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Figure 4: Comparison between the dynamics under Euclidean and cosine asymmetric losses for
different initializations in a network with M = 2 output neurons. (a) Observed dynamics of the
eigenvalues in the two-neuron toy network under three different initializations. Both eigenvalues
always converge to 1 regardless of the initialization. (b) Same as (a), but for the cosine distance.
Under different initializations, the two eigenvalues converge to arbitrary, but equal, values.
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Figure 5: Same as Fig. 2 but with a ReLU nonlinearity on the embeddings. We observe learning
dynamics qualitatively similar to the linear network.
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B Proofs399

Lemma 1. (Euclidean and cosine losses in the eigenspace of the predictor) Let WP be a linear400

predictor according to DirectPred with eigenvalues λm, and ẑ the representations expressed in the401

predictor’s eigenbasis, the asymmetric losses Leuc and L can be expressed as:402

Leuc = 1
2

M∑

m

|λmẑ(1)m − SG(ẑ(2)m )|2 , (1)

L = −
M∑

m

λmẑ
(1)
m SG(ẑ

(2)
m )

∥Dẑ(1)∥∥SG(ẑ(2))∥
. (2)

Proof. Under DirectPred, the predictor is a symmetric matrix with eigendecomposition WP =403

UDU⊤. Since U is an orthogonal matrix, we also have UU⊤ = I so that we can simplify the losses404

as follows:405

Leuc = 1
2∥WPz

(1) − SG(z(2))∥2

= 1
2∥UDU⊤z(1) − SG(UU⊤z(2))∥2

= 1
2∥Dẑ(1) − SG(ẑ(2))∥2

= 1
2

M∑

m

|λmẑ(1)m − SG(ẑ(2)m )|2

L = −
(
WPz

(1)
)⊤

SG(z(2))

∥WPz(1)∥∥SG(z(2))∥

= − (z(1))⊤UDU⊤ SG(z(2))

∥UDU⊤z(1)∥∥SG(UU⊤z(2))∥

= − (ẑ(1))⊤D SG(ẑ(2))

∥Dẑ(1)∥∥SG(ẑ(2))∥

= −
M∑

m

λmẑ
(1)
m SG(ẑ

(2)
m )

∥Dẑ(1)∥∥SG(ẑ(2))∥
,

where we used the fact that U is orthogonal and therefore does not change the Euclidean norm.406

ẑ = U⊤z is the representation rotated into the eigenbasis.407
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Lemma 2. (General learning dynamics of representations) Assuming that a given loss L is optimized408

by gradient descent on the parameters of a neural network with the empirical NTK Θ̂ and learning409

rate η, then the representations ẑ evolve according to the dynamics:410

dẑ

dt
= −ηΘ̂t(x,X )∇ẐL , (6)

Proof. Let θ be the parameters of the neural network. Then we obtain the representational dynamics411

using the chain rule in the continuous-time gradient-flow setting [1]:412

dẑ

dt
= ∇θẑ

dθ

dt
= ∇θẑ (−η∇θL)
= ∇θẑ

(
−η∇θẐ⊤∇ẐL

)

= −ηΘ̂t(x,X )∇ẐL .

Note, that structurally these dynamics are the same as the embedding space dynamics [1, 2] but413

merely expressed in the predictor eigen basis.414

We proceed by proving the following Lemma which will we will use in our proofs of Theorems 1415

and 2.416

Lemma 3. The NTK for a linear network is invariant under orthogonal transformations of the417

network output.418

Proof. We first note that for a linear network, the parameters θ are just the feedforward weights W .419

Therefore, for any orthogonal transformation U of the network output:420

ẑ = U⊤f(x) = U⊤Wx

⇒ ∇θẑ = ∇W ẑ = ∇W

(
U⊤Wx

)
= x⊤ ⊗ U⊤, (18)

where ⊗ is the Kronecker product resulting from the fact that every input vector component appears421

in the update once for each output component.422

We now study Θ̂t(X ,X ), the transformed empirical NTK (cf. Lemma 2). The (M ×M) diagonal423

blocks in the full (M |D| ×M |D|) empirical NTK Θ̂t(X ,X ) correspond to single samples and the424

off-diagonal blocks are cross-terms between samples, where |D| denotes the size of the training425

dataset and M the dimension of the outputs. We can develop a generic expression for each (M ×M )426

block Θ̂t(xi,xj) corresponding to the interactions between samples i and j as:427

Θ̂t(xi,xj) = ∇W ẑi∇W ẑ⊤
j

=
(
x⊤
i ⊗ U⊤) (x⊤

j ⊗ U⊤)⊤

=
(
x⊤
i ⊗ U⊤) (xj ⊗ U)

=
(
x⊤
i xj

)
⊗
(
U⊤U

)

=
(
x⊤
i xj

)
⊗ IM

=
(
x⊤
i xj

)
IM. (19)

where we have used the fact that (A⊗B)⊤ = A⊤ ⊗B⊤ and (A⊗B)(C ⊗D) = AC ⊗BD. Here,428

IM is the identity matrix of size M . Noting that Eq. (19) is unchanged when U is just the identity429

matrix completes the proof.430
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Theorem 1. (Representational dynamics under Leuc) For a linear network with i.i.d Gaussian431

inputs learning with Leuc, the representational dynamics of each mode m independently follows the432

gradient of the loss −∇ẑLeuc. More specifically, the dynamics uncouple and follow a system of M433

independent differential equations:434

dẑ
(1)
m,t

dt
= −η

∂Leuc

∂ẑ
(1)
m,t

(t) = ηλm,t

(
ẑ
(2)
m,t − λm,tẑ

(1)
m,t

)
, (8)

which, after taking the expectation over augmentations, becomes:435

dẑm,t

dt
= ηλm,t (1− λm,t) ẑm,t . (9)

Proof. For a linear network with weights W ∈ RM×N , we have from Lemma 3 that the empirical436

NTK Θ̂(X ,X ) in the orthogonal eigenbasis is equal to the empirical NTK Θ(X ,X ) in the original437

basis. Furthermore from the proof for the lemma (see Eq. (19) above), each (M ×M) block of the438

full (M |D| ×M |D|) empirical NTK is given by:439

Θ̂t(xi,xj) =
(
x⊤
i xj

)
IM. (20)

where IM ∈ RM×M is the identity. Eq. (20) gives the total effective interaction between the samples440

i and j from the dataset. For high-dimensional inputs x drawn from an i.i.d standard Gaussian441

distribution, we have x⊤
i xj ≈ δij by the central limit theorem. Therefore, in the special case of442

a linear network with Gaussian i.i.d inputs, the representational dynamics (Lemma 2) simplify as443

follows:444

dẑ
(1)
i,t

dt
= −ηΘ̂t(xi,X )∇ẐL

= −ηΘ̂t(xi,xi)∇ẑi
L − η

∑

j ̸=i

Θ̂t(xi,xj)∇ẑj
L

= −η
(
x⊤
i xi

)
∇ẑi

L − η
∑

j ̸=i

(
x⊤
i xj

)
∇ẑj

L

= −η∇ẑi
L . (21)

While the assumption of Gaussian i.i.d inputs is quite restrictive, we offer a generalizing interpretation445

here. Specifically, the above argument also holds when the inputs x are not all mutually orthogonal,446

but fall into P orthogonal clusters in the input dataset. Then, we would have x⊤
i xj = δpi=pj

where447

pi is the “label" of the cluster corresponding to sample i. If Pi is the number of all the samples with448

the same label pi, then Eq. (21) would simply be scaled to give
dẑ

(1)
i,t

dt = −ηPi∇ẑi
L.449

For brevity, we proceed with the simplest case Eq. (21) in which every input is orthogonal. For Leuc,450

the representational gradient ∇ẑi
L is then given by:451

∇ẑi
Leuc =

(
Dtẑ

(1)
i,t − ẑ

(2)
i,t

)
Dt

Noting that Dt is just a diagonal matrix containing the eigenvalues λm,t and dropping the sample452

subscript i for notational ease, we obtain for the m-th component of ∇ẑi
Leuc:453

∂Leuc

∂ẑm,t
= λm,t(λm,tẑ

(1)
m,t − ẑ

(2)
m,t) .

Substituting this result in Eq. (21) gives us Eq. (8), the expression we were looking for. Finally,454

introducing ẑm,t ≡ E[ẑ(1)m,t] = E[ẑ(2)m,t] as the expectation over augmentations, we find that each455

eigenmode evolves independently in expectation value as:456

E

[
dẑ

(1)
m,t

dt

]
=

dẑm,t

dt
= ηλm

(
E[ẑ(2)m,t]− λmE[ẑ(1)m,t]

)

= ηλm,t (1− λm,t) ẑm,t .

457
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Theorem 2. (Representational dynamics under L) For a linear network with i.i.d Gaussian inputs458

trained with L, the dynamics follow a system of M coupled differential equations:459

dẑ
(1)
m

dt
= η

λm

∥Dẑ(1)∥3∥ẑ(2)∥
∑

k ̸=m

λk

(
λk(ẑ

(1)
k )2ẑ(2)m − λmẑ(1)m ẑ

(1)
k ẑ

(2)
k

)
, (10)

and, in the regime where eigenvalues are of comparable magnitude, the expected update over460

augmentations is well approximated by:461

dẑm
dt

≈ ηλm · E
[

ẑ2m
∥Dẑ∥3

]
· E
[
ẑm
∥ẑ∥

]
·
∑

k ̸=m

λk (λk − λm) , (11)

Proof. We can retrace the steps from the proof for Theorem 1 until Eq. (21):462

dẑ
(1)
i,t

dt
= −η∇ẑi

L .

∇ẑi
L is a vector of dimension M . Ignoring the subscripts i and t for simplicity, and focusing on the463

m-th component of ∇ẑi
L, we get:464

L = −
M∑

m

λmẑ
(1)
m SG(ẑ

(2)
m )

∥Dẑ(1)∥∥SG(ẑ(2))∥

⇒ ∂L
∂ẑ

(1)
m

= − λmẑ
(2)
m

∥Dẑ(1)∥∥ẑ(2)∥
+

∑
k λkẑ

(1)
k ẑ

(2)
k

∥Dẑ(1)∥3∥ẑ(2)∥
· λ2

mẑ(1)m

= − λm

∥Dẑ(1)∥3∥ẑ(2)∥

[
∥Dẑ(1)∥2ẑ(2)m − λmẑ(1)m

(∑

k

λkẑ
(1)
k ẑ

(2)
k

)]

= − λm

∥Dẑ(1)∥3∥ẑ(2)∥

[(∑

k

λ2
k(ẑ

(1)
k )2

)
ẑ(2)m − λmẑ(1)m

(∑

k

λkẑ
(1)
k ẑ

(2)
k

)]

= − λm

∥Dẑ(1)∥3∥ẑ(2)∥
∑

k ̸=m

λk

(
λk(ẑ

(1)
k )2ẑ(2)m − λmẑ(1)m ẑ

(1)
k ẑ

(2)
k

)

⇒ dẑ
(1)
m

dt
= −η

∂L
∂ẑ

(1)
m

=
ηλm

∥Dẑ(1)∥3∥ẑ(2)∥
∑

k ̸=m

λk

(
λk(ẑ

(1)
k )2ẑ(2)m − λmẑ(1)m ẑ

(1)
k ẑ

(2)
k

)
,

proving Eq. (10). Assuming sufficiently small augmentations, ẑ(1)k and ẑ
(2)
k carry the same sign, and465

the net sign of both terms inside the parenthesis is fully determined by γm ≡ sign(ẑ
(1)
m ). Hence, we466

may write:467

dẑ
(1)
m

dt
=

ηλmγm

∥Dẑ(1)∥3∥ẑ(2)∥
∑

k ̸=m

(
λ2
k(ẑ

(1)
k )2|ẑ(2)m | − λmλk|ẑ(1)m ||ẑ(1)k ||ẑ(2)k |

)
.

It is useful to separate out γm in this manner because every other term in the expression is now468

non-negative. Then sign(γm · dẑdt ) = sign(ẑm · dẑmdt ) tells us whether ẑm tends to increase or decrease469

in magnitude, as we have argued in the main text.470

Asymptotic analysis. To get a handle on how the different eigenvalues influence each other, we471

consider two important limiting cases. First, we consider the asymptotic regime dominated by one472

eigenvalue, and show that it tends towards a more symmetric solution in which the gap between473

different eigenvalues decreases. Second, we derive asymptotic expressions for the near-uniform474

regime in which all eigenvalues are comparable in size and show that this solution tends toward the475

uniform solution (cf. Eq. (11)).476
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To facilitate our analysis, we define each mode’s relative contribution χm ≡ |ẑm|
∥ẑ∥ and evaluate477

Eq. (10) taking the expectation value over augmentations:478

E

[
dẑ

(1)
m

dt

]
= ηλm

∑

k ̸=m

(
λ2
k · E

[
(ẑ

(1)
k )2ẑ

(2)
m

∥Dẑ(1)∥3∥ẑ(2)∥

]
− λmλk · E

[
ẑ
(1)
m ẑ

(1)
k ẑ

(2)
k

∥Dẑ(1)∥3∥ẑ(2)∥

])

dẑm
dt

= ηλm

∑

k ̸=m

(
λ2
k · E

[
ẑ2k

∥Dẑ∥3
]
· E
[
ẑm
∥ẑ∥

]
− λmλk · E

[
ẑmẑk
∥Dẑ∥3

]
· E
[
ẑk
∥ẑ∥

])

= ηλmγm
∑

k ̸=m

(
λ2
k · E

[
χ2
k

∥ẑ∥2
∥Dẑ∥3

]
· E [χm]− λmλk · E

[
χmχk

∥ẑ∥2
∥Dẑ∥3

]
· E [χk]

)
.

(22)

In the second equality we used the fact that the expectation value taken over augmentations is479

conditioned on the input sample, which makes them conditionally independent.480

One dominant eigenvalue. First, we consider the low-rank regime in which one eigenvalue481

dominates. Without loss of generality, we assume λ1 ≫ λk ∀k ̸= 1. We then have:482

χ1 ∼ 1

χk ∼ ϵ (0 < ϵ ≪ 1) ∀ k ̸= 1

Plugging these values into Eq. (22) gives the following dynamics for the dominant eigenmode:483

dẑ1
dt

≈ ηλ1γ1
∑

k ̸=1

(
λ2
k · E

[
ϵ2

∥ẑ∥2
∥Dẑ∥3

]
· E [1]− λ1λk · E

[
ϵ
∥ẑ∥2
∥Dẑ∥3

]
E [ϵ]

)

= ηλ1γ1
∑

k ̸=1

(
λ2
kϵ

2 · E
[ ∥ẑ∥2
∥Dẑ∥3

]
· E [1]− λ1λkϵ

2 · E
[ ∥ẑ∥2
∥Dẑ∥3

])

= ηλ1γ1ϵ
2E
[ ∥ẑ∥2
∥Dẑ∥3

]∑

k ̸=1

λk (λk − λ1) .

These updates are always opposite in sign to the representation component, which corresponds to484

decaying dynamics for the leading eigenmode because γ1
dẑ1
dt < 0.485

For all other modes we have:486

dẑm̸=1

dt
≈ ηλmγm

∑

k ̸∈{m,1}

(
λ2
kϵ

2 · E
[ ∥ẑ∥2
∥Dẑ∥3

]
· E [ϵ]− λmλkϵ

2 · E
[ ∥ẑ∥2
∥Dẑ∥3

]
· E [ϵ]

)

+ ηλmγm

(
λ2
1 · E

[ ∥ẑ∥2
∥Dẑ∥3

]
· E [ϵ]− λmλ1ϵ · E

[ ∥ẑ∥2
∥Dẑ∥3

]
· E [1]

)

= ηλmγmϵ · E
[ ∥ẑ∥2
∥Dẑ∥3

]
λ1(λ1 − λm) + ϵ2

∑

k ̸∈{m,1}

λk(λk − λm)




≈ ηλmγmλ1ϵ · E
[ ∥ẑ∥2
∥Dẑ∥3

]
(λ1 − λm) ,

so that γm dẑm
dt > 0, i.e, the updates have the same sign as the representation component, which487

corresponds to growth dynamics. In other words: The dominant eigenvalue “pulls all the other488

eigenvalues up,” a form of implicit cooperation between the eigenmodes. We also note that the489

non-dominant eigenmodes increase at a rate proportional to ϵ, whereas the dominant eigenmode490

decreases at a slower rate proportional to ϵ2. Thus, for sensible initializations with at least one491

large and many small eigenvalues, the modes will tend toward an equilibrium at some non-zero492

intermediate value, without a dominant mode. Next we study this other limiting case in which all493

eigenvalues are of similar size.494
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Near-uniform regime. To study the dynamics in a near-uniform regime, we note that all χm are495

of order O(1) in ẑm, whereas the eigenvalues λm are of order O(ẑ2m). In this setting, the effect of496

the eigenvalue terms λm on the dynamics is stronger than the χm terms which are bounded between497

0 and 1. With a sufficiently high-dimensional representation, all χm terms will be centered around498

1/
√
M . Based on these observations, we may make the simplifying assumption that the contributions499

are all approximately equal, i.e, χi = χ for all i. Substituting this value in Eq (22) gives:500

dẑm
dt

= ηλmγm · E
[
χ2 ∥ẑ∥2

∥Dẑ∥3
]
· E [χ] ·

∑

k ̸=m

λk (λk − λm) . (23)

Finally, substituting for χ, which by assumption are all approximately equal:501

χ ≈ χm =
|ẑm|
∥ẑ∥ ,

and absorbing back the sign from γm, we obtain the approximate dynamics in Eq (11):502

dẑm
dt

≈ ηλm · E
[

ẑ2m
∥Dẑ∥3

]
· E
[
ẑm
∥ẑ∥

]
·
∑

k ̸=m

λk (λk − λm)

503
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C Derivation of idealized learning dynamics for different loss variations504

C.1 Removing the stop-grad from the Euclidean loss Leuc505

Omitting the stop-grad operator from Leuc gives:506

Leuc
noSG =

1

2
∥WPz

(1) − z(2)∥2

=
1

2

M∑

m

|λmẑ(1)m − ẑ(2)m |2 .

Tracing the steps to prove Theorem 1 and assuming Gaussian i.i.d inputs for a linear network, we507

write:508

∂Leuc
noSG

∂ẑm
=

∂Leuc
noSG

∂ẑ
(1)
m

+
∂Leuc

noSG

∂ẑ
(2)
m

=
(
λmẑ(1)m − ẑ(2)m

)
λm −

(
λmẑ(1)m − ẑ(2)m

)

=
(
λmẑ(1)m − ẑ(2)m

)
(λm − 1)

⇒ dẑm
dt

= −ηE
[
∂Leuc

noSG

∂ẑm

]

= −η
(
λmE[ẑ(1)m ]− E[ẑ(2)m ]

)
(λm − 1)

= −η (1− λm)
2
ẑm ,

which results in decaying representations and thus collapse.509

C.2 Removing the stop-grad from the Cosine loss L510

Following the same arguments as above, omitting the stop-grad operator from L gives:511

LnoSG = −
(
WPz

(1)
)⊤

z(2)

∥WPz(1)∥∥z(2)∥

⇒ ∂LnoSG

∂ẑm
=

−λm

∥Dẑ(1)∥3∥ẑ(2)∥
∑

k ̸=m

(
λ2
k(ẑ

(1)
k )2ẑ(2)m − λmλkẑ

(1)
m ẑ

(1)
k ẑ

(2)
k + λ2

kλm(ẑ
(1)
k )3 − λkẑ

(2)
m ẑ

(2)
k ẑ

(1)
k

)

+
−λm

∥Dẑ(1)∥3∥ẑ(2)∥

(
λ3
m(ẑ(1)m )3 − λm(ẑ(2)m )2ẑ(1)m

)
,

so that, when taking the expectation value over augmentations, the dynamics follow:512

dẑm
dt

= −ηE
[
∂LnoSG

∂ẑm

]

= ηλmγm
∑

k ̸=m

λk

(
λk · E

[
χ2
k

∥ẑ∥2
∥Dẑ∥3

]
· E [χm]− λm · E

[
χmχk

∥ẑ∥2
∥Dẑ∥3

]
· E [χk]

)

+ ηλmγm
∑

k ̸=m

λk

(
λmλkE

[
χ3
k

∥ẑ∥3
∥Dẑ∥3

]
· E
[

1

∥ẑ∥

]
− E

[
χk

∥ẑ∥
∥Dẑ∥3

]
· E [χmχk∥ẑ∥]

)

+ ηλ2
mγm

(
λ2
mE

[
χ3
m

∥ẑ∥3
∥Dẑ∥3

]
· E
[

1

∥ẑ∥

]
− E

[
χm

∥ẑ∥
∥Dẑ∥3

]
· E
[
χ2
m∥ẑ∥

])
.
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In the asymptotic regime with dominant eigenvalue λ1, we get the dynamics:513

dẑ1
dt

= ηλ1γ1
∑

k ̸=m

λk

(
λkϵ

2E
[ ∥ẑ∥2
∥Dẑ∥3

]
− λmϵ2E

[ ∥ẑ∥2
∥Dẑ∥3

])

+ ηλ1γ1
∑

k ̸=m

λk

(
λ1λmϵ3E

[ ∥ẑ∥3
∥Dẑ∥3

]
· E
[

1

∥ẑ∥

]
− ϵ2E

[ ∥ẑ∥
∥Dẑ∥3

]
· E [∥ẑ∥]

)

+ ηλ2
1γ1

(
λ2
1 · E

[ ∥ẑ∥3
∥Dẑ∥3

]
· E
[

1

∥ẑ∥

]
− E

[ ∥ẑ∥
∥Dẑ∥3

]
· E [∥ẑ∥]

)

≈ ηλ4
1γ1 · E

[ ∥ẑ∥3
∥Dẑ∥3

]
· E
[

1

∥ẑ∥

]

dẑm̸=1

dt
= ηλmγm

∑

k ̸∈{m,1}

λk

(
λkϵ

3E
[ ∥ẑ∥2
∥Dẑ∥3

]
− λmϵ3E

[ ∥ẑ∥2
∥Dẑ∥3

])

+ ηλmγmλ1

(
λ1ϵE

[ ∥ẑ∥2
∥Dẑ∥3

]
− λmϵE

[ ∥ẑ∥2
∥Dẑ∥3

])

+ ηλmγm
∑

k ̸∈{m,1}

λk

(
λmλkϵ

3E
[ ∥ẑ∥3
∥Dẑ∥3

]
· E
[

1

∥ẑ∥

]
− ϵ3E

[ ∥ẑ∥
∥Dẑ∥3

]
· E [∥ẑ∥]

)

+ ηλmγmλ1

(
λmλ1E

[ ∥ẑ∥3
∥Dẑ∥3

]
· E
[

1

∥ẑ∥

]
− ϵE

[ ∥ẑ∥
∥Dẑ∥3

]
· E [∥ẑ∥]

)

+ ηλ2
mγm

(
λ2
mϵ3E

[ ∥ẑ∥3
∥Dẑ∥3

]
· E
[

1

∥ẑ∥

]
− ϵ3E

[ ∥ẑ∥
∥Dẑ∥3

]
· E [∥ẑ∥]

)

≈ ηλ2
mγmλ2

1 · E
[ ∥ẑ∥3
∥Dẑ∥3

]
· E
[

1

∥ẑ∥

]
,

Thus, all eigenmodes diverge because γm
dẑm
dt > 0.514

Similarly, we find divergent dynamics when starting in the near-uniform regime:515

dẑm
dt

= ηλmγmE
[
χ2 ∥ẑ∥2

∥Dẑ∥3
]
· E [χ]

∑

k ̸=m

λk (λk − λm)

+ ηλ2
mγmE

[
χ3 ∥ẑ∥3

∥Dẑ∥3
]
· E
[

1

∥ẑ∥

]∑

k

λ2
k

− ηλmγmE
[
χ

∥ẑ∥
∥Dẑ∥3

]
· E
[
χ2∥ẑ∥

]∑

k

λk

≈ ηλ2
mγmE

[
χ3 ∥ẑ∥3

∥Dẑ∥3
]
· E
[

1

∥ẑ∥

]∑

k

λ2
k ,

selecting the terms with the highest power in the eigenvalues.516

Thus, omission of stop-grad precludes successful representation learning for both the Euclidean and517

the cosine loss, but due to different mechanisms. Euclidean loss yields collapse, whereas the Cosine518

loss succumbs to run-away activity.519

C.3 Removing the predictor from the Euclidean loss Leuc520

To analyze the representational dynamics in the absence of the predictor network, we consider521

Leuc
noPred:522

Leuc
noPred =

1

2
∥z(1) − SG(z(2))∥2

=
1

2

M∑

m

|ẑ(1)m − SG(ẑ(2)m )|2 .
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The dynamics resulting from this loss function are a special case of the dynamics derived in Theorem 1523

with all the eigenvalues equal to one (λk = 1). In particular Eq. (8) becomes:524

dẑ
(1)
m,t

dt
= −η

∂Leuc
noPred

∂ẑ
(1)
m,t

(t) = η
(
ẑ
(2)
m,t − ẑ

(1)
m,t

)
,

which evaluates to 0 under expectation over augmentations. Hence there is no learning without the525

predictor.526

C.4 Isotropic losses for equalized convergence rates527

In Expressions (9) and (11) we see that the overall learning dynamics have a quadratic dependence528

on the eigenvalues with a root near collapsed solutions, which causes these modes to learn slower.529

We reasoned that this anisotropy could be detrimental for learning. To address this issue, we sought530

to derive alternative loss functions that encourage isotropic learning dynamics for all modes.531

C.4.1 Euclidean IsoLoss.532

We start by deriving an IsoLoss function for the Euclidean case Leuc. To avoid the unwanted quadratic533

dependence, we first note that we would like to arrive at the following expression for the dynamics:534

dẑm
dt

= η (1− λm) ẑm .

By recalling the Euclidean loss and corresponding dynamics:535

Leuc = 1
2

M∑

m

|λmẑ(1)m − SG(ẑ(2)m )|2 ⇒ dẑm
dt

= ηλm (1− λm) ẑm ,

we note that the leading λm term has no influence on the overall sign of the dynamics, and is536

introduced by the second step in the chain rule:537

∂Leuc

∂ẑ
(1)
m

= (λmẑ(1) − ẑ(2)) · ∂

∂ẑ
(1)
m

(λmẑ(1) − ẑ(2)) .

Based on this realization we see that this second step needs to be modified. To that end, we start with538

the desired derivative:539

∂Leuc
iso

∂ẑ
(1)
m

= (λmẑ(1) − ẑ(2)) · ∂

∂ẑ
(1)
m

(ẑ(1) − ẑ(2)) ,

and see that several loss functions are possible. The one we have reported in Eq. (15) we derived by540

applying an appropriate stop-grad while integrating:541

∂Leuc
iso

∂ẑ
(1)
m

= (ẑ(1)m + λmẑ(1) − ẑ(2) − ẑ(1)m ) · ∂

∂ẑ
(1)
m

(ẑ(1) − ẑ(2)) .

to give:542

Leuc
iso = 1

2

M∑

m

|ẑ(1)m − SG(ẑ(2)m + ẑ(1)m − λmẑ(1)m )|2

Another alternative loss with the same desired isotropic learning dynamics, but using a different543

placement of the stop-gradient operators, is given by:544

Leuc
iso =

M∑

m

SG
(
λmẑ(1)m − ẑ(2)m

)
·
(
ẑ(1)m − SG(ẑ(2)m )

)

C.4.2 Cosine Similarity IsoLoss.545

Since most practical SSL approaches rely on cosine similarity, which suffers from a similar anisotropy546

of the learning dynamics, we sought to find IsoLosses in this setting. With the same goal as above,547

we would like to arrive at the dynamics:548

dẑm
dt

= η
ẑ
(2)
m

∥Dẑ(1)∥∥ẑ(2)∥
− η

∑
k λkẑ

(1)
k ẑ

(2)
k

∥Dẑ(1)∥3∥ẑ(2)∥
· λmẑ(1)m
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starting from the cosine loss and corresponding dynamics:549

L = −
M∑

m

λmẑ
(1)
m SG(ẑ

(2)
m )

∥Dẑ(1)∥∥SG(ẑ(2))∥ (24)

⇒ dẑm
dt

= η
λmẑ

(2)
m

∥Dẑ(1)∥∥ẑ(2)∥
− η

∑
k λkẑ

(1)
k ẑ

(2)
k

∥Dẑ(1)∥3∥ẑ(2)∥
· λ2

mẑ(1)m . (25)

The IsoLoss in this case can be derived by noting how λm arises in each of the two terms in Eq. (25),550

and engineering an alternative loss function corresponding to each term separately.551

In the first term, λm arises from the partial derivative of the numerator λmẑ
(1)
m SG(ẑ

(2)
m ) in the original552

loss (Eq. (24)). This can be remediated by using ẑ
(1)
m SG(ẑ

(2)
m ) as the numerator instead.553

In the second term in Eq. (25), λ2
m arises from the partial derivative of ∥Dẑ(1)∥ =

√∑
k(λkẑ

(1)
m )2 in554

the denominator. We can reduce λ2
m to λm by instead taking the partial derivative of ∥D1/2ẑ(1)∥ =555 √∑

k(λ
1/2
k ẑ

(1)
m )2.556

Putting these insights together, we arrive at the desired partial derivative:557

∂Liso

∂ẑ
(1)
m

=
−1

∥Dẑ(1)∥∥ẑ(2)∥
· ∂ẑ

(1)
m ẑ

(2)
m

∂ẑ
(1)
m

+

∑
k λkẑ

(1)
k ẑ

(2)
k

∥Dẑ(1)∥3∥ẑ(2)∥
· 1
2

∂λm(ẑ
(1)
m )2

∂ẑ
(1)
m

=
−1

∥Dẑ(1)∥∥ẑ(2)∥
· ∂(ẑ

(1))⊤ẑ(2)

∂ẑ
(1)
m

+

∑
k λkẑ

(1)
k ẑ

(2)
k

∥Dẑ(1)∥3∥ẑ(2)∥
· 1
2

∂∥D1/2ẑ(1)∥2

∂ẑ
(1)
m

,

and the integrated IsoLoss in eigenspace:558

Liso = −(ẑ(1))⊤SG

(
ẑ(2)

∥Dẑ(1)∥∥ẑ(2)∥

)
+

1

2
SG

(
(Dẑ(1))⊤ẑ(2)

∥Dẑ(1)∥3∥ẑ(2)∥

)
∥D1/2ẑ(1)∥2 .

Rotating all terms back to the original space gives the desired IsoLoss for Cosine similarity as reported559

(Eq. (17)):560

Liso = −(z(1))⊤SG

(
z(2)

∥WPz(1)∥∥z(2)∥

)
+

1

2
SG

(
(WPz

(1))⊤z(2)

∥WPz(1)∥3∥z(2)∥

)
∥W 1/2

P z(1)∥2 .
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D Experimental details561

Self-supervised pretraining. We used the CIFAR-10, CIFAR-100 [3], STL-10 [4], and TinyIma-562

geNet [5] datasets for self-supervised learning with a ResNet-18 [6] encoder and the SimCLR set of563

transformations [7]. We also adopted several modifications of ResNet-18 and the augmentation set564

which have been proposed to deal with the low resolution of the images in these datasets [7]. The565

ResNet modifications comprise using 3× 3 convolutional kernels instead of 7× 7 kernels and skip-566

ping the first max-pooling operation. The modifications to the standard SimCLR augmentations are567

excluding the blur transformation and using a weaker color jitter strength of 0.5. The configurations568

we used for each dataset are summarized in Table 3. We used BatchNorm in the backbone and the569

projector MLP in the hidden layer for all methods. For BYOL, we included BatchNorm also in the570

hidden layer of the predictor MLP.571

As stated in the main text, we used SGD with learning rate 0.1, momentum 0.9 and weight decay572

4 × 10−4. Furthermore, we used a warmup period of 10 epochs for the learning rate followed by573

a cosine decay schedule and a batch size of 512. For the EMA, we started with τbase = 0.996 and574

increased τEMA to 1 with a cosine schedule exactly following the configuration reported in [8]. For575

DirectPred, we used α = 0.5, τ = 0.3 for the moving average estimate of the correlation matrix576

updated at every step, and clipped the eigenvalues of the correlation matrix at 106.577

Table 3:

CIFAR-10 CIFAR-100 STL-10 TinyImageNet

Resolution 32× 32 32× 32 96× 96 64× 64

Kernel size 3× 3 3× 3 7× 7 3× 3
First max-pool No No Yes Yes

Blur No No Yes No
Color jitter 0.5 0.5 1.0 0.5

Linear evaluation protocol. We reported the held-out classification accuracy on the test sets for578

CIFAR-10/100 and STL-10, and the validation set for TinyImageNet, after training the linear classifier579

on frozen features for all labeled examples available in each training set.580
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