
A Experiment Settings

The hyperparameters for the standard training and LTH experiments are shown in Table 4. We follow
the official implementation4 and the hyperparameters of LTH [13, 15]. Rewinding is used by default
for IMP.

Table 4: Hyperparameters for network training and IMP, following the settings used in [13, 15]. We
conduct all CIFAR-10 experiments for three independent runs with different seeds and one run for
ImageNet experiments.

Network Dataset Epochs Batch Rate Schedule Warmup Rewinding

ResNet CIFAR-10 160 128 SGD, 0.1 x0.1 at 80, 160 epoch - 1,000 steps
ImageNet 90 1,024 SGD, 0.4 x0.1 at 30, 60, 80 epoch 5 epochs 5 epochs

VGG CIFAR-10 160 128 SGD, 0.1 x0.1 at 80, 160 epoch - 200 steps

B Training Time Comparison with RigL

we report a set of training time numbers of E-LTH experiments in Section 4.5 and compare them with
RigL. To train a ResNet-18 on ImageNet following the standard 90-epoch training schedule takes
9.0 hours on 8 Nvidia-V100 GPUs, and 10.0 hours and 10.8 hours for ResNet-26 and ResNet-34
respectively. In Section 4.5, to train sparse models of ResNet-18, -26 and -34 at 73.79% sparsity
ratio, E-LTH first runs 7 iterations of IMP on ResNet-26, and then trains the transformed LTs of
ResNet-18 and ResNet-34 once, inducing a total (7 * 10.0 + 9.0 + 10.8) = 89.8 hours of training. In
contrast, RigL independently trains 3 networks with 5x training steps (default setting in the original
RigL paper), inducing a total (9.0 + 10.0 + 10.8) * 5 = 149 hours of training.

C E-LTH on Fully-Connected Layers

While the above results show the efficacy of E-LTH on convolutional neural networks, the feasibility
of applying E-LTH to fully connected (FC) layers remains elusive because replicating FC layers
could possibly create dead neurons. Here, we run two sets of experiments to verify so.

In the first setting, we vary the number of FC layers on top of the convolutional layers in VGG-13.
We transfer between VGG-13 with 2, 3 (the default option for VGG networks) and 5 FC layers,
denoted by VGG-13-2/3/5. In the second setting, we transfer between MLP (multilayer perceptron)
models trained on MNIST, characterized by layer width configurations – MLP-n represents a MLP
with layer widths {784, 300×n, 100, 10}, where 784 and 10 correspond to the input and output layer,
respectively. All experiments are run with 89.26% sparsity ratio. The results of these two settings
are shown in Table 5, where E-LTH yields less than 0.21% accuracy drop in all cases, showing that
E-LTH also succeeds on FC layers.

D Transfer Across Both Architectures and Datasets

Previous to this work, the transferability of lottery tickets was studied in [33, 3]. Here, we also evaluate
E-LTH when there are dataset shifts to tentatively investigate the interaction between architecture and
dataset transfer. We follow the settings in [33] about dataset transfer. When the source and target
model are different, ETTs (from ResNet-20 to ResNet-32) is applied. When only the source and
target datasets are different, we directly transfer the winning tickets found by IMP. The baselines
accuracies are from the winning tickets directly found on the target model and dataset using IMP.
Results are shown in Table 6, where we can see that either transferring across dataset or architecture
only induces performance drop, especially when transferring from simple SVHN to more difficult
CIFAR-10. But the drops do not stack when we transfer both simultaneously. For example, compared
with the original IMP, transferring ResNet-20 ticket on SVHN to ResNet-32 on SVHN yields 0.32%
lower accuracy; transferring ResNet-20 ticket from SVHN to CIFAR-10 yields 3.86% accuracy drop.

4https://github.com/facebookresearch/open_lth

14

https://github.com/facebookresearch/open_lth


Table 5: Results of apply E-LTH to FC layers in VGG networks trained on CIFAR-10 and MLP
models trained on MNIST. The sparsity ratio is 89.26% for all experiments.

Source Target

VGG-13-2 VGG-13-3 VGG-13-5

VGG-13-2 93.50% 93.61% 93.38%
VGG-13-3 93.50% 93.62% 93.59%
VGG-13-5 93.44% 93.59% 93.38%

MLP-2 MLP-3 MLP-4

MLP-2 98.06% 97.95% 97.99%
MLP-3 97.91% 97.83% 97.83%
MLP-4 97.88% 97.91% 98.03%

Table 6: Results of dataset transferring between SVHN and CIFAR-10 datasets. When the source and
target model are different, ETTs (from ResNet-20 to ResNet-32) is applied. When only the source
and target datasets are different, we directly transfer the winning tickets found by IMP.

Source Target Accuracy Baseline
(IMP)Model Dataset

RN-20
SVHN

SVHN RN-20 95.95% 95.95%
RN-32 96.00% 96.32%

CIFAR10 RN-20 87.21% 91.07%
RN-32 88.67% 92.22%

RN-20
CIFAR10

SVHN RN-20 95.44% 95.95%
RN-32 95.79% 96.32%

CIFAR10 RN-20 91.07% 91.07%
RN-32 91.38% 92.22%

However, transferring from SVHN to CIFAR-10 AND from ResNet-20 to ResNet-32 simultaneously
yields only 3.55% drop.

Table 7: Results of transferring E-LTH
from ImageNet to CIFAR-10.

Model Top-1 Acc

Dense Res-18 95.21%
IMP 95.42%
ETTs← 18 95.40%
ETTs← 26 95.16%

We also successfully transfer winning tickets found on
ImageNet to CIFAR-10. We use the winning tickets of
ResNet-18 and ResNet-34 found in the ImageNet exper-
iments in Section 4.3 with sparsity ratio 73.79%. When
transferring to CIFAR-10, we upsample the CIFAR-10
images to the size of ImageNet images so the samples are
compatible with models trained on ImageNet. From the
results presented in Table 7, we can see that directly trans-
ferring the winning ticket of ResNet-18 reduces almost no
accuracy drop. In contrast, transferring the elastic ticket
transformed from ResNet-18 to ResNet-26 has slightly
worse accuracy but still comparable to the dense model.

E Discussions

Despite the existing preliminary findings, there is undoubtedly a huge room for E-LTH to improve.
As its foremost limitation at present, the current E-LTH only supports a ticket to scale along the depth
dimension. We also make preliminary attempts to extend ETTs to width transformation, but find
stretching or squeezing network widths to be much more challenging than depth transformations (see
Appendix). We conjecture that width-oriented ETTs will need be inspired and derived from a very
different set of tools, than the current depth-oriented tools inspired by Section 3.3. We conjecture
some promising new tools can be drawn from the study of ultra-wide deep networks [25].

15



Even further, what is the prospect for E-LTH to go beyond deepening or widening a source ticket (or
vice versa)? Can more sophisticated network topology transforms be considered? Answering this
question requires a deep reflection on what makes two architectures “similar", i.e., belong to some
same design family with transferable patterns. A recent work [45] shows that many neural network
types can be represented by relational graphs with ease, and a graph generator can yield many diverse
architectures sharing certain graph measure property (Erdos-Renyi, small-world, etc.). As future
work, we plan to leverage their graph generator to systematically explore a design space of neural
networks, and see whether there exists elastic winning tickets among many or all of them. We will
also continue exploring the theoretical underpinnings of E-LTH.

Channel pruning or structured sparsity? Most state-of-the-art LTH and pruning-at-initialization
(SNIP, GRASP, SynFlow etc.) algorithms use unstructured sparsity and IMP [13]. [44] tried to identify
winning tickets with structured sparsity by channel pruning but its focus is on energy-efficient training
and unfortunately sacrifices a lot more accuracy than typical LTH definitions. Therefore, to our best
knowledge, finding a high-quality lottery ticket with structured sparsity remains to be an open and
unsolved question, and is beyond the subject of this paper. Our work is aimed at improving LTH
in terms of transferability instead of developing a general pruning method, and hence we choose
to follow the well-accepted standard of this LTH field, by using unstructured sparsity and IMP.
Besides, while structured sparsity is more friendly to GPU acceleration, the recent development in
hardware accelerators shows the promise to turn the unstructured sparsity into practical speedups.
For example, in the range of 70%-90% unstructured sparsity, XNNPACK [9] has already shown
significant speedups over dense baselines on real smartphone processors. Those recent advances are
likely to mitigate the gap between the current LTH practice and the hardware practice.

16


	Introduction
	Our Contributions

	Related Work
	Lottery Ticket Hypothesis Basics
	Pruning in the Early Training, and Dynamic Sparse Training
	Network Growing

	Elastic Lottery Ticket Hypothesis
	Stretching into Deeper Tickets
	Squeezing into Shallower Tickets
	Rationale and Preliminary Hypotheses

	Numerical Evaluations
	A Thorough Ablation Study on ResNet-32 and Resnet-56
	More Experiments on CIFAR-10
	Experiments on ImageNet
	Linear Mode Connectivity of E-LTH
	Comparison to State-of-the-Art Dynamic Sparse Training Methods

	Conclusions and Discussions of Broader Impact
	Experiment Settings
	Training Time Comparison with RigL
	E-LTH on Fully-Connected Layers
	Transfer Across Both Architectures and Datasets
	Discussions

