
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A EVALUATION METRICS

Perception. The evaluation for detection and tracking follows standard evaluation protocols Caesar
et al. (2020). For detection, we use mean Average Precision(mAP), mean Average Error of Transla-
tion(mATE), Scale(mASE), Orientation(mAOE), Velocity(mAVE), Attribute(mAAE) and nuScenes
Detection Score(NDS) to evaluate the model performance. For online mapping, we calculate the
Average Precision(AP) of three map classes: lane divider, pedestrian crossing and road boundary,
then average across all classes to get mean Average Precision(mAP).

Planning. We adopt commonly used L2 error and collision rate to evaluate the planning perfor-
mance. The evaluation of L2 error is aligned with VAD Jiang et al. (2023). For collision rate, there
are two drawbacks in previous Hu et al. (2023); Jiang et al. (2023) implementation, resulting in
inaccurate evaluation in planning performance. On one hand, previous benchmark convert obstacle
bounding boxes into occupancy map with a grid size of 0.5m, resulting in false collisions in certain
cases, e.g. ego vehicle approaches obstacles that smaller than a single occupancy map pixel Zhai
et al. (2023). (2) The heading of ego vehicle is not considered and assumed to remain unchanged Li
et al. (2024). To accurately evaluate the planning performance, we account for the changes in ego
heading by estimating the yaw angle through trajectory points, and assess the presence of a collision
by examining the overlap between the bounding boxes of ego vehicle and obstacles. We reproduce
the planning results on our benchmark with official checkpoints Hu et al. (2023); Jiang et al. (2023)
for a fair comparison.

B MORE ABLATION STUDY

Necessity and Order of Object Selection. Tab. 1 studies the necessity of agent and map selection
during the ego-centric hierarchical interaction. We can observe that agent selection contributes more
than the map selection, especially in the driving safety. And both of agent and map interactions are
conducted in a cascaded order is inferior than the parallel manner, where the updated ego query from
parallel outputs are concatenated for joint motion prediction.

Table 1: Effect of agent and map selection as well as interaction order in the hierarchical interaction
module.

Agent
Selection

Map
Selection Cascade Parallel Planning L2 (m) ↓ Planning Coll. (%) ↓

1s 2s 3s Avg. 1s 2s 3s Avg.

✓ ✗ - - 0.16 0.34 0.64 0.38 0.03 0.05 0.22 0.10
✗ ✓ - - 0.17 0.35 0.63 0.38 0.02 0.06 0.28 0.12
✓ ✓ ✓ - 0.16 0.34 0.62 0.37 0.05 0.07 0.30 0.14
✓ ✓ - ✓ 0.16 0.33 0.59 0.35 0.00 0.04 0.18 0.07

Effect of Interactive Score Fusion. During the ego-centric query selection, both geometric and
classification scores are considered to ensure that the selected closest in-path queries are true positive
agents or maps, which are adopted for motion planner. Tab. 2 shows the effect of three types of scores
used for query ranking, namely attention, geometry and confidence scores. As described above,
interactive score Sinter obtained by multiplying these three scores can achieve the best selection
quality and planning performance. Sinter without confidence score fails to distinguish between
background and foreground queries, resulting in inferior performance.

Table 2: Effect of interactive score fusion process in the geometric attended selection step.

Attention
Score

Geometric
Score

Classification
Score

Planning L2 (m) ↓ Planning Coll. (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

✓ ✗ ✗ 0.18 0.36 0.66 0.39 0.09 0.11 0.28 0.16
✓ ✓ ✗ 0.17 0.35 0.65 0.38 0.01 0.07 0.24 0.11
✓ ✓ ✓ 0.16 0.33 0.59 0.35 0.00 0.04 0.18 0.07

Effect of Iterative Refinement stages. We continue to study the number of refinement stages in
Tab. 3. We can observe that our DiFSD can obtain superior planning performance with one addi-
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tional refinement stage (36.3% collision rate reduction), which becomes saturated when introducing
more stages. Hence, two-stage interacted motion planner is enough for achieving convincing results.

Table 3: Ablation for number of iterative refinement stages.

Number of
stages

Planning L2 (m) ↓ Planning Coll. (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

1 0.16 0.33 0.61 0.37 0.01 0.08 0.23 0.11
2 0.16 0.33 0.59 0.35 0.00 0.04 0.18 0.07
3 0.16 0.33 0.60 0.36 0.01 0.40 0.22 0.09
4 0.16 0.33 0.61 0.36 0.00 0.04 0.20 0.08

Effect of Uncertainty Denoising. We also validate the effectiveness of uncertainty denoising strat-
egy including position-level motion diffusion and trajectory-level planning denoising. As shown in
Tab. 4, motion diffusion can improve the prediction stability with uncertain agent positions, while
the planning denoising can also strengthen the trajectory regression precision of ego-vehicle.

Table 4: Ablation for uncertainty denoising procedure.

Position
Diffusion

Trajectory
Denoising

Planning L2 (m) ↓ Planning Coll. (%) ↓
1s 2s 3s Avg. 1s 2s 3s Avg.

✗ ✗ 0.16 0.34 0.64 0.38 0.07 0.07 0.17 0.10
✓ ✗ 0.16 0.34 0.63 0.37 0.02 0.04 0.15 0.07
✓ ✓ 0.16 0.33 0.59 0.35 0.00 0.04 0.18 0.07

C ANALYSIS & DISCUSSION

The GroundTruth future state distribution of ego-vehicle on nuScenes validation set is illustrated in
Fig. 1, which is calculated with fixed time interval (1s) between consecutive predicted waypoints.
And we also compare the output ego-state distribution of different popular end-to-end methods based
on planned trajectories respectively, as show in Fig. 2. We can observe that without ego-centric
design, the optimized end-to-end model is unable to handle various emergencies appearing in the
driving scenarios, where the absolute values of ∆v and ∆a are larger than normal situations. Under
this circumstance, the output planned trajectories cannot conform to the expert routes as expected.
However, our DiFSD performs consistently better in planning the future ego states with variable
speed and acceleration, owing to the ego-centric hierarchical interaction and selection mechanism,
thus the iterative motion planner can focus on the interactive agents rather than irrelevant objects.

D VISUALIZATION

As show in Fig. 3, 4 and 5, we provide additional visualization results to illustrate the generalizability
of DiFSD on various driving scenarios under different commands.
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Figure 1: Distribution of GroundTruth future ego states (∆v vs. ∆a) with different driving com-
mands on the nuScenes val set.

(4) DiFSD

(2) VAD(1) UniAD

(3) BEVPlanner

Figure 2: Comparison of predicted future ego states of different end-to-end methods on the valida-
tion set of nuScenes.
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Motion

Lane
Divider

BEV

Go Straight

BEV

BEV

Go Straight

Go Straight

Plan

Figure 3: Qualitative results of DiFSD under “Go Straight” driving command in interactive scenes.
In the first row, the pedestrian and the construction vehicle are selected as the closest in-path agents
for motion prediction and interactive planning, thus DiFSD adjusts the planned trajectory from afar
to avoid a collision. In the second row, DiFSD notices the pedestrian in the distance and plans
the future trajectory taking the pedestrian intention into consideration. In the third row, DiFSD
completes interactive decision-making in the “Cut-in” scenario, and outputs the planned trajectory
constrained by the lane divider.
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Figure 4: Qualitative results of DiFSD under “Turn Left” driving command in diverse scenarios. In
the first scenario, DiFSD makes an “Overtaking” decision from the ride side of the front vehicle,
considering the motions of both target vehicle and neighboring pedestrian to ensure driving safety.
In the latter two intersection scenarios, DiFSD detects the pedestrians waiting at the crossing and
the opposite bus passing the intersection, then decelerates to make a turning decision.

5



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Plan

Plan
Plan

Motion

Pedestrian 
Crossing

BEV

Turn Right

BEV

BEV

Turn Right

Turn Right

Figure 5: Qualitative results of DiFSD under “Turn Right” driving command at both interactive
and non-interactive intersections. Joint motion prediction of agents and ego-vehicle is essential for
DiFSD especially in the turning scenarios at interactions. The first two rows illustrate the interactive
scenarios either inside and outside the intersection. And the last row presents a non-interactive inter-
section where DiFSD plans the future trajectory merely based on the detected pedestrian crossing.
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