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ABSTRACT

The Neural Tangent Kernel (NTK), defined as the outer product of the neural
network (NN) Jacobians, Θθ(x1, x2) =

[
∂f(θ, x1)

/
∂θ
] [
∂f(θ, x2)

/
∂θ
]T

, has
emerged as a central object of study in deep learning. In the infinite width limit,
the NTK can sometimes be computed analytically and is useful for understanding
training and generalization of NN architectures. At finite widths, the NTK is also
used to better initialize NNs, compare the conditioning across models, perform
architecture search, and do meta-learning. Unfortunately, the finite width NTK is
notoriously expensive to compute, which severely limits its practical utility.
We perform the first in-depth analysis of the compute and memory requirements
for NTK computation in finite width networks. Leveraging the structure of neu-
ral networks, we further propose two novel algorithms that change the exponent
of the compute and memory requirements of the finite width NTK, dramatically
improving efficiency.
We open-source [github.com/iclr2022anon/fast finite width ntk] our two algo-
rithms as general-purpose JAX function transformations that apply to any differ-
entiable computation (convolutions, attention, recurrence, etc.) and introduce no
new hyper-parameters.

1 INTRODUCTION

The past few years have seen significant progress towards a theoretical foundation for deep learning.
Much of this work has focused on understanding the properties of random functions in high dimen-
sions. One significant line of work (Neal, 1994; Lee et al., 2018; Matthews et al., 2018; Novak et al.,
2019; Garriga-Alonso et al., 2019; Hron et al., 2020; Yang, 2019) established that in the limit of infi-
nite width, randomly initialized Neural Networks (NNs) are Gaussian Processes (called the NNGP).
Building on this development, Jacot et al. (2018) showed that in function space the dynamics under
gradient descent could be computed analytically using the so-called Neural Tangent Kernel (NTK)
and Lee et al. (2019) showed that wide neural networks reduce to their linearization in weight space
throughout training. A related set of results (Belkin et al., 2019; Spigler et al., 2019) showed that
the ubiquitous bias-variance decomposition breaks down as high-dimensional models enter the so-
called interpolating regime. Together these results describe learning in the infinite width limit and
help explain the impressive generalization capabilities of NNs.

Insights from the wide network limit have had significant practical impact. The conditioning of the
NTK has been shown to significantly impact trainability and generalization in NNs (Schoenholz
et al., 2017; Xiao et al., 2018; 2020). This notion inspired initialization schemes like Fixup (Zhang
et al., 2019), MetaInit (Dauphin & Schoenholz, 2019), and Normalizer Free networks (Brock et al.,
2021a;b) and has enabled efficient neural architecture search (Park et al., 2020; Chen et al., 2021b).
The NTK has additionally given insight into a wide range of phenomena such as: behavior of Gen-
erative Adversarial Networks (Franceschi et al., 2021), neural scaling laws (Bahri et al., 2021), and
neural irradiance fields (Tancik et al., 2020). Kernel regression using the NTK has further enabled
strong performance on small datasets (Arora et al., 2020), and applications such as dataset distilla-
tion (Nguyen et al., 2020; 2021) and uncertainty prediction (He et al., 2020; Adlam et al., 2020).

Despite the significant promise of theory based on the NTK, computing the NTK in practice is chal-
lenging. In the infinite width limit, the NTK can sometimes be computed analytically. However, it
remains intractable for many architectures, and finite width corrections can be important to describe
actual NNs used in practice. The NTK matrix can be computed for finite width networks as the outer
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product of Jacobians using forward or reverse mode automatic differentiation (AD),

Θθ(x1, x2)︸ ︷︷ ︸
O×O

:=
[
∂f(θ, x1)

/
∂θ
]︸ ︷︷ ︸

O×P

[
∂f(θ, x2)

/
∂θ
]T︸ ︷︷ ︸

P×O

, (1)

where f is the forward pass NN function producing outputs in RO, θ ∈ RP are all trainable parame-
ters, and x1 and x2 are two inputs to the network. If inputs are batches of sizes N1 and N2, the NTK
is an N1O× N2O matrix.

Unfortunately, evaluating Eq. (1) is often infeasible due to time and memory requirements.

In this paper, we perform the first in-depth analysis of the compute and memory requirements for
the NTK as in Eq. (1). Noting that forward and reverse mode AD are two extremes of a wide
range of AD strategies (Naumann, 2004; 2008), we explore other methods for computing the NTK
leveraging the structure of NNs used in practice. We propose two novel methods for computing
the NTK that exploit different orderings of the computation. We describe the compute and memory
requirements of our techniques in fully-connected (FCN) and convolutional (CNN) settings, and
show that one is asymptotically more efficient in both settings. We compute the NTK over a wide
range of NN architectures and demonstrate that these improvements are robust in practice. We
open-source implementations of both methods as JAX function transformations.

2 RELATED WORK

The finite width NTK (denoted as simply NTK throughout this work) has been used extensively
in many recent works, but to our knowledge implementation details and compute costs were rarely
made public. Below we draw comparison to some of these works, but we stress that it only serves as
a sanity check to make sure our contribution is valuable relative to the scale of problems that have
been attempted (none of these works had efficient NTK computation as their central goal).

In order to compare performance of models based on the NTK and the infinite width NTK, Arora
et al. (2019a, Table 2) compute the NTK of up to 20-layer, 128-channel CNN in a binary CIFAR-2
classification setting. In an equivalent setting with the same hardware (NVIDIA V100), we are able
to compute the NTK of a 2048-channel CNN, i.e. a network with at least 256 times more parameters.

To demonstrate the stability of the NTK during training for wide networks, Lee et al. (2019, Figure
S6) compute the NTK of up to 3-layer 212-wide or 1-layer 214-wide FCNs. In the same setting with
the same hardware (NVIDIA V100), we can reach widths of at least 214 and 218 respectively, i.e.
handle networks with at least 16 times more parameters.

To investigate convergence of a WideResNet WRN-28-k (Zagoruyko & Komodakis, 2016) to its
infinite width limit, Novak et al. (2020, Figure 2) evaluate the NTK of this model with widening
factor k up to 32. In matching setting and hardware, we are able to reach the widening factor of at
least 64, i.e. work with models at least 4 times larger.

To meta-learn NN parameters for transfer learning in a MAML-like (Finn et al., 2017) setting, Zhou
et al. (2021, Table 7) replace the inner training loop with NTK-based inference. They use up to
5-layer, 200-channel CNNs on MiniImageNet (Oreshkin et al., 2018) with scalar outputs and batch
size 25. In same setting we achieve at least 512 channels, i.e. support models at least 6 times larger.

Park et al. (2020, §4.1) use the NTK to predict the generalization performance of architectures in
the context of Neural Architecture Search (Zoph & Le, 2017, NAS); however, the authors comment
on its high computational burden and ultimately use a different proxy. In another NAS setting, Chen
et al. (2021a, §3.1.1) use the condition number of NTK to predict a model’s trainability. Remark-
ing its prohibitive cost, Chen et al. (2021b, Table 1) also use the NTK to evaluate the trainability
of several ImageNet (Deng et al., 2009) models such as ResNet 50/152 (He et al., 2016), Vision
Transformer (Dosovitskiy et al., 2021) and MLP-Mixer (Tolstikhin et al., 2021). However, in all of
the above cases the authors only evaluate a pseudo-NTK, i.e. an NTK of a scalar-valued function,1
which impacts the quality of the respective trainability/generalization proxy.

1Precisely, computing the Jacobian only for a single logit or the sum of all 1000 class logits. The result is
not the full NTK, but rather a single diagonal block or the sum of its 1000 diagonal blocks (finite width NTK is
a dense matrix, not block-diagonal).
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Method Time Memory Use when
Jacobian contraction N2LO2W2 NOW2 + N2O2 + NLW + LW2 Don’t
NTK-vector products N2 O2W + N2LOW2 NOW2 + N2O2 + NLW + LW2 O > W or N = 1
Structured derivatives N2LO2W + N LOW2 NOW + N2O2 + NLW + LW2 O < W or L = 1

Table 1: Asymptotic time and memory cost of computing the NTK for an FCN. Costs are for a
pair of batches of inputs of size N each, and for L-deep, W -wide FCN with O outputs. Resulting
NTK has shape NO × NO. NTK-vector products allow a reduction of the time complexity, while
Structured derivatives reduce both time and memory complexity. Note: presented are asymptotic
cost estimates; in practice, all methods incur large constant multipliers (e.g. at least 3x for time; see
§3.1). However, this generally does not impact the relative performance of different methods. See
§3.6 for discussion, Table 7 for CNN, and Table 2 for more generic cost analysis.

Method Time Memory Use when
Jacobian contraction N O [FP] + N2O2P N2O2 + NO

[
Yk + Pl

]
+ NY + P P� Y, small O, exotic primitives

NTK-vector products N2O [FP] N2O2 + NO
[
Yk + Pl

]
+ NY + P FP < OP, large O, small N

Structured derivatives N O [FP] + N O G + N [J−OP] N2O2 + NOYk + NJkl + NY + P FP > OP, large O, large N

Table 2: Asymptotic time and memory cost estimates of computing the NTK for a generic
function. P stands for the number of all parameters in the network, Y stands for size of all pre-
activations in the network, FP stands for forward pass, and G and J depend on the structure of
FP (§B). For example, FCNs usually have a cheap FP ≤ OP, as it consists of a single matrix
multiply with the parameter matrix, and therefore NTK-vector products are recommended. CNNs,
notably when the number of output pixels D is large, have a costly FP ≥ OP, since it amounts to D
matrix multiplies with the parameters, and therefore Structured derivatives are preferred. For precise
analysis, see Table 1 for FCN and Table 7 for CNN.

In contrast, in this work we can compute the full 1000 × 1000 NTK on the same models (1000
classes), i.e. perform a task 1000 times more costly.

Finally, we remark that in all of the above settings, scaling up by increasing width or by working
with the true NTK (vs the pseudo-NTK) should lead to improved downstream task performance
due to better infinite width/linearization approximation or higher-quality trainability/generalization
proxy respectively, which makes our work especially relevant to modern research.

3 EFFICIENT FINITE WIDTH NTKS IN A SIMPLIFIED SETTING

To gain intuition for the problem, we start by analyzing and improving the cost of computing the
NTK for a simple FCN. See §F for an equivalent analysis of CNNs. We summarize the resulting
complexities for FCN in Table 1, CNN in Table 7, and a general takeaway in Table 2.

Setting. Consider an L-layer FCN f (θ, x) = θL φ
(
θL−1 . . . θ1 φ

(
θ0x
)
. . .
)
∈ RO, where O is the

number of logits. We denote individual weight matrices as θl with shapes W ×W (except for top-
layer θL of shape O×W), where W is the width of the network, and write the set of all parameters
as θ = vec

[
θ0, . . . , θL] ∈ RLW2+OW. We further define xl := φ

(
yl−1

)
as post-activations (with

x0 := x), and yl := θlxl as pre-activations with yL = f (θ, x). See Fig. 5 for a visual schematic
of these quantities. For simplicity, we assume that inputs x also have width W, and O = O (LW),
i.e. the number of logits is dominated by the product of width and depth. In §L we repeat the same
derivations without the latter assumption, and arrive at qualitatively identical conclusions.

The NTK of f evaluated at two inputs x1 and x2 is an O×O matrix defined as

Θθ :=
∂f(θ, x1)

∂θ

∂f(θ, x2)

∂θ

T

=

L∑
l=0

∂f (θ, x1)

∂θl
∂f (θ, x2)

∂θl

T

=:

L∑
l=0

Θl
θ ∈ RO×O, (2)

where we have defined Θl
θ to be the summands. We omit dependence on x1, x2, and f for brevity.

In §3.1 and §3.2 we describe the cost of several fundamental AD operations that we will use as
building blocks throughout the text. We borrow the nomenclature introduced by Autograd (Maclau-
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rin et al.) and describe Jacobian-vector products (JVP), vector-Jacobian products (VJP), as well as
the cost of computing the Jacobian ∂f(θ, x)

/
∂θ.

In §3.3, we describe the baseline complexity of evaluating the NTK, by computing two Jacobians
and contracting them. This approach is used in most (likely all) prior works, and scales poorly with
the NN width W and output size O.

In §3.4 we present our first contribution, that consists in observing that many intermediate operations
on weights performed by NNs possess a certain structure, that can allow linear algebra simplifica-
tions of the NTK expression, leading to a cheaper contraction and smaller memory footprint.

In §3.5 we present our second contribution, where we rephrase the NTK computation as instantiating
itself row-by-row by applying the NTK-vector product function to columns of an identity matrix. As
we will show, this trades off Jacobian contraction for more forward passes, which proves beneficial
in many (but not all) settings.

3.1 JACOBIAN-VECTOR PRODUCTS AND VECTOR-JACOBIAN PRODUCTS

We begin by defining Jacobian-vector products and vector-Jacobian products:

JVP(f,θ,x) : θt ∈ RLW2+OW 7→ ∂f (θ, x)

∂θ
θt ∈ RO, (3)

VJP(f,θ,x) : fc ∈ RO 7→ ∂f (θ, x)

∂θ

T

fc ∈ RLW2+OW. (4)

The JVP can be understood as pushing forward a tangent vector in weight space to a tangent vector
in the space of outputs; by contrast the VJP pulls back a cotangent vector in the space of outputs to
a cotangent vector in weight space. These elementary operations correspond to forward and reverse
mode AD respectively and serve as a basis for typical AD computations such as gradients, Jacobians,
Hessians, etc.

Time and memory costs of JVP and VJP are asymptotically equivalent to the cost of the forward pass
(FP), except for VJP additionally requires storing all intermediate activations. (see §N and Fig. 6).

For the case of FCNs, the time cost2 of both operations is therefore
[FP] = [cost of all intermediate layers] + [cost of the top layer] =

[
LW2

]
+ [OW] ∼ LW2.

For a single input, the memory cost of computing both the JVP and the VJP are respectively,
[size of all weights] + [size of activations at a single layer] =

[
LW2 + OW

]
+ [W + O] ∼ LW2,

[size of all weights] + [size of activations in all layers] =
[
LW2 + OW

]
+ [LW + O] ∼ LW2.

Despite the fact that the VJP requires more memory to store intermediate activations, we see that for
FCNs both computations are dominated by the cost of storing the weights.

Batched inputs. If x is a batch of inputs of size N, the time cost of JVP and VJP increases linearly
to NLW2. The memory cost is slightly more nuanced. Since weights can be shared across inputs,
the memory cost of the JVP and VJP are respectively,

[size of all weights] + N [size of activations at a single layer]

=
[
LW2 + OW

]
+ N [W + O] ∼ LW2 + NW + NO,

[size of all weights] + N [size of activations in all layers] + N [size of all weight matrices]

=
[
LW2 + OW

]
+ N [LW + O] + N

[
LW2 + OW

]
∼ NLW2.

The cost of the VJP is dominated by the cost of storing the cotangents in weight space. However,
for the purposes of computing the NTK, we will be contracting Jacobians layerwise and so we will
only need to store one cotangent weight matrix, ∂f

/
∂θl, at a time. Thus, for the purposes of this

work we end up with the following costs:

• JVP costs NLW2 time and LW2 + NW + NO memory.
• VJP costs NLW2 time and LW2 + NLW + NW2 + NOW memory.

2To declutter notation, we omit the O symbol to indicate asymptotic complexity in this work.
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3.2 JACOBIAN COMPUTATION

For neural networks, the Jacobian is most often computed by evaluating the VJP on rows of the
identity matrix IO, i.e.[

∂f (θ, x)
/
∂θ
]T

=
[
∂f (θ, x)

/
∂θ
]T
IO ∈ R(LW2+OW)×O. (5)

It follows that computing the Jacobian takes O evaluations of the VJP. However, as mentioned in
§3.1, we only need to store one ∂f

/
∂θl at a time, while the weights and intermediate activations are

reused across evaluations. Thus, time and memory costs to compute the Jacobian are respectively,

ON ([cost of all intermediate layers] + [cost of the top layer])

= ON
([

LW2
]

+ [OW]
)
∼ NLOW2 + NO2W,

[size of all weights] + N [size of activations in all layers] + ON [size of a single weight matrix]

=
[
LW2 + OW

]
+ N [LW + O] + ON

[
W2 + OW

]
∼ LW2 + NLW + NOW2 + NO2W.

Therefore, asymptotically,

Jacobian costs NLOW2 + NO2W time and LW2 + NLW + NOW2 + NO2W memory.

3.3 JACOBIAN CONTRACTION

We now analyze the cost of computing the NTK, starting with the direct computation as the product
of two Jacobians. Consider a single summand from Eq. (2):

Θl
θ︸︷︷︸

O×O

=
∂f (θ, x1)

∂θl︸ ︷︷ ︸
O×(W×W)

∂f (θ, x2)

∂θl

T

︸ ︷︷ ︸
(W×W)×O

. (6)

The time cost of this contraction is O2W2, and the memory necessary to instantiate each factor and
the result is OW2 + O2. Repeating the above operation for each θl, we arrive at LO2W2 time cost
and unchanged memory, due to being able to process summands sequentially.

Batched inputs. If we consider x1 and x2 to be input batches of size N, then the resulting NTK
is a matrix of shape NO × NO, and the time cost becomes N2LO2W2, while memory grows to
[NTK matrix size] + [factors size] = N2O2 + NOW2.

What remains is to account for the cost of computing and storing individual cotangents ∂f
/
∂θl,

which is exactly the cost of computing the Jacobian (§3.2). Adding the costs up we obtain

Jacobian contraction costs N2LO2W2 time and N2O2 + NOW2 + NO2W + LW2 + NLW
memory.

3.4 LEVERAGING STRUCTURED DERIVATIVES FOR COMPUTING THE NTK

We can rewrite Θl
θ in Eq. (6) using the chain rule and our pre- and post-activation notation as:

Θl
θ =

[
∂f (θ, x1)

∂ylx1

∂ylx1

∂θl

][
∂f (θ, x2)

∂ylx2

∂ylx2

∂θl

]T
=
∂f (θ, x1)

∂ylx1︸ ︷︷ ︸
O×W

∂ylx1

∂θl︸ ︷︷ ︸
W×(W×W)

∂ylx2

∂θl

T

︸ ︷︷ ︸
(W×W)×W

∂f (θ, x2)

∂ylx2

T

︸ ︷︷ ︸
W×O

.

(7)

At face value, rewriting Eq. (6) this way is unhelpful as it appears to have introduced additional
costly contractions. However, recall that yl = θlxl, and therefore

∂ylx1

∂θl
= IW ⊗ xl1

T
,

∂ylx2

∂θl
= IW ⊗ xl2

T
, (8)

where ⊗ is the Kronecker product. Plugging Eq. (8) into Eq. (7) we obtain (see §G)
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Θl
θ =

xl1T︸︷︷︸
1×W

xl2︸︷︷︸
W×1


∂f (θ, x1)

∂ylx1︸ ︷︷ ︸
O×W

∂f (θ, x2)

∂ylx2

T

︸ ︷︷ ︸
W×O

 , (9)

and observe that it takes only O2W time and OW + O2 memory. Accounting for depth, time cost
becomes LO2W, while memory does not change since the summands can be processed sequentially.

Batched inputs. The time cost grows quadratically with the bath size N up to N2LO2W, while the
memory cost increases to N2O2 + NOW to store the resulting NTK and ∂f (θ, x)

/
∂ylx factors.

Finally, we need to account for the cost of computing the derivatives, ∂f
/
∂yl, and post-activations,

xl. Notice that both xl and ∂f
/
∂yl arises naturally when computing the Jacobian as the primals

and cotangents in layer l respectively. However, since we do not need to compute the weight space
cotangents explicitly (i.e. we cut the backpropagation algorithm short) the memory cost will be,

[size of all weights] + N [size of activations in all layers]

=
[
LW2 + OW

]
+ N [LW + O] ∼ LW2 + NLW.

The extra time cost is asymptotically the cost of O forward passes, NLOW2 which is the same as
the Jacobian. However, as we will see in experiments, in practice we’ll often compute the NTK
faster than the Jacobian due to not computing the weight space cotangents ∂f/∂θl. Altogether,

By leveraging Structured derivatives in NN computations, we have reduced the cost of NTK
to N2LO2W + NLOW2 time and N2O2 + NOW + LW2 + NLW memory.

The key insight was to leverage the constant block-diagonal structure of the pre-activation derivatives
∂yl
/
∂θl. This idea is quite general; as we discuss in §4 and detail in the appendix, similar structure

exists for many common operations such as convolutions, pooling, and arithmetic.

We highlight that these computational improvements do not emerge automatically in AD. While
JAX and other libraries leverage structures analogous to Eq. (8) to efficiently compute single evalu-
ations of the VJP and JVP, this knowledge is lost once the (structureless) Jacobian ∂f(θ, x1)/∂θl is
instantiated, and cannot be taken advantage of in the following contraction with ∂f(θ, x2)/∂θl. We
discuss how we impose this structure to compute the NTK for general neural networks in §4.

3.5 NTK VIA NTK-VECTOR PRODUCTS

Computing the Jacobian contraction using Jacobian first instantiates the Jacobian using using VJPs
and then performs a contraction. Structured derivatives use a similar strategy, but speed-up the
contraction and avoid explicitly instantiating the weight space cotangents. Here we avoid performing
a contraction altogether at the cost of extra VJP/JVP calls; this ends up being beneficial for FCNs.

We introduce the linear function performing the NTK-vector product: ΘVP : v ∈ RO 7→ Θθv ∈ RO.
Applying this function to O columns of the identity matrix IO allows us to compute the NTK, i.e.
ΘθIO = Θθ. The cost of evaluating the NTK in this fashion is equal to O times the cost of a single
NTK-vector product evaluation ΘVP(v). We now expand ΘVP(v) = Θθv as

∂f (θ, x1)

∂θ

∂f (θ, x2)

∂θ

T

v =
∂f (θ, x1)

∂θ
VJP(f,θ,x2) (v) = JVP(f,θ,x1)

[
VJP(f,θ,x2) (v)

]
, (10)

where we have observed that, if contracted from right to left, the NTK-vector product can be ex-
pressed as a composition of a JVP and VJP of the underlying function f . The cost of this operation
is asymptotically equivalent to the cost of the Jacobian, since it consists of O VJPs followed by O
(cheaper) JVPs. Therefore it costs LOW2 + O2W time and LW2 + OW2 + O2W memory.

Batched inputs. In the batched setting Eq. (10) is repeated for each pair of inputs, and therefore time
increases by a factor of N2 to become N2LOW2 + N2O2W. However, the memory cost grows only
linearly in N (except for the cost of storing the NTK of size N2O2), since intermediate activations
and derivatives necessary to compute the JVP and VJP can be computed for each batch x1 and x2
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separately; these quantities are then reused for every pairwise combination resulting in a memory
equivalent to the Jacobian, i.e. N2O2 +

(
LW2 + NOW2 + NO2W + NLW

)
, resulting in

NTK computation as a sequence of NTK-vector products costs N2LOW2 + N2O2W time
and N2O2 + NOW2 + LW2 + NLW memory.

3.6 SUMMARY

Structured derivatives and NTK-vector products allow a reduction in the time cost of NTK compu-
tation in different ways, and Structured derivatives also reduce memory requirements. Structured
derivatives are beneficial for wide networks, with large W, and NTK-vector products are beneficial
for networks with large outputs O. We confirm our predictions with FLOPs measurements in Fig. 1.

We further confirm our methods can provide orders of magnitude speed-ups and memory savings
on all major hardware platforms in Fig. 1 (right) and Fig. 3. However, we notice that our wall-clock
time measurements often deviate from predictions due to unaccounted constant overheads of various
methods, hardware specifics, padding, and the (largely black-box) behavior of the XLA compiler.
Notably, in practice, we find Structured derivatives almost always outperform NTK-vector products.

Finally, we evaluate our methods in the wild, and confirm computational benefits on full ImageNet
models in Fig. 2 (ResNets, He et al. (2016)) and Fig. 4 (WideResNets, Zagoruyko & Komodakis
(2016); Vision Transformers and Transformer-ResNet hybrids Dosovitskiy et al. (2021); Steiner
et al. (2021); and MLP-Mixers Tolstikhin et al. (2021)). Computing the full O×O = 1000× 1000
NTK for many of these models on modern accelerators is only possible with Structured derivatives.

4 STRUCTURED DERIVATIVES FOR GENERIC FUNCTIONS

Here we generalize the idea of leveraging structure in subexpressions presented in §3.4. This section
(and our implementation) is not specific to NNs and applies to any differentiable function.

Consider two differentiable functions defined on a common input domain:
fi :

(
θ0, . . . , θL) ∈ RP0×···×PL 7→ fi

(
θ0, . . . , θL) ∈ ROi (i ∈ {1, 2}).

For NNs, typically
(
θ0, . . . , θL) correspond to trainable parameters in layers 0, . . . ,L, and

fi
(
θ0, . . . , θL) = f

(
θ0, . . . , θL, xi

)
, xi being network inputs, Oi = O being the number of outputs

(logits, classes). The NTK is defined as

Θθ (f1, f2) :=

L∑
l=0

∂f1
∂θl

∂f2
∂θl

T

∈ RO1×O2 . (11)

Assume the following decompositions of fi into computational graphs made of primitives yi:

fi
(
θ0, . . . , θL) = f̃i

(
y1i (θ0, . . . , θL), . . . , yKi

i (θ0, . . . , θL)
)

(i ∈ {1, 2}). (12)

with yki
(
θ0, . . . , θL) ∈ RYki . In common NNs, ykii would correspond to pre-activations evaluated

on inputs xi in layer ki, and, without weight sharing, typically K1 = K2 = L. However, we do not
impose any relationship between the number of parameter variables L and number of primitives K1

and K2, allowing arbitrary weight sharing. We can then use the chain rule in Eq. (2) to obtain:

Θθ (f1, f2) =

L,K1,K2∑
l,k1,k2

(
∂f̃1

∂yk11

∂yk11
∂θl

)(
∂f̃2

∂yk22

∂yk22
∂θl

)T
=

L,K1,K2∑
l,k1,k2

∂f̃1

∂yk11

∂yk11
∂θl

∂yk22
∂θl

T
∂f̃2

∂yk22

T

. (13)

All methods from §3 perform the sum of contractions in Eq. (13) one way or another. Jacobian con-
traction uses VJPs to implicitly contract each summand “outside-in”, i.e. it first computes ∂fi

/
∂θl

terms with VJPs followed by their contraction. As discussed in §3.3, this costs NO [FP] + N2O2P.

NTK-vector products use both JVPs and VJPs to contract “Right-to-left”, i.e. first compute ∂f2/∂θl

as an implicit contraction of ∂f2
/
∂y2 with ∂y2

/
∂θl via VJP, followed by an implicit contraction

of the result with ∂y1
/
∂θl via a JVP, followed by another implicit contraction with ∂f1

/
∂y1 with

another JVP. Per §3.5 this costs N2O [FP].
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Figure 1: FLOPs (left) and wall-clock time (right) of computing the NTK for a 10-layer ReLU
FCN. As predicted by Table 1, our methods almost always outperform Jacobian contraction, allow-
ing orders of magnitude speed-ups and memory improvements for realistic problem sizes. FLOPs
per NTK entry: We confirm several specific predictions: (1) NTK-vector products are the best per-
forming method for N = 1, and have cost equivalent to Jacobian for any width W or output size O
(top row); (2) NTK-vector products offer an O-fold improvement over Jacobian contraction (left to
right columns); (3) NTK-vector products are equivalent to Jacobian contraction for O = 1 (leftmost
column); (4) Structured derivatives outperform NTK-vector products iff O < W (O = W are plot-
ted as pale vertical lines, which is where Structured derivatives and NTK-vector products intersect);
(5) Structured derivatives approach the cost of Jacobian in the limit of large width W (left to right).
(6) All methods, as expected, scale quadratically with width W. Wall-clock runtime: In real appli-
cations, given hardware-specific constraints, padding, and delicate interplay with the XLA compiler,
we observe that: (1) NTK-vector products improve upon Jacobian contraction for O > 1, but the
effect is not perfectly robust (see bottom row for small W and Fig. 3, notably GPU platforms); (2)
Structured derivatives robustly outperform all other methods, including simply computing the Ja-
cobian, as discussed in §3.4; (3) Structured derivatives have lower memory footprint, and reach up
to 8x larger widths (bottom right; missing points indicate out-of-memory), i.e. can process models
up to 64x larger than other methods, as discussed in §3.4; (4) All methods have a smaller memory
footprint than Jacobian (see §3.1). More: Fig. 3 for other hardware platforms, §H for details.
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Figure 2: Wall-clock time cost of computing an NTK for several ResNet sizes on a pair of
ImageNet inputs. Structured derivatives allow the NTK to be computed faster and for larger models
(see bottom row – missing points indicate out-of-memory). NTK-vector products, as predicted in
§3.6 and Table 2, are advantageous for large O (bottom row), but are suboptimal when the cost of
the forward pass is large relative to the number of parameters, e.g. when there is a lot of weight
sharing (see Table 7 and Table 2), which is the case for convolutions. See Fig. 4 for more ImageNet
models, §F for analysis of CNN NTK computational complexity, and §H for experimental details.
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However, recall from §3.4, while JVPs and VJPs themselves are computationally optimal, higher-
order computations like their contraction (Jacobian contraction) or composition (NTK-vector prod-
ucts) are generally not. The idea of Structured derivatives is to design rules for efficient computation
of such contractions, similarly to how JAX and has rules for efficient JVPs and VJPs. From Eq. (13),
in the general case this requires hand-made rules for all pairwise combinations of primitives y1 and
y2. Due to quadratic scaling in the number of primitives, we restrict the current implementation to
rules that operate on individual primitives y. This still provides substantial computational benefit.

Specifically, our rules identify a few simple types of structure (e.g. block diagonal, constant-block
diagonal, tiling) in ∂y

/
∂θl, that allow us to simplify the contraction in Eq. (13). In practice this

amounts to replacing the inner terms ∂yk11
/
∂θl and ∂yk22

/
∂θl with their (much) smaller subarrays,

and modifying the instructions passed to np.einsum that contracts all 4 terms. In §C we provide
specific descriptions of our rules and their impact on the computational complexity of Eq. (13).

In Table 1 and Table 7 we show that our rules are asymptotically better than Jacobian contraction for
matrix multiplications and convolutions, and verify that they are practically beneficial in a much
wider set of operations used by contemporary ImageNet models in Fig. 2 and Fig. 4.

For both Structured derivatives and NTK-vector products a fully general and rigorous comparison
of complexities is not feasible since it will rely upon specifics of the model architecture and the pairs
of primitives, y1 and y2, present in the network. Nonetheless, we can offer heuristics that suggest
when each method will be beneficial. The time complexity of Structured derivatives has the form
of NO [FP] + NOG + N [J−OP], where G is related to the cost of contraction, and J to the cost of
computing ∂y

/
∂θl (exact values depend on the structure present in y1 and y2). This is guaranteed

to be no worse than Jacobian contraction for FCNs and CNNs. From Table 2, the performance of
NTK-vector products relative to Jacobian contraction ultimately depends on the cost of the forward
pass through the network, [FP], relative to OP. In practice this amounts to best performance on
models without weight sharing like FCNs.

Owing to the nuanced trade-offs between different computational methods in the general case, we
release all our implementations as a single function that allows the user to manually select the desired
implementation. For convenience, we include an automated setting which will perform FLOPs
analysis for each method at compilation time and automatically select the most efficient one.

5 IMPLEMENTATION

Both algorithms are implemented in JAX (Bradbury et al., 2018) as the following function trans-
formation ntk_fn : [f : (θ, x) 7→ f(θ, x)] 7→ [Θ : (x1, x2, θ) 7→ Θθ(x1, x2)] , i.e. our function
accepts any function f with the above signature and returns the efficient NTK kernel function oper-
ating on inputs x1 and x2 and parameterized by θ. Inputs x, parameters θ, and outputs f(θ, x) can
be arbitrary PyTrees. We rely on many utilities from JAX and Neural Tangents (Novak et al., 2020).

NTK-vector products algorithm is implemented by using JAX core operations such as vjp , jvp ,
and vmap to map the NTK-vp function to the IO matrix and to parallelize the computation over
pairwise combinations of N inputs in each batch x1 and x2.

Structured derivatives algorithm is implemented as a Jaxpr interpreter, built on top of the default
JAX reverse mode AD interpreter. On a high level, the algorithm performs the sum in Eq. (13). Each
summand is a contraction of 4 factors: ∂f̃1

/
∂y1, ∂y1/∂θ, ∂y2/∂θ, ∂f̃2

/
∂y2.

First, we linearize f to obtain a computational graph constructed out of a limited set (54,3 see
Table 5) of linear primitives y1, . . . , yK. Then, we can obtain two factors ∂f̃1

/
∂y1, ∂f̃2

/
∂y2 as part

of a backward pass almost identical to calling jax.jacobian (f)(θ, x). To contract these terms
with ∂y1/∂θ and ∂y2/∂θ, as described above, we query a dictionary of rules which map primitives
to a structural description (§C.8); for a given pair of primitives, these rules allow us to analytically
simplify the contraction and avoid explicitly instantiating the derivatives.

3JAX leverages a similar approach to implement only 54 transpose rules for linear primitives for reverse
mode differentiation instead of 131 VJP rules (Frostig et al., 2021).
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Stefano Spigler, Mario Geiger, Stéphane d’Ascoli, Levent Sagun, Giulio Biroli, and Matthieu Wyart.
A jamming transition from under-to over-parametrization affects generalization in deep learning.
Journal of Physics A: Mathematical and Theoretical, 52(47):474001, 2019.

12

https://github.com/google/neural-tangents
https://github.com/google/neural-tangents
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://proceedings.mlr.press/v70/pennington17a.html
https://proceedings.mlr.press/v70/pennington17a.html


Under review as a conference paper at ICLR 2022

Andreas Steiner, Alexander Kolesnikov, Xiaohua Zhai, Ross Wightman, Jakob Uszkoreit, and Lucas
Beyer. How to train your vit? data, augmentation, and regularization in vision transformers. arXiv
preprint arXiv:2106.10270, 2021.

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let net-
works learn high frequency functions in low dimensional domains. NeurIPS, 2020.

Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and
Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision, 2021.

Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel Schoenholz, and Jeffrey Pennington.
Dynamical isometry and a mean field theory of CNNs: How to train 10,000-layer vanilla convo-
lutional neural networks. In International Conference on Machine Learning, 2018.

Lechao Xiao, Jeffrey Pennington, and Samuel S Schoenholz. Disentangling trainability and gener-
alization in deep learning. In International Conference on Machine Learning, 2020.

Sho Yaida. Non-Gaussian processes and neural networks at finite widths. In Mathematical and
Scientific Machine Learning Conference, 2020.

Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process behavior,
gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760,
2019.

Greg Yang. Tensor programs ii: Neural tangent kernel for any architecture. arXiv preprint
arXiv:2006.14548, 2020.

Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-Dickstein, and Samuel S. Schoenholz. A
mean field theory of batch normalization. In International Conference on Learning Representa-
tions, 2019.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision
Conference, 2016.

Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual learning without
normalization. arXiv preprint arXiv:1901.09321, 2019.

Yufan Zhou, Zhenyi Wang, Jiayi Xian, Changyou Chen, and Jinhui Xu. Meta-learning with neural
tangent kernels. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=Ti87Pv5Oc8.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. 2017. URL
https://arxiv.org/abs/1611.01578.

13

https://openreview.net/forum?id=Ti87Pv5Oc8
https://openreview.net/forum?id=Ti87Pv5Oc8
https://arxiv.org/abs/1611.01578


Under review as a conference paper at ICLR 2022

APPENDIX

A ADDITIONAL FIGURES

CPU (Skylake) NVIDIA V100

10 3

100

103

Se
co

nd
s

O =  1 logits O =  16 logits

N = 1 batch

O =  128 logits

10 3

100

103

Se
co

nd
s

N = 16 batch

20 23 26 29 212

Width W

10 3

100

103

Se
co

nd
s

20 23 26 29 212

Width W
20 23 26 29 212

Width W

N = 128 batch

10 2

100

102

Se
co

nd
s

O =  1 logits O =  16 logits

N = 1 batch

O =  128 logits

10 2

100

102

Se
co

nd
s

N = 16 batch

20 23 26 29 212

Width W

10 2

100

102

Se
co

nd
s

20 23 26 29 212

Width W
20 23 26 29 212

Width W

N = 128 batch

TPUv4 NVIDIA P100

10 3

10 1

Se
co

nd
s

O =  1 logits O =  16 logits

N = 1 batch

O =  128 logits

10 3

10 1

Se
co

nd
s

N = 16 batch

20 23 26 29 212

Width W

10 3

10 1

Se
co

nd
s

20 23 26 29 212

Width W
20 23 26 29 212

Width W

N = 128 batch

10 2

100

102

Se
co

nd
s

O =  1 logits O =  16 logits

N = 1 batch

O =  128 logits

10 2

100

102

Se
co

nd
s

N = 16 batch

20 23 26 29 212

Width W

10 2

100

102

Se
co

nd
s

20 23 26 29 212

Width W
20 23 26 29 212

Width W

N = 128 batch

10 3

10 1

101

Se
co

nd
s

O =  1 logits

Jacobian contraction
NTK-vector products

Structured derivatives
Jacobian

W = O
W2

O =  16 logits

N = 1 batch size

O =  128 logits

10 3

10 1

101

Se
co

nd
s

N = 16 batch size

20 23 26 29 212

Width W

10 3

10 1

101

Se
co

nd
s

20 23 26 29 212

Width W
20 23 26 29 212

Width W

N = 128 batch size

Figure 3: Wall-clock time of computing the NTK of a 10-layer ReLU FCN on different plat-
forms. In all settings, Structured derivatives allow orders of magnitude improvement in wall-clock
time and memory (missing points indicate out-of-memory error). However, we remark that on GPU
platforms (right), NTK-vector products deliver a robust improvement only for large O (rightmost
column), while for O = 16 the cost is comparable or even larger than Jacobian contraction. See
Fig. 1 for FLOPs, TPUv3 platform, and more discussion. See §H for details.
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Figure 4: Wall-clock time per input pair of computing NTK on various ImageNet models
like Vision Tansformers and hybrids (Dosovitskiy et al., 2021; Steiner et al., 2021), WideResNets
(Zagoruyko & Komodakis, 2016) and MLP-Mixers (Tolstikhin et al., 2021).
Structured derivatives generally allow fastest computation, but also are able to process more models
due to lower memory requirements (lower left; missing points indicate out-of-memory error). For
the case of single output logit O = 1 (top row), NTK-vector products are generally detrimental due
to a costly forward pass FP relative to the size of parameters P (i.e. a lot of weight sharing; see
Table 2). However, since NTK-vector products scale better than other methods with output size, for
O = 1000 (bottom row), they perform comparably or better than other methods.
Finally, we remark that Jacobian not only runs out of memory faster, but can also take more time to
compute. We conjecture that due to a larger memory footprint, XLA can sometimes perform opti-
mizations that trade off speed for memory, and therefore compute the Jacobian in a less optimal way
than if it had more memory available. Alternatively, XLA could also be performing simplifications
of the NTK expression in these cases, such that those would not be possible in Jacobian computation
alone.
See Fig. 2 for ResNets, and §H for details.

<latexit sha1_base64="N7dWDDp5SaZjiomhSQBw4NYjymw="></latexit>

�
<latexit sha1_base64="N7dWDDp5SaZjiomhSQBw4NYjymw="></latexit>

�
<latexit sha1_base64="DRaYiwZYSZqS2pVkfLwQvAuQa+Q=">AAAC9XicdZLLjtMwFIbdcJkh3GZgycaiQmJVJSMEbEYzAhYsKhgkOh2piUa247TW+CbboVRWXoEtbFiB2PIYPAJCvAxO0wVp4EiWfp3zHZ+LjTVn1iXJr0F06fKVqzu71+LrN27eur23f+fUqsoQOiGKK3OGkaWcSTpxzHF6pg1FAnM6xRfPm/j0HTWWKfnWrTTNBZpLVjKCXOPK5OGj871hMkrWBvsi3Yjh0Y/4UH/5GZ+c7w9+Z4UilaDSEY6snaWJdrlHxjHCaR1nlaUakQs0p7MgJRLU5n7dbA0fBE8BS2XCkQ6uvX9neCSsXQkcSIHcwm7HGuc/YxiLrdKufJp7JnXlqCRt5bLi0CnYrAIWzFDi+CoIRAwLzUOyQAYRFxb2nyHet1PEcSbpkighkCx8JutZknufrYNeV0aHNfgMl/BVXdddtig6sKOIt+iLHqpUB8W82tz6uoeOxx1UGSTnG3jcg5cdlqyQbMlpQ4bvkG4/fl+cHozSx6ODN8nw+BlobRfcA/fBQ5CCJ+AYvAQnYAIIWIAP4CP4FC2jz9HX6FuLRoNNzl3Qsej7H8hv+wI=</latexit>

N
=

4

<latexit sha1_base64="cg4wh2R8HPfQZj85TGdjcqRSXHU="></latexit> O
=

10

<latexit sha1_base64="Qpdy3pro1NNJ8If446pKRpcn5sQ="></latexit>

✓1
<latexit sha1_base64="X550jq1v/sy12IXBWGz1dZtSXGU="></latexit>

✓2

<latexit sha1_base64="tkOMUbz8TSxPSbt5zN/Qen739NE="></latexit> W
=

15

<latexit sha1_base64="tkOMUbz8TSxPSbt5zN/Qen739NE=">AAAC9nicdZLLbhMxFIadKZcy3NqyZGMRIbGKZipR2FStoAsWERSJNJUyo8r2eFKrvsn2NI2seYZuYcMGIba8BY+AEC+Dk8mCycCRLP065zs+FxtrzqxLkl+9aOPGzVu3N+/Ed+/df/Bwa3vnxKrKEDoiiitzipGlnEk6csxxeqoNRQJzOsYXrxfx8SU1lin5wc01zQWaSlYyglxwjbLZfvr8bKufDJKlwa5IV6J/8CPe119+xsdn273fWaFIJah0hCNrJ2miXe6RcYxwWsdZZalG5AJN6SRIiQS1uV92W8OnwVPAUplwpINL798ZHglr5wIHUiB3btdjC+c/YxiLtdKufJl7JnXlqCRN5bLi0Cm42AUsmKHE8XkQiBgWmofkHBlEXNjYf4a4aqaI40zSGVFCIFn4TNaTJPc+Wwa9rowOa/AZLuHbuq7bbFG0YEcRb9CjDqpUC8W8Wt36roMOhy1UGSSnK3jYgWctlsyRbMjxggzfIV1//K442R2ke4Pd90n/8BVobBM8Bk/AM5CCF+AQvAHHYAQIYOAafASfoqvoc/Q1+tagUW+V8wi0LPr+B4Z/+0c=</latexit> W
=

15

<latexit sha1_base64="tkOMUbz8TSxPSbt5zN/Qen739NE="></latexit> W
=

15

<latexit sha1_base64="tkOMUbz8TSxPSbt5zN/Qen739NE="></latexit> W
=

15

<latexit sha1_base64="DRaYiwZYSZqS2pVkfLwQvAuQa+Q="></latexit>

N
=

4
<latexit sha1_base64="DRaYiwZYSZqS2pVkfLwQvAuQa+Q="></latexit>

N
=

4

<latexit sha1_base64="d1jS81yEcCbPePxRxxkzID3woSc=">AAAB+3icbVC7SgNBFL3rM8ZX1FKRwSBYhV0RtQzaWCZoHpCsYXYySYbMzC4zs8KypLS01Q+wE1shv2Jt6U84eRSaeODC4Zx7OZcTRJxp47qfzsLi0vLKamYtu76xubWd29mt6jBWhFZIyENVD7CmnElaMcxwWo8UxSLgtBb0r0d+7YEqzUJ5Z5KI+gJ3Jeswgo2VbpN7t5XLuwV3DDRPvCnJFw+G5e/Hw2GplftqtkMSCyoN4VjrhudGxk+xMoxwOsg2Y00jTPq4SxuWSiyo9tPxqwN0bJU26oTKjjRorP6+SLHQOhGB3RTY9PSsNxL/9YJAzESbzqWfMhnFhkoySe7EHJkQjYpAbaYoMTyxBBPF7POI9LDCxNi6srYVb7aDeVI9LXjnhbOyrecKJsjAPhzBCXhwAUW4gRJUgEAXnuAZXpyB8+q8Oe+T1QVnerMHf+B8/AAvXZhd</latexit>

y0
<latexit sha1_base64="ukTw29czn/Yn9Cy7xsduelj7NbM=">AAAB+3icbVDLSgMxFL1TX3V8VV26CRbBVZkRUTdi0Y3LivYB7VgyadqGJpkhyYhl6Ce41Q/oTtz6DX6CuPZHTB8LbT1w4XDOvZzLCWPOtPG8LyezsLi0vJJdddfWNza3cts7FR0litAyiXikaiHWlDNJy4YZTmuxoliEnFbD3tXIrz5QpVkk70w/poHAHcnajGBjpdvHe7+Zy3sFbww0T/wpyV98uOfx8NMtNXPfjVZEEkGlIRxrXfe92AQpVoYRTgduI9E0xqSHO7RuqcSC6iAdvzpAB1ZpoXak7EiDxurvixQLrfsitJsCm66e9Ubiv14Yiplo0z4LUibjxFBJJsnthCMToVERqMUUJYb3LcFEMfs8Il2sMDG2Lte24s92ME8qRwX/pHB84+WLlzBBFvZgHw7Bh1MowjWUoAwEOvAEz/DiDJyh8+q8TVYzzvRmF/7Aef8BmtmX8w==</latexit>

x1
<latexit sha1_base64="uTUoYnWhEuXC+virlGgm9s+Wweg=">AAAB+3icbVC7SgNBFL3rM8ZX1FKRwSBYhV0RtQzaWCZoHpCsYXYySYbMzC4zs8KypLS01Q+wE1shv2Jt6U84eRSaeODC4Zx7OZcTRJxp47qfzsLi0vLKamYtu76xubWd29mt6jBWhFZIyENVD7CmnElaMcxwWo8UxSLgtBb0r0d+7YEqzUJ5Z5KI+gJ3Jeswgo2VbpN7r5XLuwV3DDRPvCnJFw+G5e/Hw2GplftqtkMSCyoN4VjrhudGxk+xMoxwOsg2Y00jTPq4SxuWSiyo9tPxqwN0bJU26oTKjjRorP6+SLHQOhGB3RTY9PSsNxL/9YJAzESbzqWfMhnFhkoySe7EHJkQjYpAbaYoMTyxBBPF7POI9LDCxNi6srYVb7aDeVI9LXjnhbOyrecKJsjAPhzBCXhwAUW4gRJUgEAXnuAZXpyB8+q8Oe+T1QVnerMHf+B8/AAw8phe</latexit>

y1
<latexit sha1_base64="XXZu6VHq+n79ewuO3byg4tkYRqs=">AAAB+3icbVDLSgMxFL3js46vqks3wSK4KjNF1I1YdOOyon1AO5ZMmmlDk8yQZMRS+glu9QO6E7d+g58grv0R08dCWw9cOJxzL+dywoQzbTzvy1lYXFpeWc2suesbm1vb2Z3dio5TRWiZxDxWtRBrypmkZcMMp7VEUSxCTqth92rkVx+o0iyWd6aX0EDgtmQRI9hY6fbxvtDM5ry8NwaaJ/6U5C4+3PNk+OmWmtnvRismqaDSEI61rvteYoI+VoYRTgduI9U0waSL27RuqcSC6qA/fnWADq3SQlGs7EiDxurviz4WWvdEaDcFNh09643Ef70wFDPRJjoL+kwmqaGSTJKjlCMTo1ERqMUUJYb3LMFEMfs8Ih2sMDG2Lte24s92ME8qhbx/kj++8XLFS5ggA/twAEfgwykU4RpKUAYCbXiCZ3hxBs7QeXXeJqsLzvRmD/7Aef8BnG6X9A==</latexit>

x2

<latexit sha1_base64="1Vi9UjW4LFXztWif5V8zpuF6W88=">AAACDHicbVC7SgNBFJ2NrxhfMZY2Q4IQUcJuELURgjaWEcwDsmuYncwmQ2YfzNyVLCG/YGVtqx9gJ7b+Q2p/xMmj0MQDFw7n3Mu5HDcSXIFpjo3Uyura+kZ6M7O1vbO7l93P1VUYS8pqNBShbLpEMcEDVgMOgjUjyYjvCtZw+zcTv/HIpOJhcA9JxByfdAPucUpAS+1sLnko4yvsFW3oMSCneHDczhbMkjkFXibWnBQqefvkeVxJqu3st90JaeyzAKggSrUsMwJnSCRwKtgoY8eKRYT2SZe1NA2Iz5QznP4+wkda6WAvlHoCwFP198WQ+Eolvqs3fQI9tehNxH891/UXosG7dIY8iGJgAZ0le7HAEOJJM7jDJaMgEk0IlVw/j2mPSEJB95fRrViLHSyTerlknZfO7nQ912iGNDpEeVREFrpAFXSLqqiGKBqgF/SK3own4934MD5nqyljfnOA/sD4+gEkj5z0</latexit>

y2 = f(✓, x)
<latexit sha1_base64="8T8bMdhnW0kInSg+AM7bw/mqgCU=">AAAB/3icbVC7SgNBFL0bX3F9RS1tBoNgFXZF1CYYtLGMYB6QrGF2MpsMmZ1dZmYlYUnhJ9hqaWEntn6BnyDW/oiTR6GJBy4czrmXczl+zJnSjvNlZRYWl5ZXsqv22vrG5lZue6eqokQSWiERj2Tdx4pyJmhFM81pPZYUhz6nNb93OfJrd1QqFokbPYipF+KOYAEjWBup1r91UBH1W7m8U3DGQPPEnZL8+YddjJ8/7XIr991sRyQJqdCEY6UarhNrL8VSM8Lp0G4misaY9HCHNgwVOKTKS8fvDtGBUdooiKQZodFY/X2R4lCpQeibzRDrrpr1RuK/nu+HM9E6OPNSJuJEU0EmyUHCkY7QqAzUZpISzQeGYCKZeR6RLpaYaFOZbVpxZzuYJ9WjgntSOL528qULmCALe7APh+DCKZTgCspQAQI9eIBHeLLurRfr1XqbrGas6c0u/IH1/gO1/ZkP</latexit>

x0 = x

<latexit sha1_base64="tkOMUbz8TSxPSbt5zN/Qen739NE=">AAAC9nicdZLLbhMxFIadKZcy3NqyZGMRIbGKZipR2FStoAsWERSJNJUyo8r2eFKrvsn2NI2seYZuYcMGIba8BY+AEC+Dk8mCycCRLP065zs+FxtrzqxLkl+9aOPGzVu3N+/Ed+/df/Bwa3vnxKrKEDoiiitzipGlnEk6csxxeqoNRQJzOsYXrxfx8SU1lin5wc01zQWaSlYyglxwjbLZfvr8bKufDJKlwa5IV6J/8CPe119+xsdn273fWaFIJah0hCNrJ2miXe6RcYxwWsdZZalG5AJN6SRIiQS1uV92W8OnwVPAUplwpINL798ZHglr5wIHUiB3btdjC+c/YxiLtdKufJl7JnXlqCRN5bLi0Cm42AUsmKHE8XkQiBgWmofkHBlEXNjYf4a4aqaI40zSGVFCIFn4TNaTJPc+Wwa9rowOa/AZLuHbuq7bbFG0YEcRb9CjDqpUC8W8Wt36roMOhy1UGSSnK3jYgWctlsyRbMjxggzfIV1//K442R2ke4Pd90n/8BVobBM8Bk/AM5CCF+AQvAHHYAQIYOAafASfoqvoc/Q1+tagUW+V8wi0LPr+B4Z/+0c=</latexit> W
=

15

<latexit sha1_base64="4y4omA+fYFk3QguH54PgfJeh8Us="></latexit>

✓0

<latexit sha1_base64="tkOMUbz8TSxPSbt5zN/Qen739NE="></latexit> W
=

15

<latexit sha1_base64="tkOMUbz8TSxPSbt5zN/Qen739NE="></latexit> W
=

15

<latexit sha1_base64="tkOMUbz8TSxPSbt5zN/Qen739NE="></latexit> W
=

15

<latexit sha1_base64="tkOMUbz8TSxPSbt5zN/Qen739NE="></latexit> W
=

15

<latexit sha1_base64="DRaYiwZYSZqS2pVkfLwQvAuQa+Q="></latexit>

N
=

4
<latexit sha1_base64="DRaYiwZYSZqS2pVkfLwQvAuQa+Q="></latexit>

N
=

4
<latexit sha1_base64="DRaYiwZYSZqS2pVkfLwQvAuQa+Q="></latexit>

N
=

4

<latexit sha1_base64="tkOMUbz8TSxPSbt5zN/Qen739NE="></latexit> W
=

15

<latexit sha1_base64="tkOMUbz8TSxPSbt5zN/Qen739NE="></latexit> W
=

15

<latexit sha1_base64="tkOMUbz8TSxPSbt5zN/Qen739NE="></latexit> W
=

15

<latexit sha1_base64="cg4wh2R8HPfQZj85TGdjcqRSXHU="></latexit> O
=

10

<latexit sha1_base64="d1jS81yEcCbPePxRxxkzID3woSc=">AAAB+3icbVC7SgNBFL3rM8ZX1FKRwSBYhV0RtQzaWCZoHpCsYXYySYbMzC4zs8KypLS01Q+wE1shv2Jt6U84eRSaeODC4Zx7OZcTRJxp47qfzsLi0vLKamYtu76xubWd29mt6jBWhFZIyENVD7CmnElaMcxwWo8UxSLgtBb0r0d+7YEqzUJ5Z5KI+gJ3Jeswgo2VbpN7t5XLuwV3DDRPvCnJFw+G5e/Hw2GplftqtkMSCyoN4VjrhudGxk+xMoxwOsg2Y00jTPq4SxuWSiyo9tPxqwN0bJU26oTKjjRorP6+SLHQOhGB3RTY9PSsNxL/9YJAzESbzqWfMhnFhkoySe7EHJkQjYpAbaYoMTyxBBPF7POI9LDCxNi6srYVb7aDeVI9LXjnhbOyrecKJsjAPhzBCXhwAUW4gRJUgEAXnuAZXpyB8+q8Oe+T1QVnerMHf+B8/AAvXZhd</latexit>

y0
<latexit sha1_base64="ukTw29czn/Yn9Cy7xsduelj7NbM=">AAAB+3icbVDLSgMxFL1TX3V8VV26CRbBVZkRUTdi0Y3LivYB7VgyadqGJpkhyYhl6Ce41Q/oTtz6DX6CuPZHTB8LbT1w4XDOvZzLCWPOtPG8LyezsLi0vJJdddfWNza3cts7FR0litAyiXikaiHWlDNJy4YZTmuxoliEnFbD3tXIrz5QpVkk70w/poHAHcnajGBjpdvHe7+Zy3sFbww0T/wpyV98uOfx8NMtNXPfjVZEEkGlIRxrXfe92AQpVoYRTgduI9E0xqSHO7RuqcSC6iAdvzpAB1ZpoXak7EiDxurvixQLrfsitJsCm66e9Ubiv14Yiplo0z4LUibjxFBJJsnthCMToVERqMUUJYb3LcFEMfs8Il2sMDG2Lte24s92ME8qRwX/pHB84+WLlzBBFvZgHw7Bh1MowjWUoAwEOvAEz/DiDJyh8+q8TVYzzvRmF/7Aef8BmtmX8w==</latexit>

x1
<latexit sha1_base64="uTUoYnWhEuXC+virlGgm9s+Wweg=">AAAB+3icbVC7SgNBFL3rM8ZX1FKRwSBYhV0RtQzaWCZoHpCsYXYySYbMzC4zs8KypLS01Q+wE1shv2Jt6U84eRSaeODC4Zx7OZcTRJxp47qfzsLi0vLKamYtu76xubWd29mt6jBWhFZIyENVD7CmnElaMcxwWo8UxSLgtBb0r0d+7YEqzUJ5Z5KI+gJ3Jeswgo2VbpN7r5XLuwV3DDRPvCnJFw+G5e/Hw2GplftqtkMSCyoN4VjrhudGxk+xMoxwOsg2Y00jTPq4SxuWSiyo9tPxqwN0bJU26oTKjjRorP6+SLHQOhGB3RTY9PSsNxL/9YJAzESbzqWfMhnFhkoySe7EHJkQjYpAbaYoMTyxBBPF7POI9LDCxNi6srYVb7aDeVI9LXjnhbOyrecKJsjAPhzBCXhwAUW4gRJUgEAXnuAZXpyB8+q8Oe+T1QVnerMHf+B8/AAw8phe</latexit>

y1
<latexit sha1_base64="XXZu6VHq+n79ewuO3byg4tkYRqs=">AAAB+3icbVDLSgMxFL3js46vqks3wSK4KjNF1I1YdOOyon1AO5ZMmmlDk8yQZMRS+glu9QO6E7d+g58grv0R08dCWw9cOJxzL+dywoQzbTzvy1lYXFpeWc2suesbm1vb2Z3dio5TRWiZxDxWtRBrypmkZcMMp7VEUSxCTqth92rkVx+o0iyWd6aX0EDgtmQRI9hY6fbxvtDM5ry8NwaaJ/6U5C4+3PNk+OmWmtnvRismqaDSEI61rvteYoI+VoYRTgduI9U0waSL27RuqcSC6qA/fnWADq3SQlGs7EiDxurviz4WWvdEaDcFNh09643Ef70wFDPRJjoL+kwmqaGSTJKjlCMTo1ERqMUUJYb3LMFEMfs8Ih2sMDG2Lte24s92ME8qhbx/kj++8XLFS5ggA/twAEfgwykU4RpKUAYCbXiCZ3hxBs7QeXXeJqsLzvRmD/7Aef8BnG6X9A==</latexit>

x2

<latexit sha1_base64="1Vi9UjW4LFXztWif5V8zpuF6W88=">AAACDHicbVC7SgNBFJ2NrxhfMZY2Q4IQUcJuELURgjaWEcwDsmuYncwmQ2YfzNyVLCG/YGVtqx9gJ7b+Q2p/xMmj0MQDFw7n3Mu5HDcSXIFpjo3Uyura+kZ6M7O1vbO7l93P1VUYS8pqNBShbLpEMcEDVgMOgjUjyYjvCtZw+zcTv/HIpOJhcA9JxByfdAPucUpAS+1sLnko4yvsFW3oMSCneHDczhbMkjkFXibWnBQqefvkeVxJqu3st90JaeyzAKggSrUsMwJnSCRwKtgoY8eKRYT2SZe1NA2Iz5QznP4+wkda6WAvlHoCwFP198WQ+Eolvqs3fQI9tehNxH891/UXosG7dIY8iGJgAZ0le7HAEOJJM7jDJaMgEk0IlVw/j2mPSEJB95fRrViLHSyTerlknZfO7nQ912iGNDpEeVREFrpAFXSLqqiGKBqgF/SK3own4934MD5nqyljfnOA/sD4+gEkj5z0</latexit>

y2 = f(✓, x)
<latexit sha1_base64="8T8bMdhnW0kInSg+AM7bw/mqgCU=">AAAB/3icbVC7SgNBFL0bX3F9RS1tBoNgFXZF1CYYtLGMYB6QrGF2MpsMmZ1dZmYlYUnhJ9hqaWEntn6BnyDW/oiTR6GJBy4czrmXczl+zJnSjvNlZRYWl5ZXsqv22vrG5lZue6eqokQSWiERj2Tdx4pyJmhFM81pPZYUhz6nNb93OfJrd1QqFokbPYipF+KOYAEjWBup1r91UBH1W7m8U3DGQPPEnZL8+YddjJ8/7XIr991sRyQJqdCEY6UarhNrL8VSM8Lp0G4misaY9HCHNgwVOKTKS8fvDtGBUdooiKQZodFY/X2R4lCpQeibzRDrrpr1RuK/nu+HM9E6OPNSJuJEU0EmyUHCkY7QqAzUZpISzQeGYCKZeR6RLpaYaFOZbVpxZzuYJ9WjgntSOL528qULmCALe7APh+DCKZTgCspQAQI9eIBHeLLurRfr1XqbrGas6c0u/IH1/gO1/ZkP</latexit>

x0 = x

<latexit sha1_base64="Qpdy3pro1NNJ8If446pKRpcn5sQ="></latexit>

✓1
<latexit sha1_base64="X550jq1v/sy12IXBWGz1dZtSXGU="></latexit>

✓2
<latexit sha1_base64="4y4omA+fYFk3QguH54PgfJeh8Us="></latexit>

✓0

<latexit sha1_base64="DRaYiwZYSZqS2pVkfLwQvAuQa+Q="></latexit>

N
=

4
<latexit sha1_base64="DRaYiwZYSZqS2pVkfLwQvAuQa+Q="></latexit>

N
=

4
<latexit sha1_base64="DRaYiwZYSZqS2pVkfLwQvAuQa+Q="></latexit>

N
=

4
<latexit sha1_base64="DRaYiwZYSZqS2pVkfLwQvAuQa+Q="></latexit>

N
=

4

<latexit sha1_base64="DRaYiwZYSZqS2pVkfLwQvAuQa+Q="></latexit>

N
=

4
<latexit sha1_base64="DRaYiwZYSZqS2pVkfLwQvAuQa+Q="></latexit>

N
=

4
<latexit sha1_base64="DRaYiwZYSZqS2pVkfLwQvAuQa+Q="></latexit>

N
=

4

<latexit sha1_base64="RF8t8qJG4/80r5NTWlg8foa7eQQ=">AAACKXicbVC7SgNBFJ2NrxhfUUstFhPBKuwG0TRCUAvLCOYBSQizk7vJkNkHM3clYdnGrxGs9E/s1NZ/sHbyKEzigQuHc+6L44SCK7SsTyO1srq2vpHezGxt7+zuZfcPaiqIJIMqC0QgGw5VILgPVeQooBFKoJ4joO4MbsZ+/RGk4oH/gKMQ2h7t+dzljKKWOtnjfNyabIkRqEhaCEN03Pg2Sa5K+U42ZxWsCcxlYs9IjsxQ6WR/Wt2ARR74yARVqmlbIbZjKpEzAUmmFSkIKRvQHjQ19akHqh1P7ifmqVa6phtIXT6aE/XvREw9pUaeozs9in216I3Ffz3H8RZOo1tqx9wPIwSfTS+7kTAxMMcZmV0ugaEYaUKZ5Pp5k/WppAx1knOrh9PfdVD2YizLpFYs2BeF8/tirnw9iyxNjsgJOSM2uSRlckcqpEoYeSLP5JW8GS/Gu/FhfE1bU8Zs5pDMwfj+BU/MqEE=</latexit>

D = 8
<latexit sha1_base64="RF8t8qJG4/80r5NTWlg8foa7eQQ=">AAACKXicbVC7SgNBFJ2NrxhfUUstFhPBKuwG0TRCUAvLCOYBSQizk7vJkNkHM3clYdnGrxGs9E/s1NZ/sHbyKEzigQuHc+6L44SCK7SsTyO1srq2vpHezGxt7+zuZfcPaiqIJIMqC0QgGw5VILgPVeQooBFKoJ4joO4MbsZ+/RGk4oH/gKMQ2h7t+dzljKKWOtnjfNyabIkRqEhaCEN03Pg2Sa5K+U42ZxWsCcxlYs9IjsxQ6WR/Wt2ARR74yARVqmlbIbZjKpEzAUmmFSkIKRvQHjQ19akHqh1P7ifmqVa6phtIXT6aE/XvREw9pUaeozs9in216I3Ffz3H8RZOo1tqx9wPIwSfTS+7kTAxMMcZmV0ugaEYaUKZ5Pp5k/WppAx1knOrh9PfdVD2YizLpFYs2BeF8/tirnw9iyxNjsgJOSM2uSRlckcqpEoYeSLP5JW8GS/Gu/FhfE1bU8Zs5pDMwfj+BU/MqEE=</latexit>

D = 8
<latexit sha1_base64="RF8t8qJG4/80r5NTWlg8foa7eQQ=">AAACKXicbVC7SgNBFJ2NrxhfUUstFhPBKuwG0TRCUAvLCOYBSQizk7vJkNkHM3clYdnGrxGs9E/s1NZ/sHbyKEzigQuHc+6L44SCK7SsTyO1srq2vpHezGxt7+zuZfcPaiqIJIMqC0QgGw5VILgPVeQooBFKoJ4joO4MbsZ+/RGk4oH/gKMQ2h7t+dzljKKWOtnjfNyabIkRqEhaCEN03Pg2Sa5K+U42ZxWsCcxlYs9IjsxQ6WR/Wt2ARR74yARVqmlbIbZjKpEzAUmmFSkIKRvQHjQ19akHqh1P7ifmqVa6phtIXT6aE/XvREw9pUaeozs9in216I3Ffz3H8RZOo1tqx9wPIwSfTS+7kTAxMMcZmV0ugaEYaUKZ5Pp5k/WppAx1knOrh9PfdVD2YizLpFYs2BeF8/tirnw9iyxNjsgJOSM2uSRlckcqpEoYeSLP5JW8GS/Gu/FhfE1bU8Zs5pDMwfj+BU/MqEE=</latexit>

D = 8
<latexit sha1_base64="RF8t8qJG4/80r5NTWlg8foa7eQQ=">AAACKXicbVC7SgNBFJ2NrxhfUUstFhPBKuwG0TRCUAvLCOYBSQizk7vJkNkHM3clYdnGrxGs9E/s1NZ/sHbyKEzigQuHc+6L44SCK7SsTyO1srq2vpHezGxt7+zuZfcPaiqIJIMqC0QgGw5VILgPVeQooBFKoJ4joO4MbsZ+/RGk4oH/gKMQ2h7t+dzljKKWOtnjfNyabIkRqEhaCEN03Pg2Sa5K+U42ZxWsCcxlYs9IjsxQ6WR/Wt2ARR74yARVqmlbIbZjKpEzAUmmFSkIKRvQHjQ19akHqh1P7ifmqVa6phtIXT6aE/XvREw9pUaeozs9in216I3Ffz3H8RZOo1tqx9wPIwSfTS+7kTAxMMcZmV0ugaEYaUKZ5Pp5k/WppAx1knOrh9PfdVD2YizLpFYs2BeF8/tirnw9iyxNjsgJOSM2uSRlckcqpEoYeSLP5JW8GS/Gu/FhfE1bU8Zs5pDMwfj+BU/MqEE=</latexit>

D = 8
<latexit sha1_base64="RF8t8qJG4/80r5NTWlg8foa7eQQ=">AAACKXicbVC7SgNBFJ2NrxhfUUstFhPBKuwG0TRCUAvLCOYBSQizk7vJkNkHM3clYdnGrxGs9E/s1NZ/sHbyKEzigQuHc+6L44SCK7SsTyO1srq2vpHezGxt7+zuZfcPaiqIJIMqC0QgGw5VILgPVeQooBFKoJ4joO4MbsZ+/RGk4oH/gKMQ2h7t+dzljKKWOtnjfNyabIkRqEhaCEN03Pg2Sa5K+U42ZxWsCcxlYs9IjsxQ6WR/Wt2ARR74yARVqmlbIbZjKpEzAUmmFSkIKRvQHjQ19akHqh1P7ifmqVa6phtIXT6aE/XvREw9pUaeozs9in216I3Ffz3H8RZOo1tqx9wPIwSfTS+7kTAxMMcZmV0ugaEYaUKZ5Pp5k/WppAx1knOrh9PfdVD2YizLpFYs2BeF8/tirnw9iyxNjsgJOSM2uSRlckcqpEoYeSLP5JW8GS/Gu/FhfE1bU8Zs5pDMwfj+BU/MqEE=</latexit>

D = 8

<latexit sha1_base64="0MSMPKCE/B1HrLnfTe2yAwqdA6I=">AAACO3icbVC7SgNBFJ2N7/hKtLRZjYJV2I2iNkIwIJYRjAaSEGZn7+qQ2Qczd0PCsrVfY6uVH2JtJ7b2TjZbaPTAhcO57+NEgiu0rDejMDe/sLi0vFJcXVvf2CyVt25VGEsGLRaKULYdqkDwAFrIUUA7kkB9R8CdM2hM8ndDkIqHwQ2OI+j59D7gHmcUtdQv7e4n3WxK0qAu4IWIIe0ijNDxkss0PT/a75cqVtXKYP4ldk4qJEezXzYKXTdksQ8BMkGV6thWhL2ESuRMQFrsxgoiygb0HjqaBtQH1UuyK1LzQCuu6YVSR4Bmpv7sSKiv1Nh3dKVP8UHN5ibivznH8WdWo3fWS3gQxQgBm272YmFiaE6cMl0ugaEYa0KZ5Pp4kz1QSRlqP39Ncoc8Uvkbo+kf2jV71qO/5LZWtU+qx9e1Sv0i92+Z7JA9ckhsckrq5Io0SYsw8kieyDN5MV6Nd+PD+JyWFoy8Z5v8gvH1DZ5zrnQ=</latexit>

F = 3
<latexit sha1_base64="0MSMPKCE/B1HrLnfTe2yAwqdA6I=">AAACO3icbVC7SgNBFJ2N7/hKtLRZjYJV2I2iNkIwIJYRjAaSEGZn7+qQ2Qczd0PCsrVfY6uVH2JtJ7b2TjZbaPTAhcO57+NEgiu0rDejMDe/sLi0vFJcXVvf2CyVt25VGEsGLRaKULYdqkDwAFrIUUA7kkB9R8CdM2hM8ndDkIqHwQ2OI+j59D7gHmcUtdQv7e4n3WxK0qAu4IWIIe0ijNDxkss0PT/a75cqVtXKYP4ldk4qJEezXzYKXTdksQ8BMkGV6thWhL2ESuRMQFrsxgoiygb0HjqaBtQH1UuyK1LzQCuu6YVSR4Bmpv7sSKiv1Nh3dKVP8UHN5ibivznH8WdWo3fWS3gQxQgBm272YmFiaE6cMl0ugaEYa0KZ5Pp4kz1QSRlqP39Ncoc8Uvkbo+kf2jV71qO/5LZWtU+qx9e1Sv0i92+Z7JA9ckhsckrq5Io0SYsw8kieyDN5MV6Nd+PD+JyWFoy8Z5v8gvH1DZ5zrnQ=</latexit>

F = 3

<latexit sha1_base64="RcYanoYAyzpLkAmVlPZjtSxVcAA="></latexit>

Batch N
Depth L
Pixels D
Filter F
Width W
Output O

Figure 5: Notation used in §3 (FCN, top) and §F (CNN, bottom). For FCN, D = F = 1. For
CNN, D = 8, F = 3, and the penultimate layer is global average pooling.
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B GLOSSARY

• N - batch size of inputs x to the NN f (θ, x). In a more general setting (§4), the number of
functions f(θ).

n - batch indices ranging from 1 to N.

• O - output size (e.g. number of logits) of the NN f (θ, x) for a single (N = 1) input x.

• The NTK matrix has shape NO× NO.

• W - width of an FCN, or number of channels of a CNN. Individual inputs x are usually
assumed to have the same size / number of channels.

• L - depth of the network, number of layers. In a more general setting (§4), number of
trainable parameter matrices, that are used in a possibly different number of subexpressions
in the network.

l - depth index ranging from 0 to L.

• K - number of subexpressions (primitives, nodes in the computation graph) of the network
f(θ, x). For NNs without weight sharing, K = L.

k - subexpression/primitive index ranging from 1 to K.

• D - total number of pixels (e.g. 1024 for a 32 × 32 image; 1 for an FCN) in an input and
every intermediate layer of a CNN ( SAME or CIRCULAR padding is assumed, to consider
the spatial size unchanged from layer to layer).

• F - total filter size (e.g. 9 for a 3× 3 filter; 1 for an FCN) in a convolutional filter of a CNN
(no striding and dilation is assumed for simplicity).

• Y - total size of a pre-activation / primitive / subexpression y (e.g. Y = DW for a layer
with D pixels and W channels; Y = W for FCN). Depending on the context, can represent
size of a single or particular pre-activation in the network, or the size of all pre-activations
together.

• C - in §4, the size of the axis along which a subexpression derivative ∂y
/
∂θ admits certain

structure (C can often be equal to Y or a significant fraction of it, e.g. W).
c - index along the structured axis, ranging from 1 to C.

• P - total size of trainable parameters. Depending on the context, can represent the size of a
particular weight matrix θl in some layer l (e.g. W2 for width-W FCN), or the size of all
parameters in the network.

• FP - forward pass, cost (time or memory, depending on the context) of evaluating f(θ, x)
on a single (N = 1) input x.

• If a variable is present in time or memory complexity analysis with an index such as k or
l, it is considered to be the maximum over that index, e.g. Yk = maxk Yk. This is used in
Table 2 for brevity.

• Jkl - the (usually negligible) cost of evaluating a single primitive Jacobian ∂yk/∂θl sub-
array (§D), given the structure present in yk according to §C.

• G - in Table 2 and §3.4, a variable related to the cost of contraction of Eq. (12), the pre-
cise value of which also depends on the structure present in the computation (see §C and
Table 3).

C TYPES OF STRUCTURED DERIVATIVES

Here we continue §4 and list the types of structures in pritimive derivatives ∂y
/
∂θ that allow linear

algebra simplifications of the NTK expression. Analysis from the following subsections is summa-
rized in Table 3.
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Structure of ∂y
/
∂θ ↓ Outside-in Left-to-right Inside-out

None w/ VJPs & JVPs: NO [FP] + N2O2P N2O [FP] Not possible
None w/ explicit matrices NOYP + N2O2P N2OYP + N2O2Y N2Y2P + N2OY2 + N2O2Y
Block-diagonal NOYP/C + N2O2P N2OYP/C + N2O2Y N2Y2P/C2 + N2OY2/C + N2O2Y
Constant block-diagonal NOYP/C + N2O2P N2OYP/C + N2O2Y N2Y2P/C3 + N2OY2/C + N2O2Y
Input block-tiled NOYP/C + N2O2P N2OYP/C + N2O2Y N2Y2P/C + N2OY2 + N2O2Y
Output block-tiled NOYP/C + N2O2P + NOY N2OYP/C + N2O2Y/C + NOY N2Y2P/C2 + N2OY2/C2 + N2O2Y/C + NOY
Block-tiled NOYP/C2 + N2O2P/C + NOY N2OYP/C2 + N2O2Y/C2 + NOY N2Y2P/C3 + N2OY2/C2 + N2O2Y/C + NOY

Table 3: Asymptotic time complexities of computing the contractions for NTK summands
Θ (fn1

1 , fn2
2 ) (θ0, . . . , θL)k1,k2l ∈ RO×O in Eq. (14), for all n1 and n2 from 1 to N (resulting in

an NO×NO NTK matrix). Time complexity of Structured derivatives is the minimum (due to using
np.einsum with optimal contraction order) of the row corresponding to the structure present in

a pair of primitives yk11 and yk22 . How it compares to Jacobian contraction and NTK-vector prod-
ucts (top row) depends on many variables, including the cost of evaluating the primitive FP. See
Table 1 and Table 7 for exact comparison for matrix multiplication and convolution. See §B for
legend.

C.1 NO STRUCTURE

We first consider the default cost of evaluating a single summand in Eq. (13), denoting individual
matrix shapes underneath:

Θl,k1,k2
θ (f1, f2) :=

∂f̃1

∂yk11

∂yk11
∂θl

∂yk22
∂θl

T
∂f̃2

∂yk22

T

=:

O1×O2︷ ︸︸ ︷
∂f̃1
∂y1︸︷︷︸

O1×Y1

∂y1

∂θ︸︷︷︸
Y1×P

∂y2
∂θ

T

︸ ︷︷ ︸
P×Y2

∂f̃2
∂y2

T

︸ ︷︷ ︸
Y2×O2

(14)

We have dropped indices l, k1 and k2 on the right-hand side of Eq. (14) to avoid clutter, and consider
θ := θl, y1 := yk11 , y2 := yk22 until the end of this section. To simplify exposition, we also also
assume O1 = O2 = O and Y1 = Y2 = Y.

Under this assumption, there are 3 ways of contracting Eq. (14) that cost

(a) Outside-in: OYP + O2P
(b) Left-to-right and right-to-left: OYP + O2Y.
(c) Inside-out-left and inside-out-right: Y2P + OY2 + O2Y.

In the next sections, we look at how these costs are reduced given certain structure in ∂y
/
∂θ.

C.2 BLOCK-DIAGONAL

Assume ∂y/∂θ = ⊕C
c=1∂y

c/∂θc, where ⊕ stands for direct sum of matrices, i.e. ∂y/∂θ is a block-
diagonal matrix made of blocks {∂yc/∂θc}C

c=1, where ∂yc/∂θc have shapes (Y/C)× (P/C). Here
{yc}C

c=1 and {θc}C
c=1 are partitions of y and θ respectively. In NNs this structure is present in binary

bilinear operations (on θ and another argument) such as multiplication, division, batched matrix
multiplication, or depthwise convolution. Then Eq. (14) can be re-written as

Θl,k1,k2
θ (f1, f2) =

∂f̃1
∂y1

∂y1
∂θ

∂y2
∂θ

T ∂f̃2
∂y2

T

(15)

=
∂f̃1
∂y1

(
⊕C
c=1

∂yc1
∂θc

)(
⊕C
c=1

∂yc2
∂θc

)T
∂f̃2
∂y2

T

(16)

=
∂f̃1
∂y1

(
⊕C
c=1

[
∂yc1
∂θc

∂yc2
∂θc

T
])

∂f̃2
∂y2

T

(17)

=

C∑
c=1

∂f̃1
∂yc1

[
∂yc1
∂θc

∂yc2
∂θc

T
]
∂f̃2
∂yc2

T

, (18)
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where we have applied the block matrix identity

[A1, . . . , AC]T
(
⊕C
c=1B

c
)

[D1, . . . , DC] =

C∑
c=1

AcBcDc. (19)

We now perform a complexity analysis similar to Eq. (14):

Θl,k1,k2
θ (f1, f2) =

C∑
c=1

O×O︷ ︸︸ ︷
∂f̃1
∂yc1︸︷︷︸

O×(Y/C)

∂yc1
∂θc︸︷︷︸

(Y/C)×(P/C)

∂yc2
∂θc

T

︸ ︷︷ ︸
(P/C)×(Y/C)

∂f̃2
∂yc2

T

︸ ︷︷ ︸
(Y/C)×O

In this case complexities of the three methods become

1. Outside-in: OYP/C + O2P.
2. Left-to-right and right-to-left: OYP/C + O2Y.
3. Inside-out-left and inside-out-right: Y2P/C2 + OY2/C + O2Y.

C.3 CONSTANT BLOCK-DIAGONAL

Assume ∂y
∂θ = IC ⊗ ∂y1

∂θ1
, and ∂y1

∂θ1
has shape (Y/C) × (P/C). In NNs, this is present in fully-

connected, convolutional, locally-connected, attention, and many other layers that contain a matrix
multiplication along some axis. This is also present in all unary elementwise linear operations on θ
like transposition, negation, reshaping and many others.

This is a special case of §C.2 with ∂yc

∂θc
= ∂y1

∂θ1
for any c. Here a similar analysis applies, yielding

Θl,k1,k2
θ (f1, f2) =

C∑
c=1

O×O︷ ︸︸ ︷
∂f̃1
∂yc1︸︷︷︸

O×(Y/C)

∂y11
∂θ1︸︷︷︸

(Y/C)×(P/C)

∂y12
∂θ1

T

︸ ︷︷ ︸
(P/C)×(Y/C)

∂f̃2
∂yc2

T

︸ ︷︷ ︸
(Y/C)×O

and the same contraction complexities as in §C.2, except for the Inside-out order, where the inner
contraction term costs only Y2P/C3, since it is only contracted once instead of C times as in Block-
diagonal.

C.4 INPUT BLOCK-TILED

Assume ∂y
∂θ = 1(1,C) ⊗ ∂y

∂θ1
, where 1(1,C) is an all-ones matrix of shape 1 × C, and ∂y

∂θ1
has shape

Y× (P/C). In this case

Θl,k1,k2
θ (f1, f2) =

∂f̃1
∂y1

∂y1
∂θ

∂y2
∂θ

T ∂f̃2
∂y2

T

(20)

=
∂f̃1
∂y1

(
1(1,C) ⊗

∂y1
∂θ1

)(
1(1,C) ⊗

∂y2
∂θ1

)T
∂f̃2
∂y2

T

(21)

=
∂f̃1
∂y1

(
C1(1,1) ⊗

[
∂y1
∂θ1

∂y2
∂θ1

T
])

∂f̃2
∂y2

T

(22)

= C
∂f̃1
∂y1

[
∂y1
∂θ1

∂y2
∂θ1

T
]
∂f̃2
∂y2

T

. (23)

The matrix shapes are

Θl,k1,k2
θ (f1, f2) = C

O×O︷ ︸︸ ︷
∂f̃1
∂y1︸︷︷︸
O×Y

∂y1
∂θ1︸︷︷︸

Y×(P/C)

∂y2
∂θ1

T

︸ ︷︷ ︸
(P/C)×Y

∂f̃2
∂y2

T

︸ ︷︷ ︸
Y×O
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Which leads to the following resulting complexities:

1. Outside-in: OYP/C + O2P.
2. Left-to-right and right-to-left: OYP/C + O2Y.
3. Inside-out and inside-out-right: Y2P/C + OY2 + O2Y.

C.5 OUTPUT BLOCK-TILED

Assume ∂y
∂θ = 1(C,1) ⊗ ∂y1

∂θ , where ∂y1

∂θ has shape (Y/C) × P. This occurs during broadcasting or
broadcasted arithmetic operations. In this case

Θl,k1,k2
θ (f1, f2) =

∂f̃1
∂y1

∂y1
∂θ

∂y2
∂θ

T ∂f̃2
∂y2

T

(24)

=
∂f̃1
∂y1

(
1(C,1) ⊗

∂y11
∂θ

)(
1(C,1) ⊗

∂y12
∂θ

)T
∂f̃2
∂y2

T

(25)

=
∂f̃1
∂y1

(
1(C,C) ⊗

[
∂y11
∂θ

∂y12
∂θ

T
])

∂f̃2
∂y2

T

(26)

=

(
C∑
c=1

∂f̃1
∂yc1

)[
∂y11
∂θ1

∂y12
∂θ1

T
](

C∑
c=1

∂f̃2
∂yc2

T)
, (27)

where we have used a block matrix identity

[A1, . . . , AC]T
(
1(C,C) ⊗B

)
[D1, . . . , DC] =

(
C∑
c=1

Ac

)
B

(
C∑
c=1

Dc

)
.

Finally, denoting the shapes,

Θl,k1,k2
θ (f1, f2) =

O×O︷ ︸︸ ︷(
C∑
c=1

∂f̃1
∂yc1

)
︸ ︷︷ ︸

O×(Y/C)

∂y11
∂θ︸︷︷︸

(Y/C)×P

∂y12
∂θ

T

︸ ︷︷ ︸
P×(Y/C)

(
C∑
c=1

∂f̃2
∂yc2

T)
︸ ︷︷ ︸

(Y/C)×O

,

complexities of the three methods become (notice we add an OY term to perform the sums)

1. Outside-in: OYP/C + O2P + OY.
2. Left-to-right: OYP/C + O2Y/C + OY.
3. Inside-out: Y2P/C2 + OY2/C2 + O2Y/C + OY.

C.6 BLOCK-TILED

Assume ∂y
∂θ = 1(C,C) ⊗ ∂y1

∂θ1
, where ∂y1

∂θ1
has shape (Y/C)× (P/C). This occures for instance when

y is a constant. In this case

Θl,k1,k2
θ (f1, f2) =

∂f̃1
∂y1

∂y1
∂θ

∂y2
∂θ

T ∂f̃2
∂y2

T

(28)

=
∂f̃1
∂y1

(
1(C,C) ⊗

∂y11
∂θ1

)(
1(C,C) ⊗

∂y12
∂θ1

)T
∂f̃2
∂y2

T

(29)

=
∂f̃1
∂y1

(
C1(C,C) ⊗

[
∂y11
∂θ1

∂y12
∂θ1

T
])

∂f̃2
∂y2

T

(30)

= C

(
C∑
c=1

∂f̃1
∂yc1

)[
∂y11
∂θ1

∂y12
∂θ1

T
](

C∑
c=1

∂f̃2
∂yc2

T)
, (31)
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This results in the following contraction:

Θl,k1,k2
θ (f1, f2) = C

O×O︷ ︸︸ ︷(
C∑
c=1

∂f̃1
∂yc1

)
︸ ︷︷ ︸

O×(Y/C)

∂y11
∂θ1︸︷︷︸

(Y/C)×(P/C)

∂y12
∂θ1

T

︸ ︷︷ ︸
(P/C)×(Y/C)

(
C∑
c=1

∂f̃2
∂yc2

T)
︸ ︷︷ ︸

(Y/C)×O

,

with final complexities of

1. Outside-in: OYP/C2 + O2P + OY.
2. Left-to-right: OYP/C2 + O2Y/C2 + OY.
3. Inside-out: Y2P/C3 + OY2/C2 + O2Y/C + OY.

C.7 BATCHED NTK COST ANALYSIS

For simplicity, we have considered evaluating the NTK Θ (f1, f2) on a single pair of functions f1
and f2. In practice one is almost always interested in computing the NTK for all pairs of functions
fn1
1 and fn2

2 from two batches {fn1
1 }N1

n1=1 and {fn2
2 }N2

n2=1, resulting in a N1O1×N2O2 NTK matrix.
In common NNs, this corresponds to having batches of N1 and N2 inputs x1 and x2 respectively,
and having fni1

(
θ0, . . . , θL) := f

(
θ0, . . . , θL, xnii

)
. In this case the same argument as in previous

section follows (given identical assumptions for all n1 and n2), but the cost of contractions involving
terms from different batches grow by a multiplicative factor of N1N2, while all other costs grow by
a factor of N1 or N2. To declutter notation we consider N1 = N2 = N, and summarize resulting
batched costs in Table 3.

C.8 COMPLEX STRUCTURE COST ANALYSIS

In previous sections and in §4, we have considered ∂y1
/
∂θ and ∂y2

/
∂θ admitting the same, and at

most one kind of structure. While this is a common case, in general these derivatives may admit mul-
tiple types of structures along multiple axes (for instance, addition is Constant block-diagonal along
non-broadcasted axes, and Output block-tiled along the broadcasted axes), and ∂y1

/
∂θ and ∂y2

/
∂θ

may have different types of structures and respective axes, if the same weight θ is used in multiple
different subexpressions of different kind. In such cases, equivalent optimizations are possible (and
are implemented in the code) along the largest common subsets of axes for each type of structure
that ∂y1

/
∂θ and ∂y2

/
∂θ have.

For example, let θ be a matrix in RW×W, y1 be multiplication by a scalar y1(θ) = 2θ, and y2 be
matrix-vector multiplication y2(θ) = θx, x ∈ RW. In this case ∂y1

/
∂θ = 2IW ⊗ IW, i.e. it is

Constant block-diagonal along axes both 1 and 2. ∂y2
/
∂θ = IW ⊗ xT , i.e. it is also Constant

block-diagonal, but only along axis 1. Hence, the NTK term containing ∂y1
/
∂θ and ∂y2

/
∂θ will

be computed with Constant block-diagonal simplification along axis 1. There are probably more
computationally optimal ways of processing different structure combinations, as well as more types
of structures that could be leveraged for NTK computation, and we intend to investigate it in future
work.

C.9 EXAMPLE

In §4 and previous sections we have demonstrated how structure in primitive derivatives ∂y
/
∂θ

can be leveraged to reduce the cost of computing NTK. In this section we will consider a simple
example of applying the framework of structured derivatives to FCNs to reproduce Table 1. See §F
for equivalent application for CNNs.

As in §3, we consider a deep FCN with width W and O outputs. We assume the network is deep
and/or wide enough to ignore the size of inputs x, and we ignore biases. In this case the number
of parameters is quadratic in width P ∼ W2, and intermediate primitive outputs have the same size
as the width, Y = W. As in §3.4, we recognize that individual primitives yk,n (θk) = θlx

k,n,
as matrix multiplications

(
θk ∈ RW×W, xk,n ∈ RW) admit the Constant block-diagonal structure(

∂yk,n/∂θk = IW ⊗ xk,nT
)

with C = Y = W. Finally, FP costs W2, and J = YP/C2 = W, i.e.
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Structure of ∂y
/
∂θ ↓ Outside-in Left-to-right Inside-out

None w/ JVPs and VJPs N2O2W2 N2OW2 Not possible
None NW3O + N2O2W2 N2OW3 + N2O2W N2W4 + NOW2 + N2O2W
Constant block-diagonal N2O2W2 N2OW2 + N2O2W N2O2W

Table 4: Asymptotic time complexities of computing a single fully-connected layer NTK con-
tribution. See §C.9 for discussion, Table 3 for a more general setting, Table 1 for the case of deep
networks, and §B for detailed legend.

is negligible. Substituting all these equalities into Table 3 we get a simplified Table 4, that confirms
the benefits of NTK-vector products and Structured derivatives for FCNs.

D JACOBIAN RULES FOR STRUCTURED DERIVATIVES

Here we discuss computing primitive ∂y/∂θ derivatives as part of our implementation in §5. We
provide 4 options to compute them through arguments j_rules and fwd :

1. Forward mode, fwd = True , is equivalent to jax.jacfwd , forward mode Jacobian
computation, performed by applying the JVP to P columns of the IP identity matrix. Best
for P < Y.

2. Reverse mode, fwd = False , is equivalent to jax.jacrev , reverse mode Jacobian
computation, performed by applying the VJP to Y columns of the IY identity matrix. Best
for P > Y.

3. Automatic mode, fwd = None , selects forward or reverse mode for each primitive based
on parameters and output shapes.

4. Rule mode, j_rules = True , queries a dictionary of Jacobian rules (similar to the dic-
tionary of structure rules) with our custom implementations of primitive Jacobians, instead
of computing them through VJPs or JVPs. The reason for introducing custom rules fol-
lows our discussion in §3.4: while JAX has computationally optimal VJP and JVP rules,
respective Jacobian computations are not guaranteed to be most efficient. In practice, we
find our rules to be most often faster, however this effect is not perfectly consistent (can
occasionally be slower) and often negligible, requiring further investigation.

The default setting is j_rules = True , fwd = None , i.e. a custom Jacobian implementation is
preferred, and, if absent, Jacobian is computed in forward or reverse mode based on parameters
and output sizes. Note that in all settings, structure of ∂y/∂θ is used to compute only the smallest
Jacobian subarray necessary, and therefore most often inputs to VJP/JVP will be smaller identity
matrices IP/C or IY/C respectively, and all methods will return a smaller Jacobian matrix of size
(Y/C) × (P/C). We denote the (usually negligible) memory costs of these sub-arrays as J. If for
any reason (for example debugging) you want the whole ∂y/∂θ Jacobians computed, you can set
the a_rules=False , i.e. disable structure rules.

E KNOWN ISSUES

We will continue improving our function transformations in various ways after release, and welcome
bug reports and feature requests. Below are the missing features / issues at the time of submission:

1. No support for complex differentiation.
2. Not tested on functions with advanced JAX primitives like parallel collectives

( jax.lax.psum , jax.lax.pmean , etc.), gradient checkpointing ( jax.remat ), com-

piled loops ( jax.lax.scan ; Python loops are supported).

3. Our current implementation of NTK-vector products relies on XLA’s common subexpres-
sion elimination (CSE) in order to reuse computation across different pairs of inputs x1
and x2, and, as shown in Fig. 1 and Fig. 3, can have somewhat unpredictable wall-clock
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Transposable primitive in jax.ad.primitive_transposes Constant block-diagonal Block-diagonal Output block-tiled
add X X
add any X X
all gather
all to all
broadcast in dim X X
call
complex X
concatenate
conj X
conv general dilated
convert element type X
cumsum
custom lin
custom linear solve
device put X
div X X
dot general X X
dynamic slice
dynamic update slice
fft
gather
imag X
linear call
mul X X
named call
neg X
pad X
pdot
ppermute
psum
real X
reduce sum X
reduce window sum X
remat call
reshape X
rev X
scatter
scatter-add
scatter-mul
select
select and gather add
select and scatter add
sharding constraint
sharding constraint
slice
squeeze X
sub X X
transpose X
triangular solve
while
xla call
xla pmap
xmap
zeros like X

Table 5: List of all linear primitives and currently implemented Structured derivatives rules.
In the future, more primitives and more rules can be supported, yet at the time of writing even
the small set currently covered enables dramatic speed-up and memory savings in contemporary
ImageNet models as in Fig. 2 and Fig. 4.
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time performance and memory requirements. We believe this could correspond to CSE not
always working perfectly, and are looking into a more explicitly efficient implementation.

F COMPLEXITY ANALYSIS FOR CONVOLUTIONAL NETWORKS

Here we go through the same analysis as in §3 for the case of convolution, where before the top
layer L global average pooling is applied. In this case the weights of the network θ are expanded
by the total filter size F, and inputs x, pre-activations yl and post-activations xl become matrices of
shape D×W, where D is the total number of pixels. See Fig. 5 for visual depiction. We will again
assume that O = O (LW).

F.1 JVP AND VJP

Forward pass, JVP, and VJP costs [cost of all intermediate layers] + [cost of the top layer] =[
LDFW2

]
+ [OW] ∼ LDFW2 time. Forward pass and JVP require [size of all weights] +

[size of activations at a single layer] =
[
LFW2 + OW

]
+[DW + O] ∼ LFW2+DW memory. VJP

requires [size of all weights] + [size of activations in all layers] + [size of a single weight matrix] =[
LFW2 + OW

]
+ [LDW + O] +

[
FW2 + OW

]
∼ LFW2 + LDW memory.

Batched inputs. Time cost of JVP and VJP increase linearly in N up to NLDFW2. JVP memory
cost becomes [size of all weights] + N [size of activations at a single layer] =

[
LFW2 + OW

]
+

N [DW + O] ∼ LFW2 + NDW + NO. VJP memory cost becomes [size of all weights] +
N [size of activations in all layers] + N [size of a single weight matrix] =

[
LFW2 + OW

]
+

N [LDW + O] + N
[
FW2 + OW

]
∼ LFW2 + NLDW + NFW2 + NOW.

• JVP costs NLDFW2 time and LFW2 + NDW + NO memory.
• VJP costs NLDFW2 time and LFW2 + NLDW + NFW2 + NOW memory.

F.2 JACOBIAN

Computing the Jacobian costs O times the cost of VJP, hence time is
ON ([cost of all intermediate layers] + [cost of the top layer]) = ON

([
LDFW2

]
+ [OW]

)
∼

NLODFW2 + NO2W. Memory is [size of all weights] + N [size of activations in all layers] +
ON [size of a single weight matrix] + ON [activations in a single layer] =

[
LFW2 + OW

]
+

N [LDW + O]+ON
[
FW2 + OW

]
+ON [DW] ∼ LW2 +NLDW+NODW+NOFW2 +NO2W

Jacobian costs NLODFW2+NO2W time and LW2+NOFW2+NO2W+NLDW+NODW
memory.

F.3 JACOBIAN CONTRACTION

Since weight matrices are increased by F, the contraction cost goes up to N2LO2FW2 time
and N2O2 + NOFW2 memory. The cost of computing the Jacobian is also modified (§F.2),
which results in N2LO2FW2 + NLODFW2 + NO2W ∼ N2LO2FW2 + NLODFW2 time and(
N2O2 + NOFW2

)
+
(
LFW2 + NOFW2 + NO2W + NLDW + NODW

)
∼ N2O2 +NOFW2 +

NO2W + NLDW + NODW + LFW2 memory.

Jacobian contraction costs N2LO2FW2+NLODFW2 time and N2O2+NOFW2+NO2W+
NLDW + NODW + LFW2 memory.
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Structure of ∂y
/
∂θ ↓ Outside-in Left-to-right Inside-out

Constant block-diagonal NODFW2 + N2O2FW2 N2ODFW2 + N2O2DW N2D2FW + N2OD2W + N2O2DW

Table 6: Asymptotic time complexity of contracting Θl,k1,k2
θ (f1, f2) corresponding to a CNN

primitive obtained by substituting Y = DW, C = W, and P = FW2 into Table 3. The time cost of
Structured derivatives is the minimum of the three entries due to using optimal contraction path by
np.einsum .

Method Time Memory
Jacobian contraction N2LO2FW2 + DFN LOW2 NOFW2 + N2O2 + DNLW + DNOW + LFW2 D > OW
NTK-vector products N2 O2W + DFN2LOW2 NOFW2 + N2O2 + DNLW + DNOW + LFW2 N = 1

Structured derivatives N2LO2 min
(

FW2,DW + DFW2

O ,DW + D2W
O + D2FW

O2

)
+ DFN LOW2 NDFW + N2O2 + DNLW + DNOW + LFW2 D < OW

Table 7: Asymptotic time and memory cost of computing the NTK for a CNN with global
average pooling. Costs are for a pair of batches of inputs of size N each, and for L-deep, W -
wide CNN with O outputs and D pixels in each layer, with filter size F. Resulting NTK has shape
NO× NO. Structured derivatives reduce both time and memory complexity (memory under a mild
condition of D < OW), and are asymptotically beneficial over Jacobian contraction under a set
of conditions on F,W,D, and O. Note: presented are asymptotic cost estimates; in practice, all
methods incur large constant multipliers (e.g. at least 3x for time; see §3.1). However, this generally
does not impact the relative performance of different methods. See §F for discussion, Table 1 for
FCN, and Table 2 for generic cost analysis.

F.4 STRUCTURED DERIVATIVES

Convolution is Constant block-diagonal along the output channel axis with C = W, P = FW2,
Y = DW. Substituting this in Table 3, the cost of contraction is the minimum of the costs
from Table 6. If we exclude the Inside-out contraction path from np.einsum (in practice it
will always select the best out of three) for simplicity, we can and conclude that for L layers,
the time cost of the contraction is at most N2LO2 min

(
FW2,DW

)
+ DFNLOW2, as the mini-

mum cost between the Outside-in and Left-to-right. Note that this dominates the time cost of
the Jacobian from §F.2, so we don’t need to modify it further. Memory due to Jacobian computa-
tion is [size of all weights]+N [size of activations in all layers]+NO [activations in a single layer]+
[size of primitive derivatives] =

[
LFW2 + OW

]
+N [LDW + O]+NO [DW]+N [DW] ∼ LFW2+

NLDW + NODW. For Constant block-diagonal structure, J = YP/C2 = DFW, negligible under
a mild condition of D < OW compared to the memory savings (due to not needing to compute or
store ∂f

/
∂θl derivatives) of NOFW2 + NO2W.

F.5 NTK-VECTOR PRODUCTS

The cost of this approach is asymptotically equivalent to the cost of Jacobian (§F.2), since it consists
of O VJPs followed by O (cheaper) JVPs. Therefore it costs LODFW2 + O2W time and LFW2 +
OFW2 + O2W + LDW + ODW memory.

Batched inputs. In a batched setting Eq. (10) is repeated for each pair of inputs, and therefore time
increases by a factor of N2 to become N2LODFW2 + N2O2W. Memory only grows linearly in
N (except for storing the result of size N2O2), by similar argument to §3.5, i.e. becomes N2O2 +(
LFW2 + NOFW2 + NO2W + NLDW + NODW

)
total memory.

NTK computation as a sequence of NTK-vector products costs N2LODFW2 + N2O2W
time and N2O2 + NOFW2 + LFW2 + NLDW + NODW memory.
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G ADDITIONAL DERIVATIONS

Below we derive Eq. (9) in §3.4:

Θl
θ (x1, x2) =

∂f (θ, x1)

∂ylx1

(
IW ⊗ xl1

T
)(

IW ⊗ xl2
T
)T ∂f (θ, x2)

∂ylx2

T

= (32)

=
∂f (θ, x1)

∂ylx1

(
IW ⊗

[
xl1
T
xl2

]) ∂f (θ, x2)

∂ylx2

T

= (33)

=
(
xl1
T
xl2

)[∂f (θ, x1)

∂ylx1

∂f (θ, x2)

∂ylx2

T
]
, (34)

where we were able to pull out
(
xl1
T
xl2

)
since it is a scalar.

Note that similarly to K-FAC (Martens & Grosse, 2015), in this example we leverage the structure
in the FCN pre-activation derivative w.r.t. parameters, and we use the mixed-product property, i.e.
(A⊗B) (C ⊗D) = (AC) ⊗ (BD). However, in the general case this is not enough, and Struc-
tured derivatives rely on three components: (1) a direct sum linear algebra Eq. (19), (2) symbolic
simplification of expressions with an identity matrix (§C.3), and (3) optimal order of contractions
in Eq. (12) (e.g. “Inside-out” (Table 4), which is not possible to achieve with standard AD tools).
To our knowledge, all three components are necessary to achieve our asymptotic complexities, and
cannot be achieved by leveraging the mixed-product property alone.

H EXPERIMENTAL DETAILS

All experiments were performed in JAX (Bradbury et al., 2018) using 32-bit precision.

Throughout this work we assume the cost of multiplying two matrices of shapes (M,K) and (K,P )
to be MKP . While there are faster algorithms for very large matrices, the XLA compiler (used by
JAX, among other libraries) does not implement them, so our assumption is accurate in practice.

Hardware. CPU experiments were run on Dual 28-core Intel Skylake CPUs with at least 240 GiB of
RAM. NVIDIA V100 and NVIDIA P100 used a respective GPU with 16 GiB GPU RAM. TPUv3
and TPUv4 have 8 and 32 GiB of RAM respectively, and use the default 16/32-bit mixed precision.

Fig. 5 is adapted from Novak et al. (2019) with authors’ permission.

Fig. 1 and Fig. 3: a 10-layer, ReLU FCN was constructed with the Neural Tangents (Novak
et al., 2020) nt.stax API. Default settings (weight variance 1, no bias) were used. Indi-
vidual inputs x had size 3. Jacobian contraction was evaluated using nt.empirical_ntk_fn

with trace_axes=(), diagonal_axes=(), vmap_axes=0 . Jacobian was evaluated using

jax.jacobian with a vmap over inputs x. For time measurements, all functions were

jax.jit ted, and timing was measured as the average of 100 random samples (compilation time
was not included). For FLOPs, the function was not JITted, and FLOPs were measured on CPU
using the utils.get_flops function that is released together with our code.4

Fig. 2 and Fig. 4: for ResNets, implementations from Flax (Heek et al., 2020) were used, specifi-
cally flax.examples.imagenet.models . For WideResNets, the code sample from Novak et al.
(2020) was used.5 For all other models, we used implementations from https://github.com/
google-research/vision transformer. Inputs were random arrays of shapes 224×224×3. All
models were JITted. All reported values are averages over 10 random samples. For each setting, we
ran a grid search over the batch size N in

{
2k
}9
k=0

, and reported the best time divided by N2, i.e.
best possible throughput in each setting.

4The XLA team has let us know that if JITted, the FLOPs are currently correctly computed only on TPU,
but are incorrect on other platforms. Therefore we compute FLOPs of non-JITted functions.

5We replaced stax.AvgPool((8, 8)), stax.Flatten() with stax.GlobalAvgPool() .
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I APPLICATIONS WITH A LIMITED COMPUTE BUDGET

While our methods allow to dramatically speed-up the computation of NTK, all of them still scale
as N2O2 for both time and memory, which can be intractable for large datasets and/or large outputs.

Here we present several settings in which our proposed methods still provide substantial time and
memory savings, even when instantiating the entire NO×NO NTK is not feasible or not necessary.

• NTK-vector products. In many applications one only requires computing the NTK-vector
product linear map

Θθ : v ∈ RNO 7→ Θθv ∈ NO, (35)

without computing the entire NTK matrix Θθ. One common setting is using the power
iteration method (Müntz, 1913) to compute NTK condition number and hence trainability
of the respective NN (Lee et al., 2019; Chen et al., 2021a;b). Another setting is using
conjugate gradients to compute Θ−1θ Y when doing kernel ridge regression with the NTK
(Jacot et al., 2018; Lee et al., 2019; Zhou et al., 2021).
Eq. (35) is the same map as the one we considered in §3.5, and naturally, NTK-vector prod-
ucts can provide a substantial speed-up over Jacobian contraction in this setting. Precisely,
a straightforward application of Jacobian contraction yields

Θθv︸︷︷︸
NO×1

=
∂f (θ, x1)

∂θ︸ ︷︷ ︸
NO×P

∂f (θ, x2)

∂θ

T

︸ ︷︷ ︸
P×NO

v︸︷︷︸
NO×1

. (36)

Combined with the cost of computing the weight space cotangents ∂f/∂θ, such evaluation
costs NO [FP] time, i.e. the cost of instantiating the entire Jacobian. Alternatively, one
could store the entire Jacobians of sizes NOP in memory, and compute a single NTK-
vector product in NOP time.
In contrast, NTK-vector products allow to compute an NTK-vector product at a cost asymp-
totically equivalent to a single VJP call (§3.5), i.e. N [FP], O times faster than Jacobian
contraction without caching. With caching, fastest method will vary based on the cost of
[FP] relative to OP, as discussed in §4, but NTK-vector products will remain substantially
more memory-efficient due to not caching the entire NOP Jacobians.

• Batching. In many applications it suffices to compute the NTK over small batches of
the data. For example Dauphin & Schoenholz (2019); Chen et al. (2021a;b) estimate the
conditioning by computing an approximation to the NTK on N equal to 128, 32, and 48
examples respectively. Similarly, Zhou et al. (2021) use a small batch size of N = 25 to
meta-learn the network parameters by replacing the inner SGD training loop with NTK
regression.

• Pseudo-NTK. Many applications (§2) compute a pseudo-NTK of size N × N, which is
commonly equal to one of its O diagonal blocks, or to the mean of all O blocks. The
reason for considering such approximation is that in the infinite width limit, off-diagonal
entries often converge to zero, and for wide-enough networks this approximation can be
justified. Compute-wise, these approximations are equivalent to having O = 1. While an
important contribution of our work is to enable computing the full NO×NO NTK quickly,
if necessary, Structured derivatives can be combined with the O = 1 approximations, and
still provide an asymptotic speed-up and memory savings relative to prior works.

J FINITE AND INFINITE WIDTH NTK

In this work we focus on computing the finite width NTK Θθ (x1, x2), defined in Eq. (1), that we
repeat below with an addition of a batch size N:

F-NTK (finite width): Θθ(x1, x2)︸ ︷︷ ︸
NO×NO

:=
[
∂f(θ, x1)

/
∂θ
]︸ ︷︷ ︸

NO×P

[
∂f(θ, x2)

/
∂θ
]T︸ ︷︷ ︸

P×NO

. (37)
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Another highly important object in deep learning theory is the infinite width NTK Θ (x1, x2), intro-
duced in the seminal work of Jacot et al. (2018):

I-NTK (infinite width): Θ(x1, x2)︸ ︷︷ ︸
NO×NO

:= lim
W→∞

Eθ∼N (0,IP)

Θθ (x1, x2)︸ ︷︷ ︸
NO×NO

 . (38)

A natural question to ask is what are the similarities and differences of F- and I-NTK, when is one
more applicable than the other, and what are their implementation and computational costs.

Applications. At a high level, F-NTK describes the local/linearized behavior of of the finite width
NN f (θ, x) (Lee et al., 2019). In contrast, I-NTK is an approximation that is exact only in the
infinite width W limit, and only at initialization (θ ∼ N (0, IP)). As such, the resulting I-NTK has
no notion of width W, parameters θ, and cannot be computed during draining, or in a transfer or
meta-learning setting, where the parameters θ are updated. As a consequence, any application to
finite width networks (§2) is better served by the F-NTK, and often impossible with the I-NTK.

In contrast, I-NTK describes the behavior of an infinite ensemble of infinitely wide NNs. In certain
settings this can be desirable, such as when studying the inductive bias of certain NN architectures
(Xiao et al., 2020) or uncertainty (Adlam et al., 2020), marginalizing away the dependence on spe-
cific parameters θ. However, care should be taken when applying I-NTK findings to the finite width
realm, since many works have demonstrated substantial finite width effects that cannot be captured
by the I-NTK (Novak et al., 2019; Arora et al., 2019b; Lee et al., 2019; Yaida, 2020; Hanin & Nica,
2020; Lee et al., 2020).

Mathematical scope. Another significant difference between F- and I-NTK is the scope of their
definitions in Eq. (37) and Eq. (38) and mathematical tractability.

The F-NTK is well-defined for any differentiable (w.r.t. θ) function f , and our methods are respec-
tively applicable to any differentiable functions. In fact, our work supports any Tangent Kernels (not
necessarily “Neural”), and is not specific to NNs at all.

In contrast, the I-NTK requires the function f to have the concept of width W (that can be mean-
ingfully taken to infinity) to begin with, and further requires f and θ to satisfy many conditions in
order for the I-NTK to be well-defined (Yang, 2019). In order for I-NTK to be well-defined and
computable in closed-form, f needs to be built out of a relatively small, hand-selected number of
primitives that admit certain Gaussian integrals to have closed-form solutions. Examples of ubiqui-
tous primitives that don’t allow a closed-form solution include attention with standard parameteriza-
tion (Hron et al., 2020); max-pooling; sigmoid, (log-)softmax, tanh, and many other nonlinearities;
various kinds of normalization (Yang et al., 2019); non-trivial weight sharing (Yang, 2020); and
many other settings. Going forward, it is unlikely that the I-NTK will scale to the enormous variety
of architectures introduced by the research community each year.

Implementation tractability. Above we have demonstrated that the I-NTK is defined for a very
small subset of functions admitting the F-NTK. A closed-form solution exists for an even smaller
subset. However, even when the I-NTK admits a closed-form solution, it is important to consider
the complexity of implementing it.

Our implementation for computing the F-NTK is applicable to any differentiable function f , and
requires no extra effort when switching to a different function g. It is similar to JAX’s highly-generic
function transformations such as jax.jit or jax.vmap .

In contrast, there is no known way to compute the I-NTK for an arbitrary function f , even if the
I-NTK exists in closed form. The best existing solution to date is provided by Novak et al. (2020),
which allows to construct f out of the limited set of building blocks provided by the authors. How-
ever, one cannot compute the I-NTK for a function implemented in a different library such as Flax
(Heek et al., 2020), or Haiku (Hennigan et al., 2020), or bare-bone JAX. One would have to re-
implement it using the primitives provided by Novak et al. (2020). Further, for a generic architec-
ture, the primitive set is unlikely to be sufficient, and the function will need to be adapted to admit a
closed-form I-NTK.
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Computational tractability. F-NTK and I-NTK have different time and memory complexities, and
a fully general comparison is an interesting direction for future work. Here we provide discussion
for deep FCNs and CNNs.

Networks having a fully-connected top (L) readout layer have a constant block-diagonal I-NTK,
hence its cost does not scale with O. The cost of computing the I-NTK for a deep FCN scales as
N2L for time and N2 for memory. A deep CNN without pooling costs N2DL time and N2D memory
(where D is the total number of pixels in a single input/activation; D = 1 for FCNs). Finally, a
deep CNN with pooling, or any other generic architecture that leverages the spatial structure of
inputs/activations, costs N2D2L time and N2D2 memory. This applies to all models in Fig. 2 and
Fig. 4, Graph Neural Networks (Du et al., 2019), and the vast majority of other architectures used in
practice.

The quadratic scaling of the I-NTK cost with D is especially burdensome, since, for example, for
ImageNet D2 = 2244 = 2, 517, 630, 976. As a result, it would be impossible to evaluate the I-NTK
on even a single (N = 1) pair of inputs with a V100 GPU for any model for which we’ve successfully
evaluated the F-NTK in Fig. 2 and Fig. 4.

The F-NTK time and memory only scale linearly with D (Table 7). However, the F-NTK cost scales
with other parameters such as width W or number of outputs O, and in general the relative F- and
I-NTK performance will depend on these parameters. As a rough point of comparison, we consider
the cost of evaluating the I-NTK of a 20-layer binary classification ReLU CNN with pooling on a
V100 GPU used by Arora et al. (2019b) against the respective F-NTK with W = 128 also used
by Arora et al. (2019b, Section B). Arora et al. (2019b) and Novak et al. (2020) report from 0.002
to 0.003 seconds per I-NTK entry on a pair of CIFAR-10 inputs. Using Structured derivatives, we
can compute the respective F-NTK entry on same hardware in at most 0.000014 seconds, i.e. at
least 100 times faster than the I-NTK. In 0.002 – 0.003 seconds per NTK entry, we can compute
the F-NTK on a pair of ImageNet inputs (about 50x larger than CIFAR-10) for a 200-layer ResNet
(about 10x deeper than the model above) in Fig. 2 (top left).

Finally, we remark that efficient NTK-vector products without instantiating the entire NO × NO
NTK are only possible using the F-NTK (§I).

K LEVERAGING JAX DESIGN FOR EFFICIENT NTK COMPUTATION

At the time of writing, Tensorflow (Abadi et al., 2016) and PyTorch (Paszke et al., 2019) are more
widely used than JAX (Bradbury et al., 2018). However, certain JAX features and design choices
made it much more suitable, if not indispensable, for our project:

1. Structured derivatives require manual implementation of structure rules for different prim-
itives in the computational graph of a function f(θ, x). JAX has a small primitive set of
about 131 primitives, while PyTorch and Tensorflow have more than 400 (Frostig et al.,
2021, Section 2). Further, by leveraging jax.linearize , we reduce our task to im-
plementing structure rules for only linear primitives, of which JAX has only 54.6 To
our knowledge neither PyTorch nor Tensorflow have an equivalent transformation, which
makes JAX a natural choice due to the very concise set of primitives that we need to handle
(Table 5).

2. NTK-vector products critically rely on forward mode AD (JVP), and Structured deriva-
tives also use it (albeit it’s not crucial; see §D). At the time of writing, PyTorch does not
implement an efficient forward mode AD.

3. Structured derivatives rely crucially on the ability to traverse the computation graph to
rewrite contractions using our substitution rules. JAX provides a highly-convenient graph
representation in the form of a Jaxpr, as well as tooling and documentation for writing
custom Jaxpr interpreters.

6This follows from the fact that the NTK of a function is equal to the NTK of the linearized function at the
same primal parameters θ. See also (Frostig et al., 2021, Section 1) for how JAX uses the same insight to not
implement all 131 VJP rules, but only implement 54 transpose rules for reverse mode AD.
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4. All implementations (even Jacobian contraction) rely heavily on jax.vmap (and to our
knowledge, in many cases, it is indispensable). While PyTorch has released a prototype of
vmap in May 2021, it was not available when we started this project.

For researchers interested in interfacing with our library, we recommend looking into tools facilitat-
ing data exchange between different ML frameworks, such as DLPack and Jax2TF. See §5 for more
implementation details.

L COMPLEXITY ANALYSIS WITHOUT THE O = O (LW) ASSUMPTION

Here we repeat the same analysis as in §3 without the assumption of O = O (LW). This results
in Table 8, where Jacobian contraction and Structured derivatives gain an extra N2O3W and N2O3

time terms respectively. This does not affect our main text conclusions.

L.1 JVP AND VJP

As in §3.1, the time cost of both operations is comparable to the forward pass (FP), i.e. [FP] =
[cost of all intermediate layers] + [cost of the top layer] = LW2 + OW.

For a single input, the memory cost of computing both the JVP and the VJP are respectively,

[size of all weights] + [size of activations at a single layer] =
[
LW2 + OW

]
+ [W + O] ∼ LW2 + OW,

[size of all weights] + [size of activations in all layers] =
[
LW2 + OW

]
+ [LW + O] ∼ LW2 + OW.

As in §3.1, despite the fact that the VJP requires more memory to store intermediate activations
(which is necessary for efficient backpropagation), we see that both computations are dominated by
the cost of storing the weights.

Batched inputs. If x is a batch of inputs of size N, the time cost of JVP and VJP increases linearly
to NLW2 + NOW. The memory cost is more nuanced. Since weights can be shared across inputs,
the memory cost of the JVP and VJP are respectively,

[size of all weights] + N [size of activations at a single layer]

=
[
LW2 + OW

]
+ N [W + O] ∼ LW2 + OW + NW + NO,

[size of all weights] + N [size of activations in all layers] + N [size of all weight matrices]

=
[
LW2 + OW

]
+ N [LW + O] + N

[
LW2 + OW

]
∼ NLW2 + OW2 + NOW.

Recall from §3.1 we only need to store one cotangent weight matrix, ∂f
/
∂θl, at a time. Therefore

• JVP costs NLW2 + NOW time and LW2 + OW + NW + NO memory.
• VJP costs NLW2 + NOW time and LW2 + NLW + NW2 + NOW memory.

L.2 JACOBIAN

The time and memory costs to compute the Jacobian are identical to §3.2,

ON ([cost of all intermediate layers] + [cost of the top layer])

= ON
([

LW2
]

+ [OW]
)
∼ NLOW2 + NO2W,

[size of all weights] + N [size of activations in all layers] + ON [size of a single weight matrix]

=
[
LW2 + OW

]
+ N [LW + O] + ON

[
W2 + OW

]
∼ LW2 + NLW + NOW2 + NO2W.

Therefore, asymptotically, the costs are identical to §3.2:

Jacobian costs NLOW2 + NO2W time and LW2 + NLW + NOW2 + NO2W memory.
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L.3 JACOBIAN CONTRACTION

The time cost of the contraction in Eq. (6) is O2W2 for l < L, but is O3W for the top layer l = L.
The memory necessary to instantiate each factor and the result is OW2 + O2 for l < L and O2W
for the top layer l = L.

Accounting for all layers together, we arrive at LO2W2+O3W time cost and OW2+O2W memory,
due to being able to process summands sequentially.

Batched inputs. If we consider x1 and x2 to be input batches of size N, then the resulting NTK is a
matrix of shape NO×NO, and the time cost becomes N2

(
LO2W2 + O3W

)
, while memory grows

to [NTK matrix size] + [factors size] = N2O2 + N
(
OW2 + O2W

)
.

Adding the cost of the Jacobian described in §L.2, we obtain

Jacobian contraction costs N2LO2W2 + N2O3W time and N2O2 + NOW2 + NO2W +
LW2 + NLW memory.

L.4 STRUCTURED DERIVATIVES

The contraction in Eq. (9) takes O2W time and OW + O2 memory for l < L, and O3 + W time and
O2 + W memory for l = L.

Accounting for all layers, time cost becomes LO2W + O3, and memory remains OW + O2.

Batched inputs. In the batched setting, the time cost grows quadratically with the size of the NTK
to N2LO2W + N2O3, while the memory cost increases to N2O2 + NOW.

Extra memory cost for computing the derivatives is
[size of all weights] + N [size of activations in all layers]

=
[
LW2 + OW

]
+ N [LW + O] ∼ LW2 + OW + NLW.

The extra time cost is asymptotically the cost of O forward passes, NLOW2 + NO2W which is the
same as the Jacobian. Putting everything together we find the following costs,

By leveraging Structured derivatives in NN computations, we have reduced the cost of NTK
to N2LO2W + N2O3 + NLOW2 time and N2O2 + NOW + LW2 + NLW memory.

L.5 NTK-VECTOR PRODUCTS

The cost analysis of NTK-vector products in §3.5 is not impacted by the O = O (LW) assumption,
hence it remains the same as in §3.5:

NTK computation as a sequence of NTK-vector products costs N2LOW2 + N2O2W time
and N2O2 + NOW2 + LW2 + NLW memory.

M RELATIONSHIP BETWEEN THE NTK AND THE HESSIAN

Here we briefly touch on the difference between the NTK

NTK: Θθ(x1, x2)︸ ︷︷ ︸
NO×NO

:=
[
∂f(θ, x1)

/
∂θ
]︸ ︷︷ ︸

NO×P

[
∂f(θ, x2)

/
∂θ
]T︸ ︷︷ ︸

P×NO

, (39)

and the Hessian:

Hessian: Hθ(x)︸ ︷︷ ︸
P×P

:=
∂2L (f (θ, x))

∂θ2
, (40)
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Method Time Memory Use when
Jacobian contraction N2LO2W2 + N2O3W NOW2 + N2O2 + NLW + LW2 Don’t
NTK-vector products N2 O2W + N2LOW2 NOW2 + N2O2 + NLW + LW2 O > W or N = 1
Structured derivatives N2LO2W + N LOW2 + N2O3 NOW + N2O2 + NLW + LW2 O < W or L = 1

Table 8: Asymptotic time and memory cost of computing the NTK for an FCN without assum-
ing that O = O (LW). Costs are for a pair of batches of inputs of size N each, and for L-deep,
W -wide FCN with O outputs. Resulting NTK has shape NO× NO. NTK-vector products allow a
reduction of the time complexity, while Structured derivatives reduce both time and memory com-
plexity. Note: presented are asymptotic cost estimates; in practice, all methods incur large constant
multipliers (e.g. at least 3x for time; see §3.1). However, this generally does not impact the relative
performance of different methods. See §3.6 for discussion, Table 1 for a simplified cost summary
under the assumption of O = O (LW) (differing only by lacking the N2O3W and N2O3 terms
in Jacobian contraction and Structured derivatives time costs respectively), Table 7 for CNN, and
Table 2 for more generic cost analysis.

defined for some differentiable loss function on the output space L : RNO → R.

Both matrices characterize localized training dynamics of a NN, and the NTK can be used as a more
tractable quantity in cases where the Hessian is infeasible to instantiate (for example, P amounts to
tens of millions in models considered in Fig. 2 and Fig. 4).

The connection between the NTK and the Hessian can be established for when L is the squared error
(SE), i.e. L(y) = ‖y − Y‖22 /2, where Y ∈ RNO are the training targets. In this case, as presented
in (Pennington & Bahri, 2017, Section 2) and (Grosse, 2021, Equation 13; page 21):

Hθ(x)︸ ︷︷ ︸
P×P

=

[
∂f(θ, x)

∂θ

T
∂f(θ, x)

∂θ

]
︸ ︷︷ ︸

:=H0
θ(x)

+

N,O∑
n,o=1

(f (θ, x)− Y)
n,o ∂

2f (θ, x)
n,o

∂2θ︸ ︷︷ ︸
:=H1

θ(x)

, (41)

where we have decomposed the Hessian Hθ(x) into two summands H0
θ(x) and H1

θ(x) following
the notation of Pennington & Bahri (2017).

Notice that if f (θ, x) = Y , i.e. the SE loss is 0, H1
θ(x) = 0, yielding

Hθ(x)︸ ︷︷ ︸
P×P

= H0
θ(x) =

∂f(θ, x)

∂θ

T

︸ ︷︷ ︸
P×NO

∂f(θ, x)

∂θ︸ ︷︷ ︸
NO×P

, Θθ(x, x)︸ ︷︷ ︸
NO×NO

=
∂f(θ, x)

∂θ︸ ︷︷ ︸
NO×P

∂f(θ, x2)

∂θ

T

︸ ︷︷ ︸
P×NO

, (42)

and, as a consequence, the Hessian and the NTK have the same eigenvalues (see also Grosse (2021,
Page 21)) in this particular case. Moreover, the Hessian (and Hessian-vector products) can be com-
puted very similarly to NTK-vector products, by switching the order of VJP and JVP operations in
Eq. (10).

However, except for zero SE loss case above, the NTK and the Hessian have different spectra, and
their computations share less similarity. Precisely, Hessian-vector products (and consequently the
Hessian) are computed in JAX through a composition of JVPs and VJPs similar to NTK-vector
products:

Hθ(x)v =

[
∂2L (f (θ, x))

∂θ2

]
v =

∂

∂θ

[
∂L (f (θ, x))

∂θ

]
v = (43)

=
∂ [VJPL◦f,θ,x (1)]

∂θ
v = JVP[VJPL◦f,·,·(1)],θ,x (v) . (44)

While Eq. (43) is similar to Eq. (10) in that both are compositions of JVPs and VJPs, in Eq. (10)
the result of a VJP is the input tangent to the JVP of f , while in Eq. (43) it is the function to be
differentiated by the JVP (instead of f ).
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Figure 6: Visual demonstration for why JVP time and memory costs are asymptotically com-
parable to the forward pass (FP). Left: computational graph of the forward pass f(θ, x). Right:
computational graph of joint evaluation of the forward pass f(θ, x) along with JVP(f,θ,x) (θt). Each
node of the JVP graph accepts both primal and tangent inputs, and returns primal and tangent out-
puts, but the topology of the graph and order of execution remains identical to FP. As long as indi-
vidual nodes of the JVP graph do not differ significantly in time and memory from the FP nodes,
time and memory of a JVP ends up asymptotically equivalent to FP due to identical graph structure.
However, in order to create JVP nodes and evaluate them, the time cost does grow by a factor of
about 3 compared to FP. See §3.1 and §N for discussion.

N GENERIC COMPUTATIONAL COSTS OF JVP AND VJP

In this section we present a brief intuition for why JVP and VJP are asymptotically equivalent in
compute time to the forward pass FP, as we mentioned in §3.1. We refer the reader to the JAX
Autodiff Cookbook for more details, and (Griewank & Walther, 2008, Section 3) for a rigorous
treatment of the subject.

JVP can be computed by traversing a computational graph of the same topology as FP, except for
primitive nodes in the graph need to be augmented to compute not only the forward pass of the
node, but also the JVP of the node (see Fig. 6). Due to identical topology and order of evaluation,
asymptotically time and memory costs remain unchanged. However, constructing the augmented
nodes in the JVP graph, and their consequent evaluation results in extra time cost proportional to the
size of the graph. Therefore in practice JVP costs about 3× FP time and 2× FP memory.

VJP, as a linear function of cotangents fc, is precisely the transpose of the linear function JVP. As
such, it can be computed by traversing the transpose of the JVP graph (Fig. 6, right), with each
JVP node replaced by its transposition as well. This results in identical time and memory costs, as
long as node transpositions are implemented efficiently. However, their evaluation requires primal
outputs yk (now inputs to the transpose nodes), which is why VJP necessitates an extra FP time
cost to compute them (hence costlier than JVP, but still inconsequential asymptotically) and extra
memory to store them, which can generally increase asymptotic memory requirements.
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