) has (Lebesgue) measure zero.

Otherwise, and generally, there must exists ' € 9D and 3 € [0, 1] s.t. ¢ can be written as a linear
combination of t = 8g + (1 — B)t’. This is simply because ¢ € A, C D, and the line connecting ¢
and ¢ must intersect 9D at some point ¢’ (right figure of Fig. . Since the TPR of the input-agnostic
randomization according to Multinoulli(¢) equals ¢, and ¢’ is achieved by a tilting of the score per
Proposition[3.3] their 5-mixture achieves the target TPR ¢ by linearity. O

3.2 Deriving From Any Score Function

The post-processing method described in the previous section, which only requires unlabeled data
(X, A), yields the optimal «-fair classifier when applied to Bayes scores f*. Yet, in practice, there
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Algorithm 1 Post-Process Score Function for a-TPR parity

1: Input: o € [0,1], q1,- - ,@m € Ay, score function f : X x A — Ay, distribution z*4
2: D, :={TPRgy(h) | h: X — Y (probabilistic) } > Eq. , induced TPR feasible region
3 b, tmargmaxy o g cp Ut t) st [ta — tar [l < @, Va,d’ € [m]

> utility-maximizing fair TPRs
: fora =1tomdo o ~ o
Find h,, B, € [0,1] s.t. TPR,(hy) € 0D, and t, = (1 — B4)TPR,(ha) + Bada
Find A\, € R¥ s.t. ho(2) € argmax,, (Xa)y - fa(2)y, Vo € supp(py)
end for
: Return: (z,a) — argmax,, (As)y - fa(®) W.p. 1 — Bo, and y w.p. B, - (¢a)y for each y € [K]

AN A

is the concern that Bayes score functions could be arbitrarily complex and are often not exactly
learnable due to limited data or computational constraints [39].

Nonetheless, our method is still applicable to arbitrary (approximations to the Bayes) score functions
f: X x A— Ay for deriving classifiers that are approximately fair and optimal, by treating them
as if they were Bayes optimal (Algorithm [I). Where, the only tweak we made is replacing the
ground-truth TPRs and feasible regions (which are unknown without access to the Bayes score) by
approximations induced by f, i.e.,

Dy = {T/f)ﬁa(h) e [0,1)* ‘ h:X Y (probabilistic)}, )
where
—_ 1
TPRo(h)y = = [ fa(2)yP(h(z) = y) A (z,0), oy = / fa(@)y (2, a).
pay reX reX (6)

It is not hard to show that they are equal to their ground-truth counterparts when f = f*.

The suboptimalities of the classifier returned from Algorithmare upper bounded by the L' difference
between the score function f and a group-wise distribution calibrated reference score with finer
granularity. In other words, better results can be obtained by recalibrating f prior to post-processing.

Definition 3.4. A score R is said to be (group-wise) distribution calibrated if P(Y =y | R = s) = s,,,
Vs € Ag,y € [k] (resp. P(Y =y | R = s,A = a) = s, Va € [m]). Furthermore, it is said to have
finer granularity than score Rif P(Y =y | R=s,R=s") = s,,Vs,s' € Ay, y € [k].

Distribution calibration is a multi-class generalization of the original definition of calibration for
binary predictors [30,|37]], requiring the predicted score to match the underlying class distribution
conditioned on the score across all classes, not just the most confident one [24]. Although this
definition is convenient to work with mathematically, it could be difficult to achieve in practice. We
will relax it to the notion of decision calibration [50] when we prove our results in Appendix [B] (w.r.t.
the set of all tiltings; derived from multicalibration [26]), which can be achieved in polynomial time.

Theorem 3.5. Let h : X x A — Y be the (probabilistic) classifier derived from a score function
[+ X x A— Ay using Algorithm[l| Then under Assumptions 2.1 and 2.4} for any group-wise
distribution calibrated reference score function f : X x A — Ay, with finer granularity than f,

77 al 4 a?l
[ —u(h)| < 6l|vlls max =L, Agpg(h) < o+ 4max —2,
&Y Pay @Y Pay

where poy =P, (A =a,Y =vy), vis from Deﬁnitignofthe utility, U denotes the utility of the
optimal a-fair classifier derived from the reference f, and
€ay ::]EH.]?(J(X)y_fa(X)y|]1[A:a]] @)

measures the miscalibration of f w.r.t. f on group a and class v.

We draw two conclusions from this result. First, by using the Bayes score function f* as the reference,
it states that the suboptimality of the derived classifier when f # f* is upper bounded by the L!
difference between the approximate scores and the ground-truth; this answers the question raised
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in [2]] regarding the impact of base model inaccuracies. Second, if f satisfies calibration, then by
using itself as the reference, the result guarantees that the classifier derived using Algorithm [T]exactly
achieves the desired level of fairness, and is optimal among all fair classifiers derived from f (which
can only be further improved using labeled data).

4 Finite-Sample Algorithm and Guarantees

We instantiate the post-processing method above for TPR parity to the case where we do not have
access to the distribution ;>4 but only samples drawn from it (i.e., to perform estimation), and
analyze the sample complexity.

Assumption 4.1. We have n i.i.d. samples of (X, A) that are independent of the score function f
being post-processed. Denote the samples from group a by (24,;)ic[n,]» and their number by 7.

4.1 Algorithm

We adapt Al gorithmto handle finite samples by replacing l~)a and U with their empirical counterparts
(essentially calling it with the empirical distribution /1 formed by the samples as the argument),
and implement the optimization problems on Lines [3] [5]and [6|using linear programs.

Step 1 (Finding Utility-Maximizing Fair TPRs). = The empirical induced feasible region of TPRs,

D,, can be computed via evaluating the TPRs of all (probabilistic) classifiers acting on the samples—
by representing them using n, X k lookup tables (each row gives the probabilities of the random
class assignment on the corresponding sample):

~

D, = {TPR,,,(%) ‘ Ya € R%xk) Y yein(Vadiy =1, Vi € [na]},

where
1

— 1
TPRa(’V)y = Z fa(xa,i)y : ('Ya)i,ya ﬁay = g Z fa(xa,i)y ¥

"Pay i€[ng] i€[nag)

(cf. Lineand Eqgs. (5) and (@). Note that ﬁa is a polygon, since it is specified by linear constraints.

To obtain the utility-maximizing fair TPR £,’s, we take the empirical maximizer subject to the a-TPR
constraint via solving a linear program (cf. Line[3|and Egs. (3) and ({@)):

LPl(a):  max _ Uty bm) st |fa =t e <o, Va,d' € [m],
t1€D1, tm€Dm

where U(ty, -+ ,bm) = Do UyPay(ta)y is the empirical utility.

Step 2 (Obtaining Fair Classifier of Desired Form). _ The next step is finding a classifier that achieves
t,’s on the empirical distribution, i.e., Lines and@ To implement Line |5 note that another way of
approaching this problem is to realize that among all eligible (8,, h,)-pairs, the h, associated with

the maximum [, value must satisfy ”_I/_“f’f{a(ha) S Gﬁa (otherwise, a contradiction can be reached
using the fact that D, C [0, 1]¥ is compact; also see the right figure of Fig. . Combined with the

strategy above of representing classifiers using lookup tables, we get the following linear program:
LP2(t,q) : maﬁxﬂ st. t=(1- B)'ﬁ(’y) +pBq and € Rgék, Z iy =1, Vi € [n].
’ y€Elk]

Finally, on Line[6] we find a tilting ), s.t. after coordinate-wise multiplied by the scores, the argmax
class assignment has nonzero probability according to the classifier 7, found in the preceding step:

LP3(y) : m)%nO ste Ay f(xi)y = Ay f2i)y Vi€ [n],y,y €[k], iy > 0.

The feasible set of this problem is nonempty by Proposition because we are treating f as if it
were the Bayes score function, and the empirical distribution [1~*** as the population.

All combined, our algorithm involves solving (2m + 1) linear programs, where is the dominating

one with O(nk) variables and constraints; solving which (to near-optimality) takes, e.g., O(poly(nk))
time using interior point methods [38]].
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4.2 Sample Complexity

Thanks to the low function complexity of the post-processing maps (Proposition [B.12)) used in our
algorithm to derive classifiers of the form in Eq. (I), it has the following sample complexity:

Theorem 4.2. Let h : X x A — Y be the (probabilistic) classifier derived from a score function
X x A— Ay using Algorithm[I|with the empirical distribution of samples in Assumption
as the argument. Then under Assumptions[2.1|and for any group-wise distribution calibrated
reference score function f : X X A — Ay with finer granularity than f (Definition , and
n > Q(maxg , In(mk/3)/pay),

7 1 klnmk/é k

T —um)| < U||1O<max<efly+\/T/+>)7
@Y Pay n n

ATPR(h)§a+O<InaX1<e/ay+ klnmk/d_i_k>>’
@Y Pay n n

where poy =P, (A =a,Y =y), vis from Deﬁnitio_nofthe utility, U denotes the utility of the
optimal o-fair classifier derived from the reference f, and eqy = E[|fo(X)y — fa(X)y| 1[A = a]]
measures the miscalibration of f w.rt. f on group a and class y.

The bound consists of a calibration error ¢, as discussed in the remarks of Theorem[3.5] an estimation
error from applying uniform convergence (the Natarajan dimension of the set of tiltings is O(k)), and
a k/n term that comes from the disagreement over class assignments on the samples between the
(deterministic) tilting found on Line[6and the (probabilistic) classifier on Line [5|due to tie-breaking.

S Experiments

We evaluate Algorithm [T| for reducing TPR disparity on benchmark datasets, and demonstrate its
effectiveness compared to existing post-processing as well as in-processing bias mitigation methods.

Datasets.  The first task is income prediction, for which, we use the ACSIncome dataset [20]—an
extension of the UCI Adult dataset [29]] with much more examples (1.6 million vs. 30,162), allowing
us to compare methods confidently. We consider a binary setting where the sensitive attribute is
gender and the target is whether the income is over $50k, as well as a multi-group multi-class setting
with five race categories and five income buckets. The second is text classification, of identifying
occupations (28 in total) from biographies in the BiasBios dataset [[16]; sensitive attribute is gender.

Baselines and Setup. The main baseline is FairProjection [2]—the only post-processing algo-
rithm applicable for multi-class TPR parity to our knowledgeE] In the binary setting, we also compare
to RejectOption [27]. To demonstrate the deficiencies of existing methods at reducing TPR dispar-
ity, we additionally include in-processing results using Reductions [1/] and Adversarial [46]

On each task, we first create a pre-training split from the dataset and train a linear logistic regression
scoring model (with isotonic calibration and five-fold cross-validation as implemented in scikit-
learn [42}43132]), then randomly split the remaining data for post-processing and testing with 10
different seeds and aggregate the results (the pre-trained model remains the same). For in-processing,
we use the same splits but merge the pre-training and post-processing data for training. On BiasBios,
linear logistic regression is performed on embeddings of biographies computed by a pre-trained BERT
model from the bert-base-uncased checkpoint [18]] (in other words, head-tuning). Additional
details, including hyperparameters, are included in Appendix [C.1]

Results.  In Fig. [3] we plot the tradeoff curves from varying the fairness tolerance (c for our
method). Our method is consistently the most effective at minimizing TPR disparity, particularly
under multi-class settings, where existing algorithms only manage to partially reduce Arpr (and

3We use the authors’ code, where TPR parity is equivalent to the meo constraint. The results from using the
KL divergence variant is included, which are better than the cross-entropy variant in our experiments.

4Although Reductions is extended to multi-class by Yang et al. [41]], an implementation was not provided.

The implementation (with minor modifications) in the AIF360 library is used for the latter methods [6].
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Figure 3: Tradeoff curves between accuracy and Arpr (Eq. ). Base model is logistic regression,
except for Adversarial, which uses a feedforward network. Error bars indicate the standard
deviation over 10 runs with different random splits. Running time is reported in appendix Table [I]

at a greater cost to accuracy when using FairProject and RejectOption). It also outperforms
the in-processing Reductions on binary ACSIncome, and Adversarial in terms of Arpg, which,
although enjoys higher accuracies because of the use of the more expressive feedforward networks
as the prediction model, fails to reduce TPR parity. Sharper drops in accuracies are observed when
applying our method with small « settings, e.g., < 0.02. We saw this happen when the randomized
component in Eq. (Ib) is activated (i.e., § > 0), meaning that Line[3|has found fair TPRs that lie in
the interior of the feasible region of the better-performing group in order to match the feasible TPR
on the worse-performing one(s). Hence the drop is expected because utility is being sacrificed to
achieve TPR parity.

Although our method greatly reduces TPR disparity, there remains a gap to reaching Atpr = 0,
especially on tasks with more classes (i.e., BiasBios, where a higher variance is also observed).
While this could be due to miscalibration, or potentially a violation of Assumption[2.4] the main
reason is suspected to be insufficient sample size. Recall from Theorem[4.2]that the sample complexity
for Arpg scales as O(\/k/npay) in the worse-case (a,y), which is itself at least O(/mk?/n).
Thus, learning generalizable classifiers that satisfy TPR parity under more groups and classes is much
harder in terms of data requirement (and by extension, computing resource).

Lastly, we emphasize the necessity of group-wise calibration for achieving low Arpg, as the
definition of the criterion involves conditioning on the true label (it is also reflected by the calibration
error term ¢,,, in Theorem[4.2). In an ablation study (appendix Fig.[), a larger (minimum achievable)
Arpg is observed when no efforts are made to calibrate the scoring model. It is therefore necessary
for model vendors to provide accurate uncertainty quantifications, and for practitioners building fair
classifiers to verify and improve calibration.

6 Conclusions and Limitations

We described a post-processing method for reducing TPR disparity for equal opportunity in multi-class
classification, and demonstrated its performance in comparison to existing algorithms on benchmarks
datasets, especially when the number of classes is large. We analyzed the sample complexity of our
method, and established its optimality under model calibration.

The effectiveness of our method at reducing TPR disparity is largely contributed to the tailored
analysis, although it limits our method to this fairness notion only. Some use cases may demand
equalized odds (Y L A | Y) beyond TPR parity (1[Y = Y] L A | Y), which is a more stringent
criterion: TPR parity only needs to match the main diagonal of the (conditional) confusion matrix
across groups, whereas equalized odds requires matching all k2 entries. The design of efficient
algorithms for achieving equalized odds remains an open problemE]

®Most algorithms, e.g., [2]], are only evaluated for TPR parity but not (multi-class) equalized odds.
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A Omitted Proofs for Section [3.1]

Proof of Proposition[3.1] For the only if direction, let i be a probabilistic classifier, then set g s.t.
Plg(s) =y) =P(h(X) =y | [*(X) =), Vse A,
We verify that

TPR(go f*)y =P(go f"(X)=y|Y =y)

— L[ Py =n ) =5y =)
Dy sEAL

1

Py Jsen,

=L [ B(s) =) PO =y | £1(X) = ) P(F*(X) = 9)
Dy SEAL

1

B ZTZ/ SEAL

_ L P(h(X) =y, [*(X) = 5,Y =)
py sEA

=Ph(X)=y|Y =y)

= TPR(h),.

Plg(s) =y, Y =y | [1(X) = s) P(f*(X) = s)

P(A(X) =y | [7(X) =) P(Y =y | f7(X) = s) P(f(X) = 5)

For the only if direction, let g be a probabilistic post-processing map, then set A s.t.
P(h(z) =y) =P(go f*(z) =y), VreX.

Since the two classifiers agree (probabilistically), TPR(k), = TPR(g o f*),. O

The proof of Proposition [3.3] makes use of the supporting hyperplane of the convex set D, which
could be proved from the separating hyperplane theorem [[10} Section 2.5.2]:

Theorem A.1 (Supporting Hyperplane). Let C' C RY be a nonempty convex set, and x € OC' a point
on its boundary, then Jv € R, v # 0, s.t. v x > v 2/ forallx € C.

Proof of Proposition[3.3] First of all, recall that D is a convex set because randomized classifiers are
allowed. Let f* denote the Bayes score function on y, and note that the ground-truth TPR can be
computed via

TPR(h), = P(h(X) =y | Y =)

=;yP<h<X>=y,Y=y>

L[ @), P = y) de¥ (@) ©)
Py Jzex

where p, = E[f*(z),]. Also, for all v € RF, v = 0, the classifier h}, maximizes the utility
>, Vypy TPR(RY), if and only if

hi(z) € argmaxv, P(Y =y | X =x), VzeX. (10)

Y

For the only if direction, let h be s.t. TPR(h) € 0D, and suppose to the contrary that Y\ € R¥,
A # 0, 3A\ C X with measure nonzero s.t. h(z) ¢ argmax, A, f*(z)y, Vo € Ay. This implies
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that for all v € Ay, by Egs. (9) and (T0),

> wypy TPR(A), — > vyp, TPR(h),

YEIK] y€[k]
=N vy BR5(X) =y | Y =) —P(h(X) =y | Y =)
y€(k]
= / D vy @)y (P(h(X) = y) — P(W(X) = y)) dp™ (2)
2€4u/p yelk)
>0

given that p € R’;O, this contradicts the fact that since TPR(h) € 9D, by Theorem Ju € AF,
v# 0,5 Y, v, TPR(h), > 3, v, TPR(K), for all 1.

For the if direction, let h be s.t. IX € R¥, X # 0 s.t. h(z) € argmax, A, f*(x),. Then we know
from Eq. (T0) that ‘

> Ay TPR(R)y > > Aypy TPR(I),, VI : X =Y,
yElk] yE[k]

which implies that TPR(h) € 0D. O

B Omitted Proofs for Sections 3.2l and 4|

In this section, we provide the proofs to Theorems[3.5]and[#.2] As mentioned in the remarks following
Definition[3.4] we relax the requirement for distribution calibration by replacing the miscalibration
measure in Eq. (7) with

€y = max[E[(Fa(X), ~ Fu(X)y) g o folX) = 3] 2[4 = ] (n

where

Ay = {s > argmax Ay Sy 1 A € Rk}
y/

is the set of tilings. The relaxed measure e;y is clearly upper bounded by Eq. .

When eﬁly =0, f is said to satisfy the notion of (group-wise) L-decision calibration proposed by
Zhao et al. [50, Definition 2 and Proposition 2], who also provided a polynomial time post-processing
algorithm for recalibration.

We restate and prove Theorems [3.3] and [A.2] with the relaxed miscalibration measure defined in
Eq. (TT):
Theorem B.1. Let h : X x A — Y be the (probabilistic) classifier derived from a score function
[+ X x A— Ay using Algorithm[I| Then under Assumptions 2.1|and 2.4} for any group-wise
distribution calibrated reference score function f : X x A — Ay with finer granularity than
f (Definition ,

/!

— Ea
[0 u(m)| < 6llv]]s max 2

Y Pay

4e!
Atpr(h) < a + 4max —,
@Y Pay

where poy =P, (A =a,Y =vy), vis from Definition ofthe utility, U denotes the utility of the
optimal a-fair classifier derived from the reference f, and e:w is defined in Eq. .
Theorem B.2. Let h : X x A — Y be the (probabilistic) classifier derived from a score function

[ X x A— Ay using Algorithm[I|with the empirical distribution of samples in Assumption
as the argument. Then under Assumptions[2.1|and for any group-wise distribution calibrated
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511
512

513
514
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518
519

520

reference score function f : X x A — Ay, with finer granularity than f (Definition , and
n > Q(max, , In(mk/d)/pay),

u 1 klnmk/§ k

|U—u(h)|§U||1O<max (e;y+\/T/+>>’
@Y Pay n n

ATPR(h)<a+O<maXI<e;y+ klnmk/é_,_k))j
@Y Pay n n

where poy =P, (A =a,Y =y), vis from Definition ofthe utility, U denotes the utility of the
optimal a-fair classifier derived from the reference f, and egy is defined in Eq. .

We first state and prove Lemmas [B.3] [B.-4]and [B.13|below that we will use when proving the theorems.

Lemma B.3. Let f : X — Ay, be a score function, f a distribution calibrated reference score
function with finer granularity, and

h(z) = { argmax,, Ay f(x), wp.1—p
Y w.p. BQy, Vy S [k}]
for some B € [0,1] and X\ € R¥ (as in Theorem[3.2). Then under Assumptions2.1jand2.4] vy € (K],
5, TBR(h), — p, TPR(h),| < ¢,
TPR 2€!
‘TPR(h>y - TPR(h)y‘ <=
by

where p, = P(Y Y), TPR and Dy are quantities induced by f as defined in Eq. (Et) and
€y = maxgen, [E[(f(X)y — f(X)y) Lgo f(X) = y]]|

Proof. Define 5 := 1 — ||3]|1, g(s) := argmax,, Ays,/, and let f*(z) := E[Y | X = z] denote the
Bayes score function. Note from Eq. (9) that

TPR(), = L [, ) = ) () = 8y + L0, 1l 0 1) =]

and p, = E[f*(x),] = E[f(x),] by calibration; on the other hand, by definition of TPR in Eq. (6),
TPR(), = = [ f(), Blh) =) ¥ (@) = 8, + ny[f()oy 1go f(X) =]

and p,, = E[f(x),].

Therefore,

By TPR(h), — p, TPR(h )‘ Bylpy — Byl + BIE[(f*(X)y — f(X)y) Lg o f(X) = y]ll; (12)

where, for the first term, using the fact that the constant function s — y € A (via setting, e.g.,
A=¢ey)
y 9

|Py *Iﬁy| = |]E[f(X)y - f(X)y”
< max|E[(f(X), = f(X),) g’ o f(X) = y]]|

/
< €y

(13)
and for the second term,
[E[(f*(X)y = f(X)y) Lg o f(X) = y]]]
< ‘E[(f*(X)y - f(X)u) 1[9 o f(X) = y]” + |E[(f(X)y - f(X)y) Il[g © f(X) = y]”
(A =y - (X)) 1| \/ f(X)=sandye arg max Ay sy

SEAL Y
— ¢ (14)
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by Deﬁnition because f is calibrated and has finer granularity than f. In the arguments above,
ties can be arbitrarily broken because by Assumption [2.4] the contribution from the set of tied
scores—which has measure zero—can be ignored. Then the first claim follows by plugging Egs. (T3)
and back into Eq. and using the fact that 3 + Zy, By = 1.

For the second claim, we have

TPR(h), — TPR(h),|

|1 1
= B2 B (), 1lg© F00) = ] - - ELF(X), Algo £(X) =]
Py Py
— g | (L0 L) gy 50y - |
_ py py —
< DB (00, = £00,) tlae ) =yl + 2|1 = 2| B(7(0), 2lg o £(0X) = 4]
y y
ﬁ P Bl
<pyey+py 1 By E[f(X),]
B, B,
py6 + y‘ — Dyl
28 ,
< Eéy (15)
by Eqgs. and . The claim then follows by noting that 3 < 1. O
LemmaB.4. Let f : X — Ay be a score function, 1, - ,x, ~ p~ i.i.d. samples, and

_ [argmax,, Ay f(x)y wp. 1-p
hle) = {y S w.p. Bgy, Yy € [K]

for some 3 € [0,1] and A € R* (as in Theorem . Then under Assumptionsand w.p. at
least 1 — 6, Vy € [k],

e P kh’lk (5
5, TPR(), 5, TPR(), | < 0( l )

— 1
‘TPR(h)y—TPR ‘<0< \JFInk/o nk/(;),
py n

where p, = E[f(z),], TPR is induced by f as defined in Egq. @), and TPR and Dy their finite

sample estimates as defined in Eq.

The proof to this lemma requires concentration inequality and uniform convergence results.

Theorem B.5 (Hoeffding’s Inequality). Let zy,--- ,z, € R be i.i.d. random variables s.t. a; < x; <
b; almost surely. Then w.p. at least 1 — 6, |2 3" (z; — Ea;)| < /> (bi — a;)2/2n? - In2/6.

Definition B.6 (Shattering). Let H be a class of binary functions from X to {0,1}. A set
{z1, - ,z,} C X is said to be pseudo-shattered by H if Vby,--- ,b, € {0,1} binary labels,
Jh € H s.t. h(x;) = b; forall i € [n).

Definition B.7 (VC Dimension). Let H be a class of binary functions from X to {0,1}. The VC
dimension of H, denoted by dyc(H), is the size of the largest subset of X shattered by H.

Definition B.8 (Pseudo-Shattering). Let F be a class of functions from X to R. Aset {z1, - , 2, } C
X is said to be pseudo-shattered by F if 3¢y, - - - , ¢, € R threshold values s.t. Vby,--- , b, € {0, 1}
binary labels, 3f € F s.t. 1[f(x;) > t;] = b; forall i € [n].

Definition B.9 (Pseudo-Dimension). Let F be a class of functions from & to R. The pseudo-
dimension of F, denoted by dp(F), is the size of the largest subset of X' pseudo-shattered by
F.

17



546
547
548
549

550

551
552
553

554
555
556
557

558

559
560

561
562
563

564
565
566
567

568

569
570

571

572
573
574

Theorem B.10 (Pseudo-Dimension Uniform Convergence). Let H be a class of functions from X to
R, £ : X x Y — R>q a nonnegative loss function upper bounded by M, p a distribution over X x Y,
of which (z1,y1), -+, (Tn,Yn) ~ p are i.i.d. samples. Then w.p. at least 1 — & over the random

draw of the samples, Yh € H,
<M [d+1In1/é
n

for some universal constant ¢, where d := dp ({(z,y) — £(h(x),y) : h € H}).

Ex,y)~p ((h(X),Y) - — Z L(h(z;),y3)

This can be proved via a reduction to the VC uniform convergence bound; see [36, Theorem 6.8] and
[31, Theorem 11.8]. We will use this theorem to establish the following VC bound for weighted 0-1
error:

Theorem B.11. Let H be a class of binary functions from X to {0,1}, p a distribution over
X x Y, of which (x1,y1),"* ,(Tn,yn) ~ p are Li.d. samples. Define nonnegative weighting
w(w,y) : X x Y — Rx, and let M := sup,, , w(z,y). Then w.p. at least 1 — 0 over the random
draw of the samples, Vh € H,

n

Exmp 00 V) TACK) £ V] = = S wes, 0) (1) #

i=1

SCM\/dVC(H)+1n1/6
n

for some universal constant c.

Proof. We are essentially considering a weighted variant of the 0-1 loss, for which Theorem [B.10]
can be applied. We only need to show that the weighting does not increase the complexity of .

Let d :== dvc(H), and {(x1,91), -, (Td+1,Yd+1)} C X x {0,1} s.t. the x;’s are distinct w.lL.o.g.
Suppose F = {(z,y) — w(z,y)1[h(z) # y]} pseudo-shatters this set, then ¢y, - , 411 S.t.
Vby, -+ ,bgr1 € {0,1} and for all 4,

if e F, ]l[f(xmi‘h) ]:b'

[h(xi) # yi] > ti/w(zi,y;) ifb; =1
[h(z;) # yi] < ti/w(x;,y;) ifb;=0
< 3h e H, 1[h(z;) # yi] = b;

< 3h € H, h(x;) = b; XOR y;,

<~ Jdh € H, {ﬁ

where the third line follows from realizing that ¢; /w(x;, y;) € (0, 1], otherwise the inequality will
always fail in one direction regardless of i (note that b; can be arbitrary). Since the x;’s are distinct,
the above implies that H shatters a set of size (d + 1) > dyc(#H) = d, which is a contradiction, so
dp(F) < d+ 1. O

Last but not least, we bound the VC dimension of tiltings in one-vs.-all mode by k.

Proposition B.12. Let k > 2, and fix y € [k]. Let d denote the VC dimension of the class of binary
functions from Ay, to {0,1} given by {s — 1[\,s, € max, Ay s,]: A € RF}, thend < O(kInk).

Proof. Note that any g € {s — 1[\,s, € max, \,s,/]: A € RF} can be written as

s 1> U[Aysy — Ayrsy > 0] > k|,
y/
which is implemented by a two-layer feed-forward linear threshold network with (3k + 1) weights

and thresholds in total and (2k + 1) computation units, so d < 2(3k + 1)log,(2(2k + 1)/1n2);
see[3, Chapter 6 and Theorem 6.1]. O
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575 Proof of Lemma[B-4, Define 5 :=1— |||, g(s) := argmax,, A s, . Recall from Egs. @ and
576 that

TPR(h), = pi F(@), P(h(z) = y) dpX (z) = B, + ﬁ E[f(X), 1[go f(X) = y]],
TPR( :—mezy 5) = 9) = By + - fol 1go f(zs) =y,
ze[n] Py

577 where

By =Bl @] By =+ 3 fa),

i€[n]
s78 Therefore,

5, TPR(h), — 9, TPR(h), ‘

= 8,13y, — By + BELF(X), g0 F(X) =4l = = 37 Flan)ylgo fa) =4l (16

i€[n]

s7o  where, for the first term, by Theorem[B.3] w.p. at least 1 — 4, Vy,

In2k/$
Dy — Dy| < 17
Py — Pyl < on a7)
ss0 and for the second term, by Theorem [B.11|and Proposition[B.12} w.p. at least 1 — §, Vg, y,
O(klnk)+Ink/é
BLX), Tl o 100 =3l — = 3wy 1lgo fla) =] < o CERDEIE g

1€ [n]

st since f(z;), € [0,1]. Then the first claim follows by plugging Egs. and (18] back into Eq. (T6).
582 Again, ties that arise when applying the tilting g can be arbitrarily broken because by Assumption|2.4}
583 the contribution from the set of tied scores—which has measure zero—can be ignored.

s84 For the second claim, we have w.p. at least 1 — 6, V,

TPR(h), — TPR(h),

= Bl B0, g0 F(X) = 9l = == 3 flai)y Llgo f(a) =]
Y Y ieln]
< pﬁ E[f(X), 1lgo F(X) =] - % S Jwiytlgo S =)
v i€[n]
+ Z f 'Tz ( 11) = y]
py ze[n]

\/ (klnk) +1nk;/<5

foz

py

G[n
B (klnk)+lnk/6 ~
=-cC = | by — Dyl
Py n p
- B \/O(k;lnk)+lnk/5+\/ln2k;/6
Dy n 2n
s85 by Egs. and . The claim then follows by noting that 5 < 1. O
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We combine Lemma[B.4]and the analysis of Lemma [B.3]to obtain the following lemma that will be
applied directly in the proof of Theorem [B.2}

Lemma B.13. Let f : X — Ay be a score function, f a distribution calibrated reference score
function with finer granularity, xy,- -+ , T, ~ p™ i.i.d. samples, and
W) = { argmax,, Ay f(x), wp. 1 -
y w.p. Bay, Vy € [K]

for some 3 € [0,1] and X\ € R* (as in Theorem . Then under Assumptionsand w.p. at
least 1 — 6, Vy € [k],

— kInk/s
pyTPR(h), = p, TPR(h),| < ¢, + o< o / )

and for all n > Q(max, In(k/d)/py),

. A | 1
’TPR(h)y - TPR(h)y‘ <0 (;v + /W)
Y Y

where p, = P(Y =y), TPR and Py are finite sample estimates of quantities induced by f as defined
in Eq. (§), and ¢, = masyen, [E[(f(X), — £(X),) g0 f(X) = ]|

Proof. Define 5 :=1— ||8||1, g(s) == argmax,, \,/s,/, and let f*(z) = E[Y | X = z] denote the
Bayes score function. Note that the ground-truth TPR can be computed as follows, where we also
define its finite sample estimate:

TPR(h), = f, + pﬁE[f*(Xu 1g o £(X) = o],
TPR(h), = B, + % S F* @iy g o flz:) =y,
v i€[n]

where p, = P(Y = y) = E[f*(x),] = E[f(),] by calibration, and p,, := ;- 37, (,,y [*(i)y; on
the other hand, recall from Eq. @ that

TPR(h), = —— 3 flw:)y Plhi) = y) = B, +

n

PS™ fay g o fes) = 9l
pyiehﬂ

where p,, = %Zie[n] f(xi)y-
Applying Lemma[B4]to f*, we get w.p. atleast 1 — &, Vy € [k],

SO< klnk/(S)’ (19)

py TPR(R), — p, TPR(h),

n
‘TPR(h)y - ﬁ'ﬁ(h)y‘ <0 <p1y k:lnnk/5>_ 0)

Now, for the first claimm

PYTPR(R), — By TPR(N), | = 8ylpy — pul + 8 37 (7 (ea)y = Flaidy) g o Fa) = vl
i€[n]

2

"The indicator in the summation should have been 1[g o f*(z;) = y], but the score function in that term is
decoupled in the analysis of Theorem@ hence interchangeable.
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s03  where, for the first term, by applying Theorem [B.3|twice and following the same analysis in Eq. (T3),
604 W.p. atleast 1 — 9, Vy,

i€[n]
< [BIF(X), - £(X),] +0< m 5)
se;+o< mf/‘s), @)

605 and for the second term, by Theoremm and Proposition|B.12} “ followed by the same analysis in
06 Eq. (I4), w.p. at least 1 — 9, Vg, y,

L ST (F @iy — Flaay) g o fz) = 1]
1€[n]
< BI(f*(X), ~ F(X)y) Ulg o F(X) = ]|+ O (\/ bk 5)
§E;+o< klnﬂ’“”). 23)

607 Again, we have relied on Assumption [2.4]to avoid tie-breaking issues. Then the first claim follows
e08 by plugging Eqs. (22) and (23) back into Eq. (ZI), combining with Eq. (T9), and using the fact that
608 B+, By =1

st0  For the second claim, by Eqs. (22)) and (23) and the same analysis in Eq. (I3), w.p. at least 1 — 4,

611 Vgq,y,
_— 1
‘TPR(h)y — TPR(h ) < 0( AL nk/6>
py py

s12  The claim then follows by noting that 3 < 1, combining with Eq. (20), and the fact that p, = ©(p,)
613 whenn > Q(max, In(k/d)/p,) by Theorem D

s14  Finally, we get back to the proofs of Theorems[B.T|and [B.2]

615 Proof of Theorem[B_1] We begin with the second claim, where by Lemma Ya,d,y,
|TPR,(h)y — TPRy (h),y]
< [TPRa(h)y — TPRa (h)y| + |TPRa(h), — TPRa(R)y| + |TPRas (), ~ TPRa(h),

26/ 26/ ’
<o+ oy Ty
Pay DPa’y

616 and the claim follows by taking the max over a, a’, y.
617 For the first claim, let b = arg MAXA L (b)) <a 2a.y VyPay TPRa ('), denote the classifier that

s18 achieves U, and recall that h := arg MaXA __ (h)<a Day prayﬁa(h’)y, where analogous to
st  Eq. (Z) we defined

Agpa(V) = max | TPR,(¥) ~ TPRa (V)|

oo

¥Note that the weight (f*(z;), — f(xi)y) € [~1, 1] can be made nonnegative by adding 1.
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Then by Lemma[B.3]
U-uh)= Y vypay(TPRa(R), — TPR,(h),)

a€lmlyelk]
< Z VyPay (T/F/Ra(ﬁ) - TPR y) + 2uy €,
aelmlyelk] ac m] velk]
— €,
< Y vyday(TPRa(R), — TPR( y) + 20, s
a€lml.yelk] m] velk]
o e'
< 3 by (TPRa(h) — TPR,( y) + 2ol max e (24)
a€[m],ye(k] “

by Hélder’s inequality, since ) |, poy < 1 forall .

Our next step is to use the fact that & is the maximizer of u subject to A== (h) < « to eliminate

Rl
the first summation, except that the constraint may not be satisfied by 4. So we introduce a third
classifier h’ s.t.

TPRA(R)y = DOji, —ar, val (TPRa(h)y>, Yy € [K],
where t, = rﬁ?’f{b(h)y with b satisfying T/‘P\’_f{b(h)y €{ty 1t € Nuepm D,}. the intersection of
the feasible regions restricted to coordinate y; or in other words, ¢, is the TPR of class y on the

worst-performing group b. Because |T/1;/Ra(h) - TPRb h)yl < o+ 2€,, /pay + 2¢€,,,/Poy (by a
similar argument to the one above) for all a, y, it follows by a case analysis that

—~ i 2¢! 2¢; €t
‘TPRa(h)y — TPR,(1),| € =% + =% < 4max 2Y Va e [m], y € [k].
DPay Poy a’y’ DPa’y’
Then,
> Uypay(TPRa(R), — TPRa(h), )
a€[m],y€lk]
= 3 v (fﬁf{a(ﬁ)y — TPRy(K'), + TPRy(h'), — ﬁﬁu(h)y)
a€[m],y€(k]
< 3 oypay (ﬁia(h)y - ﬁa(h’)y)
a€[m],y€(k]
€1
< Z 4vyPay max 2y
a€lm] ye(k] @V Paly
€a
< A4|lv|l; max £, (25)
@Y Pay
then one side of the claim follows from plugging this back into Eq. (24); the other side follows
symmetrically by using the fact that h is the maximizer of I subject to Arpr(h) < . O

Proof of Theorem|B.2] Let -y denote the probabilistic classifier found on Line[5|of Algorithm [I]that
operates on the samples. We begin with the second claim, where by Lemma|B.13| w.p. at least 1 — 4,
Va,d',y and n > Q(max, , In(mk/0)/pay),

|TPR4(h)y — TPRy (R),y]

< |TPRa(y)y — TPRu (1), | + [TPRa(h)y — TPRa(h)y | + | TPRar (), — TPRy(h), |
+‘T/ﬁ{a() — TPR,( ’Jr‘TPR h), — TPRa ( y‘

/ /
<atO %+%+<1+ 1) klnmk/5
Pay  Pa'y Pay  Pa'y
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where the last two terms are upper bounded via

TPR,(h), —T/ﬁ{a(v)y\ = |- g ‘ > fal@i)y(Lha(zi) = y] — P(ya(a:) =y))
al’yla i€[ng]
kp
a naﬁy\a’

since by construction, the interior of the set {s € Ay | x € X : fo(z) = s,hq(x) = y} is
equivalent to that of {s € Ay | Iz € X : fo(z) = 5,P(v.(x) = y) = 1}, so h, disagrees with
v only on the boundary, when A\, fo(z), = Ay fo(z), for some ¢ (i.e., there is a tie). Because
locations where ties can occur is specified by k£ hyperplanes, and the probability of having two
random samples f,(z;), fo(x;), i # j lying on the same hyperplane is zero by Assumption the
number of disagreements on the samples is no more than k. Finally, note that n,py|, = ©(npya)
when n > Q(maxg,, In(mk/6)/pay).

The first claim then follows by taking the max over a, a’, y.
For the first claim, applying Lemma [B.T3|followed by the same analysis above and in Eq. (25),

U—Uh)

= Y UyPay(TPR4(R), — TPR,(h),)

a€fm],ye[k]

— = 1 klnmk/6 k

<Y i (<> TPRu(2)y + 0 (JT/ )))

ae[m] y€lk] Pay

€ 1 1

< Y vy@LyO(H}az( . +<e{1y+ ,/W+i>>

a€lm],ye[k] @y’ Pa’y’  Pay

IN

1 1
o]l O(max <e;y L FmE/S k))
ay Pay \ n n

again, we have used the fact that p,, = ©(pg,) Wwhen n > Q(max, , In(mk/d)/pay) by Theo-
rem[B.3] The other side follows symmetrically. O

C Additional Experiment Details and Results

C.1 Experiment Setup

Dataset. On ACSIncome, the dataset is randomly split 0.63/0.07/0.3 for training and calibrating
the score function, post-processing, and testing, respectively. On BiasBios, it is split 0.35/0.35/0.3.
In-processing methods are run on the two training splits merged.

We use the version of BiasBios scrapped and prepared by Ravfogel et al. [34], which contains
393,423 examples in total (vs. the 397,340 gathered by De-Arteaga et al. [16]).

Scoring Model. For training the logistic regression scoring model on which the post-
processing methods are based, and to achieve (some level of) group-wise calibration, we use
CalibratedClassifierCV (with one-vs.-all isotonic calibration method) from the scikit-learn
package using logistic regression as the base model (with 10,000 iterations), which trains the logistic
regression model while performing isotonic calibration with five-fold cross validation [42} 43]. In
addition, to achieve group-wise calibration, we train one CalibratedClassifierCV on each group
separately.

In Fig. 4] we compare the post-processing results of our algorithm to those applied on a scoring
method without any attempts at calibration. The uncalibrated scoring model is trained directly with
LogisticRegression on all groups in aggregate.
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Figure 4: Tradeoff curves between accuracy and Arpg (Eq. (2)) by Algorithm[I]on a group-wise

calibrated logistic regression scoring model and an uncalibrated one. Error bars indicate the standard
deviation over 10 runs with different random splits.

Table 1: Running time of post-processing methods, averaged over three random splits.

ACSIncome BiasBios
Groups 2 5 2
Classes 2 5 28
Examples (post-processing split) 116,515 137,698
Ours 137 1829 4764
RejectOption 75 - -
FairProject-KL (GPU) 22 30 84

Hyperparameters. For all baseline methods, we use default settings that came with the code/pack-
age. In particular, for FairProject, increasing the number of iterations to over 1,000 did not
improve performance. The tradeoff curves in Fig. 3] are generated with the following fairness
tolerance/strictness settings.

For our method, « is set to:

* ACSIncome (binary). 0.14, 0.12, 0.1, 0.08, 0.05, 0.02, 0.01, 0.008, 0.005, 0.002, 0.001,
0.0001.

* ACSIncome (5-group, 5-class). 0.6, 0.55, 0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1, 0.08,
0.05, 0.02, 0.01, 0.008, 0.005, 0.002, 0.001, 0.0001.

e BiasBios. 0.5, 0.45,0.3,0.25,0.2,0.15, 0.1, 0.08, 0.05, 0.02, 0.01, 0.008, 0.005, 0.002.
For FairProject-KL, tolerance is set to:

* ACSIncome (binary). 0.2, 0.12, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01,
0.005, 0.0.

* ACSIncome (5-group, 5-class). 0.6, 0.55, 0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15, 0.1, 0.08,
0.05, 0.02, 0.01, 0.008, 0.005, 0.002, 0.001, 0.0001.

* BiasBios. 0.9,0.8,0.7,0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.0.

For RejectOption on binary ACSIncome, metric_ub and metric_1b are set to plus/minus 200,
100, 50, 40, 35, 30, 20, 27, 15, 10, 5, 1.

For Reductions on binary ACSIncome, tolerance is set to 1.0, 0.14, 0.12, 0.1, 0.08, 0.05, 0.02, 0.01,
0.001, 0.0001. We use LogisticRegression as the base model.

For Adversarial, the strength of the adversarial loss is set to 0.0001, 0.001, 0.01, 0.1, 0.2, 0.5, 1.
The base model is a one-hidden-layer feedforward ReLU network.
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Algorithm [I Implementation.  In our code, the linear programs of Algorithm|I]introduced when
it is instantiated to finite sample estimation in Section [d]are implemented through the cvxpy [19]
interface, and for solving which we use the COIN-OR Cbc solver based on branch and cutEr

C.2 Additional Results

Running Time.  We report the running time of the post-processing algorithms considered in
Section[5]in Table[T] The experiments are run on an Intel Xeon Silver 4314 for CPU implementations,
and an NVIDIA RTX A6000 for GPU implementations (namely, FairProject). Note that our
method runs on a single core, so multiple experiments with different levels of fairness constraint o can
be run in parallel. The times are recorded under the strictest tolerance setting (see Hyperparameters
in the previous section).

Calibration. In Fig. f] we compare the results of our post-processing Algorithm [T]on a score
function trained with group-wise calibration in mind to those of an uncalibrated one. It is observed
that under smaller settings of o, TPR disparity increases instead of seeing further reductions. This is
because when the scores are uncalibrated, they do not reflect the true class probabilities, and on the
other hand, smaller « settings means the algorithm will have less tolerance to errors of the scores;
these two reasons combined cause the rebound of Arpgr observed with the uncalibrated model.

https://github.com/coin-or/Cbc,
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