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ABSTRACT

We resolve difficulties in training and sampling from a discrete generative model by
learning a smoothed energy function, sampling from the smoothed data manifold
with Langevin Markov chain Monte Carlo (MCMC), and projecting back to the
true data manifold with one-step denoising. Our Discrete Walk-Jump Sampling
formalism combines the contrastive divergence training of an energy-based model
and improved sample quality of a score-based model, while simplifying training
and sampling by requiring only a single noise level. We evaluate the robustness
of our approach on generative modeling of antibody proteins and introduce the
distributional conformity score to benchmark protein generative models. By opti-
mizing and sampling from our models for the proposed distributional conformity
score, 97-100% of generated samples are successfully expressed and purified and
70% of functional designs show equal or improved binding affinity compared to
known functional antibodies on the first attempt in a single round of laboratory
experiments. We also report the first demonstration of long-run fast-mixing MCMC
chains where diverse antibody protein classes are visited in a single MCMC chain.

1 INTRODUCTION

Discrete sequence generation poses a number of challenges to gradient-based generative models.
Generative models must be expressive enough to faithfully capture the underlying data distribution,
while also having controllable outputs that are novel, unique, diverse, and respect the constraints of
the problem space. Energy-based models (EBMs) (Hinton & Sejnowski, 1986; LeCun et al., 2006)
fit an energy function that specifies a probability distribution over data analogous to the Boltzmann
distribution from statistical physics. Giving access to an easily computable energy is an advantage
of EBMs, but on the flip-side they can be difficult to train and sample from. Denoising objectives
based on score matching (Hyvärinen, 2005; Vincent, 2011) and the related advancements in diffusion
models (Sohl-Dickstein et al., 2015; Ho et al., 2020) overcome these issues, but these either model
the energy gradient or only provide access to an empirical lower-bound of the likelihood.

Protein design is an instance of the discrete sequence generation problem, wherein the challenge is to
find useful proteins in the large, discrete, and sparsely functional space (Romero & Arnold, 2009)
of dimension 20L for proteins of length L. Here, we consider the specific problem of generative
modeling of antibodies, a class of proteins with highly conserved structure that are of immense interest
for therapeutics. In addition to the qualities mentioned above, generative models for antibodies must
be sample-efficient because of the relatively small size of datasets with therapeutic antibodies (Kim
et al., 2023). Antibodies consist of well-conserved domains and high-entropy variable regions, so
leveraging evolutionary information from pre-trained protein language models is not an immediate
solution. We distinguish ab initio protein discovery and design (producing novel, functional proteins
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Figure 1: Selected samples from a single Markov chain Monte Carlo sampling run of discrete Walk-
Jump sampling (our method). Protein color corresponds to different antibody germlines (classes).
Samples are folded with EquiFold (Lee et al., 2022) for visualization purposes. Discrete walk-jump
sampling exhibits fast mixing and explores diverse modes of the distribution in a single chain.

given some training samples), which is the focus of this work, from de novo design, which we
define as the generation of novel proteins without starting material. Existing autoregressive protein
design methods (Jin et al., 2021) are inefficient and can suffer from accumulation of errors and high
inference latency, while current non-autoregressive diffusion models are similarly inefficient and
poorly optimized for real discovery and design tasks (Kong et al., 2022). Our goal here is to invent
an efficient, non-autoregressive generative modeling paradigm for discrete data that produces high
quality, novel samples.

To this end, we introduce Smoothed Discrete Sampling (SDS), a new formalism for training and
sampling from discrete generative models. We propose a novel algorithm, discrete Walk-Jump
Sampling (dWJS), a method building on the neural empirical Bayes (NEB) (Saremi & Hyvärinen,
2019) formalism, that addresses the brittleness of discrete EBMs and diffusion models and in doing
so, provides a robust and general framework for protein discovery and design.1 We also design a
metric called the Distributional Conformity Score (DCS), which is a simple scalar score for protein
sample quality. Our results rescue EBMs for discrete distribution modeling and question the need for
diffusion models with multiple noise scales in protein discovery.

Our contributions are as follows:

• We introduce a new paradigm for modeling discrete data distributions, Smoothed Discrete
Sampling (SDS), building on the neural empirical Bayes framework. We propose the discrete
Walk-Jump sampling algorithm, which uses uncoupled, separately trained score- and energy-
based models to learn noisy data distributions and sample discrete data. dWJS enables fast,
non-autoregressive sampling with variable length discrete outputs. We also design a novel
architecture for discrete EBMs.

• Our method simplifies score-based model training for discrete data by requiring only a single
noise level and no noise schedule, which alleviates the brittleness, training instabilities, and
slow sampling of diffusion models. Our method also resolves difficulties in training EBMs,
obviating the need for many common EBM training tricks (replay buffer, ℓ2 norm penalty,
rejection sampling, etc.), while preserving good sample quality and fast sampling.

• We demonstrate the utility of our approach in the context of ab initio protein discovery and
design - generating novel, biophysically-valid protein sequences from models trained on
repertoires of functional molecules. We validate our method with in vitro experiments. Our
method outperforms autoregressive and masked protein language models, large language
models, discrete sequence and structure-sequence diffusion, and score-based baselines.

1https://github.com/prescient-design/walk-jump
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2 BACKGROUND

2.1 ENERGY-BASED MODELS

EBMs are a class of models that learn an energy function fθ : X→ R mapping inputs x (in Rd) to a
scalar “energy" value. The data distribution is approximated by the Boltzmann distribution

pθ(x) ∝ e−fθ(x).

EBMs are typically trained via contrastive divergence (Hinton, 2002), and new samples are drawn
from pθ(x) by Markov-Chain Monte Carlo (MCMC). Details of the loss function used in this work
are given in Section 3. In Langevin MCMC, samples are initialized from a known data point or
random noise and refined with (discretized) Langevin diffusion

xk+1 = xk − δ∇fθ(xk) +
√
2δ εk, εk ∼ N(0, Id), (1)

where∇ denotes the gradient of the energy function with respect to inputs, k is the sampling step, δ
is the (discretization) step size, and the noise εk is drawn from the normal distribution at each step.

2.2 NEURAL EMPIRICAL BAYES

In NEB, the random variable X is transformed with additive Gaussian noise Y = X +N(0, σ2Id).
The least-squares estimator of X given Y = y is given by (Robbins, 1956; Miyasawa, 1961)

x̂(y) = y + σ2∇ log p(y), (2)

where p(y) =
∫
p(y|x)p(x)dx is the probability distribution function of the smoothed density.2

This estimator is often expressed directly in terms of g(y) = ∇ log p(y) known as the score func-
tion (Hyvärinen, 2005) which is parameterized with a neural network denoted by gϕ : Rd → Rd. The
least-squares estimator then takes the following parametric form:

x̂ϕ(y) = y + σ2gϕ(y). (3)

Putting this all together leads to the following learning objective

L(ϕ) = Ex∼p(x),y∼p(y|x)∥x− x̂ϕ(y)∥2, (4)

which is optimized with stochastic gradient descent. Notably, no MCMC sampling is required
during learning. In short, the objective is “learning to denoise” with an empirical Bayes formulation
(discussed further in Appendix B.3).

3 ANTIBODY DISCOVERY AND DESIGN

3.1 DISCRETE WALK-JUMP SAMPLING

Following training of the denoising network, gϕ, one can sample noisy data using the learned score
function gϕ(y) with Langevin MCMC (replace −∇f with g in Eq. 1). For any such draws yk, clean
samples from the true data manifold M are obtained by “jumping” back to M with the least-squares
estimator x̂ϕ(yk) = yk + σ2gϕ(yk). This is the walk-jump sampling (WJS) scheme. A key property
of WJS is the fact that the least-squares estimation (jump) is decoupled from the Langevin MCMC
(walk).

Here, we take advantage of this decoupling to train an EBM with maximum likelihood estimation on
the smoothed distribution of noisy sequences, generate noisy samples with Langevin MCMC, and
denoise samples with a separately trained neural network, the least-squares estimator. The algorithm
for discrete walk-jump sampling is given in Algo. 1. Our algorithm is general and applies to any
discrete sequence inputs of a fixed vocabulary. In Fig. 1 we show samples generated from a single
chain of MCMC. Unlike a diffusion model, every sample along the chain collectively forms a valid
set of samples from the underlying distribution, because of the decoupled walk (sampling) and jump
(denoising) steps. dWJS also produces fast-mixing chains, such that many diverse modes (protein

2We follow the convention p(x) := pX(x), p(y) := pY (y), etc.
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Figure 2: Discrete walk-jump sampling. a The noising and denoising process is applied to antibody
proteins. b Discrete inputs x are smoothed with isotropic Gaussian noise, ε ∼ N(0, σ2Id), to noisy
inputs, y = x+ ε. A discrete energy-based model (dEBM) parameterizes the energy function fθ(y)
of noisy data. Noisy data is sampled with the energy function, and denoised with a separate denoising
ByteNet network to clean samples, x̂ϕ(y). c The “walk" sampling steps on the noisy data manifold
with Langevin MCMC are totally decoupled from the “jump" steps to clean samples. d The dEBM
takes noisy inputs y, concatenates them with a 1d positional encoding, p1d, passes through an MLP
and a 3 layer CNN, and concatenates the outputs with an embedding zs of the inputs into a hidden
state, h. h is passed through an MLP and returns the energy fθ(y).

classes) are sampled in a single chain. Samples are folded with EquiFold (Lee et al., 2022) for
visualization and confirmation of structural validity.

The EBM is trained by maximizing the log-likelihood of noisy data under the model:

argmax
θ

Ey∼pY
[log pθ(y)] = argmax

θ

(
Ey−∼pθ(y)[fθ(y

−)]− Ey+∼pY
[fθ(y

+)]
)
, (5)

where y+ are noisy training data and y− are noisy data sampled from the model.

With this objective, the model aims to decrease the energy of noisy training data (“positive” samples
y+) while increasing the energy of noisy data sampled from the model (“negative” samples y−) in
expectation. The following identity is behind the positive/negative phases in the EBM training:

∇θ log pθ(y) = −∇θfθ(y)−∇θ logZ(θ)

= −∇θfθ(y) +

∫
∇θfθ(y)e

−fθ(y)dy

Z(θ)

= −∇θfθ(y) +

∫
∇θfθ(y) · pθ(y)dy

= −∇θfθ(y) + Ey∼pθ(y)[∇θfθ(y)],

(6)

where Z(θ) =
∫
e−fθ(y)dy is the partition function.

Algorithm 1: Discrete Walk-Jump Sampling
Input: Denoiser, gϕ(y), energy-based model, fθ(y)
Output: Noisy samples y ∼ p(y), denoised samples x̂(y)

1 y0 ∼ Unif([0, 1]d) +N(0, σ2Id)
2 for t = 0, . . . , T − 1 do
3 yt+1 ← yt − δ∇yfθ(yt) +

√
2δεt , εt ∼ N(0, Id)

4 end
5 x̂T ← yT + σ2gϕ(yT )
6 return argmax x̂T // to recover one-hot encoding
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Variable length protein sequence generation. We represent antibody protein molecules as
x = (x1, . . . , xd), where xl ∈ {1, . . . , 20} corresponds to the amino acid (AA) type at position l.
Sequences from the Observed Antibody Space (OAS) database (Olsen et al., 2022) are aligned ac-
cording to the AHo numbering scheme (Honegger & PluÈckthun, 2001) using the ANARCI (Dunbar
& Deane, 2016) package and one-hot encoded. Aligning sequences in this way is a practical solution
to handling insertions and deletions, which are otherwise troublesome for models that require fixed
length inputs and outputs; alignment introduces a “gap" token that can be introduced or removed
during sampling to effectively change the length of sequences. This allows the model to capture the
distribution of lengths present in natural antibodies. The alignment step maps heavy and light chain
sequences of varying lengths to a standard, gapped input size of 149 and 148 respectively with 21
possible discrete tokens including the gap. Thus, the input dimension for every sequence becomes
d = (149 + 148)× 21. Without loss of generality, any set of proteins can be aligned with a multiple
sequence alignment (Rao et al., 2021). For other classes of discrete data, pseudo-alignment tokens
can be used and randomly inserted into the inputs, or simple BOS and EOS tokens can be used and
sampled. An EBM is trained via contrastive divergence on the manifold of smoothed, noisy one-hot
encodings, y, given by y = x+ε, ε ∼ N(0, σ2Id), where x ∈ {0, 1}d. A separate denoising model is
trained with the objective in Eq. 4. New antibody sequences are generated (Fig. 2) by sampling noisy
samples with Langevin MCMC following gradients from the EBM, denoising with the least-squares
estimator, and taking argmax x̂ to recover a one-hot encoding. Further details related to training and
network architecture are given in Appendix A.

Protein design vs discovery. Protein discovery is the task of generating novel, unique, and valid
samples. Protein design refers to taking some starting sequence and making edits to improve function.
With dWJS we achieve discovery through unconditional sampling, while design is performed via
constrained sampling and scoring. That is, we impose the following constraint in the form of a binary
projection matrix

P⊤argmax x̂(y, t) = P⊤s

for P ∈ {0, 1}L×c, where c is the number of conserved tokens in the sequence, y is the noisy
sequence at time step t of Langevin MCMC, x̂(y, t) is the denoised sample at time t, and s is the
starting sequence. This constraint ensures that the specified regions of the sequence are conserved,
while the non-conserved regions are free to change during Langevin MCMC.

3.2 DERIVATION OF OPTIMAL NOISE LEVEL FOR DISCRETE SEQUENCE DATA

Throughout the experiments in Section 4, we must choose what noise level, σ, to use for training.
Empirically, we find that in the protein discovery setting, σ ≥ 0.5 is sufficient for getting good sample
quality. Here, we provide some intuition for choosing a good σ, based on a geometric picture of the
concentration of the measure (Saremi & Hyvärinen, 2019). We define the matrix χ with entries

χii′ =
||Xi −Xi′ ||

2
√
d

, (7)

where d is the dimension of the data and the 1
2
√
d

scaling comes from the concentration of isotropic
Gaussians in high dimensions. The critical noise level, σc, is defined as

σc = max
ii′

χii′

such that for σ > σc, all noisy data have some degree of overlap. For our antibody sequence data,
the statistics of the χ matrix are given in Table 1 and the histogram of χii′ values is shown in
Appendix A.6. We find that σc ≈ 0.5, which agrees with our empirical hyperparameter optimization.
Estimating σc in this way serves to motivate the empirical success of the σ used in our experiments,
and provides helpful guidance on the scale of σ to use for discrete data. Here we take d to be the
length of the input vector (d = L = 297 for aligned antibody sequences); for the flattened sparse
one-hot matrices with vocabulary size 21, d = 6237. This scales σc by 0.22, which still gives a useful
scale for σ, but is not optimal because of the sparsity of the one-hot matrices.

3.3 DISTRIBUTIONAL CONFORMITY SCORE

The Fréchet inception distance (FID) (Heusel et al., 2017) (a metric for image generation quality) and
the BLEU (BiLingual Evaluation Understudy) score (Papineni et al., 2002) (for evaluating the quality
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Table 1: Statistics of the distance matrix, χ, for discrete antibody sequence data.

min median mean max ≈ σc

χ 0.17 0.42 0.41 0.51

Figure 3: in silico designs sampled with dWJS are compared to a reference set of validation samples.
Distributions are characterized with a set of sample quality metrics. Joint density estimation is used
to compute the likelihood of designs versus the validation set and likelihoods are condensed into a
distributional conformity score that characterizes the similarity of generated samples to the reference
set.

of machine translation) greatly simplify the evaluation of proposed methods; protein generation
lacks such metrics, which motivates us to introduce the “distributional conformity score” (DCS) (Fig.
3). The goal of the DCS is to provide a succinct description of how likely generated samples are
with respect to a reference distribution, while maintaining novelty and diversity. DCS is designed
such that improving sample quality corresponds directly to increased probability of generating real,
biophysically valid proteins.

We evaluate the probability that our generated sequences conform to a reference distribution using
the conformal transducer system (Shafer & Vovk, 2008; Vovk et al., 2016). Let X ∈ Rd, Y ∈
R, and Z = X × Y.3 A conformity measure A is a measurable function that maps a sequence
(z1, . . . , zn) ∈ Zn to a set of real numbers (α1, . . . , αn) and is equivariant under permutations. Here,
we define A to be the likelihood under the joint density over various properties, including biophysical
properties and statistical properties, such as a log-probability under a protein language model (the
properties considered, further details, and comparisons to other measures of protein-likeness are given
in Appendix F). To avoid overfitting the estimator, we split the reference set into a fitting set and a
validation set (Algo. 2). In our context, the reference distribution D comprises all antibodies and the
label y represents the property of interest such as expression or binding. Empirically, we find that
DCS is a useful in silico evaluation metric for developing generative methods and hyperparameter
optimization, and that methods with DCS > 0.3 yield nearly 100% expressing proteins in the wet lab.

Algorithm 2: Distributional conformity scores for evaluating generated designs
Input: Reference distribution D, test example x ∈ X, conformity measure A, label y
Output: p-value py (the fraction of validation examples that are less similar to Dz|y than x)

1 Sample (z1, . . . , zn), zi ∼ Dz|y and a held-out validation set (z̃1, . . . , z̃k−1), z̃i ∼ Dz|y
2 Set z̃k ← (x, y)
3 for i = 1 to k do
4 αi ← A(z1, . . . , zn, z̃i)
5 end
6 py ← 1

k

∑k
i=1[αi < αk]

7 return py

3In the discussion of distributional conformity score, x refers to sample features; elsewhere in the paper x
refers to clean data. Here, y refers to labels; elsewhere in the paper y refers to noisy data.
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Table 2: Ablikeness metrics, uniqueness, diversity, and distributional conformity scores.

Model Wproperty ↓ Unique ↑ Edist ↑ IntDiv ↑ DCS ↑

dWJS (energy-based) 0.056 1.0 58.4 55.3 0.38
dWJS (score-based) 0.065 0.97 62.7 65.1 0.49
SeqVDM 0.062 1.0 60.0 57.4 0.40
DEEN 0.087 0.99 50.9 42.7 0.41
GPT 3.5 0.14 0.66 55.4 46.1 0.23
IgLM 0.08 1.0 48.6 34.6 0.533
ESM2 0.15 1.0 70.99* 77.56* 0.061

4 EXPERIMENTS

We evaluate our method, discrete Walk-jump sampling (dWJS) (Fig. 2), on three antibody generation
tasks: 1) distribution learning on paired observed antibody space (Olsen et al., 2022); 2) the in vitro
expression and purification of novel antibodies; and 3) most importantly, functional therapeutic
antibody design (Mason et al., 2021). Crucially, we compare methods using our distributional
conformity score, which is a sample-to-distribution metric to assess sample quality (analogous to
an FID score), rather than the sequence recovery metrics used in previous antibody design work
(Kong et al., 2022; Jin et al., 2021). Sequence recovery is a poor objective for our goal, which is the
discovery of novel (large edit distance from known examples), functional antibodies. Details related
to model architectures, training, baseline methods, and sequence sampling are in Appendix A.

4.1 DWJS GENERATES NATURAL, NOVEL, DIVERSE ANTIBODIES in silico

We measure generative model performance with a suite of “antibody likeness" (ab-likeness) metrics
including labels derived from the AA sequence with Biopython (Cock et al., 2009). Sequence
property metrics are condensed into a single scalar metric by computing the distributional conformity
score and the normalized average Wasserstein distance Wproperty between the property distributions
of samples and a validation set. The average total edit distance Edist summarizes the novelty and
diversity of samples compared to the validation set, while internal diversity (IntDiv) represents the
average total edit distance between samples. Our method achieves strong ablikeness results (Table 2),
simply by increasing σ to ≥ 0.5.

Table 3: Measured protein synthesis.

Model totalexpressed ↑
dWJS (score-based) 1.0
dWJS (energy-based) 0.97
EBM 0.42

dWJS with dEBM sampling achieves the best agree-
ment with the validation set property distribution and
highest percentage of unique samples, while dWJS
with score-based sampling has high distributional
conformity score, novelty, and diversity. We compare
to a latent sequence diffusion method (SeqVDM),
(a discrete generalization of variational diffusion;
Kingma et al. 2021), a score-based model with an en-
ergy parameterization (DEEN), a transformer-based
language model trained specifically for antibody de-

sign (IgLM); Shuai et al. (2021), ESM2 Lin et al. (2023), and a pre-trained large language model
(LLM) (GPT 3.5). Our dWJS methods have faster sampling time and lower memory footprint than
diffusion, autoregressive, and score-based baselines (Table 7), while also having better sample quality.
Our methods outperform IgLM on antibody-likeness, edit distance, and internal diversity metrics,
whereas IgLM has the best DC score and the lowest (worst) IntDiv. This indicates that IgLM samples
are extremely close to the reference set and samples are similar to one another. As our score-based
dWJS has a DC score of 0.49 and a 100% expression rate in the lab, it is likely that all IgLM
samples would successfully express in the lab as well. IgLM does produce 100% unique samples,
outperforming score-based dWJS and GPT 3.5. Due to IgLM being an autoregressive sampler, our
method (energy-based dWJS) has 43× faster sampling speed, which is useful when generating and
ranking large numbers of designs. To mimic the ab initio generation task for ESM2, we increase the
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masking percentage as high as we can (40%) while still generating valid samples and infill validation
set sequences to generate new samples. As expected, ESM2 performs extremely poorly in generating
ab initio samples with good antibody-likeness, because it is not trained for generation. It generates
highly repetitive sequences that are very dissimilar to antibodies (hence the high, but meaningless,
Edist and IntDiv scores). As a masked language model, ESM2 infilling is the fastest sampler, but at
the cost of poor sample quality. Details on the baseline methods, and IgLM and GPT 3.5 prompts are
given in Appendices A and D.

4.2 DWJS GENERATES NATURAL, NOVEL, DIVERSE ANTIBODIES in vitro

Out of more than 277 designed antibody sequences tested in the laboratory, 270 were successfully
expressed and purified (Table 3). We achieved the 97.47% in vitro success rate by developing dWJS
to capture the antibody distribution in silico as measured by Wproperty and distributional conformity
score. For comparison, sequences from an EBM (trained on clean data with samples drawn using
traditional Langevin MCMC) achieved a 42% expression rate. An antibody sequence comprised
of random vocabulary tokens would be expected to have a 0% expression rate, and in laboratory
experiments we have confirmed that a small number of edits (< 4) can destroy expression if the
proposal distribution (generative model) is poorly optimized.

4.3 DWJS GENERATES FUNCTIONAL ANTIBODY VARIANTS in vitro

Table 4: Predicted and measured antibody binding affinity.

Model pbind ↑ totalbind ↑
dWJS (energy-based) (Ours) 0.96 0.70
dWJS (score-based) (Ours) 0.95 N/A
LaMBO-2 (Gruver et al., 2023) N/A 0.25
AbDiffuser (Martinkus et al., 2023) 0.94 0.22 (0.57)
SeqVDM 0.75 N/A
GPT 4 0.74 N/A
Transformer 0.60 N/A
EGNN 0.58 N/A

To further show the ro-
bustness of our method,
we consider the task of
training generative mod-
els on a hu4D5 antibody
mutant dataset (Mason
et al., 2021) and compare
to baseline models. The
dataset consists of 9k bind-
ing and 25k non-binding
hu4D5 CDR H3 mutants
with up to 10 mutations
(after de-duplication and
removing samples that are
labeled both binding and
non-binding). This yields a 1013 dimensional search space. The mutants were measured in lab exper-
iments to determine their binding to HER2 antigen. The goal of this benchmark task is to produce
unique samples that also bind to HER2. We trained dWJS models (score-based and energy-based)
on only the binder set at a noise level of σ = 0.5, while also training a 1D-CNN binary classifier to
classify binders and non-binders. The classifier achieves 86% accuracy on an IID validation split.
Then, we classified 1000 samples from each dWJS generative model and four baseline models also
trained on the hu4D5 binder set. We compare in silico to three diffusion models: 1) a sequence
transformer based on BERT (Devlin et al., 2018) that generates sequences, 2) an E(n) Equivariant
Graph Neural Network (EGNN) (Satorras et al., 2021) that codesigns (sequence, structure), and 3) a
latent sequence diffusion model, SeqVDM; and a pre-trained LLM, GPT 4. The specific prompt used
for GPT 4 is given in Appendix D. The probability of binding for unique designs from each model is
reported in Table 4. Our methods produce the highest percentage of unique predicted binders.

We also report in vitro wetlab validation results for the dWJS energy-based designs. dWJS produces
the highest percentage of functional antibodies that bind to target (totalbind in Table 4). We achieved
a 70% binding rate in the first round of experimental wet lab validation on HER2, by redesigning
the CDR H3 loop of trastuzumab. To the best of our knowledge, this is the highest reported binding
rate of any antibody design method applied to trastuzumab CDR H3 redesign. Concurrent with
the first appearance of our work, two diffusion models reported in vitro wet-lab results for this
task: AbDiffuser (Martinkus et al., 2023), a (sequence, structure) antibody codesign method, and
LaMBO-2 (Gruver et al., 2023), a guided discrete diffusion method. LaMBO-2 produces 25% binders,
while AbDiffuser generates 22% binders (57% binders after post-hoc filtering). Our method, dWJS,
produces the highest percentage of unique binders (70%) and requires no post-hoc filtering. While the
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diffusion methods include other important capabilities including structure generation (AbDiffuser)
and guided sampling (LaMBO-2), our method outperforms diffusion for discrete distribution learning,
which is our goal. For this experiment, our model is trained only on the publicly available (Mason
et al., 2021) dataset. This training dataset, our code,4 and our experimental results are open and we
encourage other researchers to compare results in the same in vitro setting. Further details on wetlab
experiments are presented in Appendix E.

5 RELATED WORK

Energy-based models (EBMs) (LeCun et al., 2006) are a class of physics-inspired models that learn
an energy function defining a probability distribution over data with a rich history that goes back
to Boltzmann machines (Hinton & Sejnowski, 1986). Estimating unnormalized densities has also
been formulated using score matching (Hyvärinen, 2005). This formulation led to probabilistic
models for denoising autoencoders (Vincent, 2011; Alain & Bengio, 2014; Saremi et al., 2018), but
also has an empirical Bayes interpretation that is most related to this work. In particular, the neural
empirical Bayes (NEB) (Saremi & Hyvärinen, 2019) formalism unifies kernel density estimation
(Parzen, 1962) and empirical Bayes (Robbins, 1956) to transform the unsupervised learning problem
into a more tractable form where a neural network energy function is parameterized to capture a
smoothed data distribution. Our work is the first study of the NEB formalism for discrete data.
Discrete diffusion models such as (Austin et al., 2023) learn an iterative denoising process over many
different noise levels by prescribing a noise process over discrete data that converges to a known
categorical distribution.

Approaches borrowing from traditional ML generative modeling have been used to model antibodies
(Shuai et al., 2021; Gligorijević et al., 2021; Ferruz & Höcker, 2022; Tagasovska et al., 2022), but
typical natural-language-based methods struggle to capture the data distribution of antibodies, for
which there is limited training data (∼1K - 1M high-quality sequences depending on the distribution
of interest) and additional challenges due to the high-entropy variable regions of the sequence.
Here, we address the above challenges with training and sampling discrete sequences using a novel
formulation of decoupled energy- and score-based modeling.

6 CONCLUSIONS

We proposed Smoothed Discrete Sampling (SDS), a new paradigm for modeling discrete distributions
that uses Langevin Markov-Chain Monte Carlo to sample from smoothed data distributions. We
introduce the discrete Walk-Jump Sampling (dWJS) algorithm and evaluate it on the antibody
discovery and design problems, showing the capability of our method to generate novel, diverse,
and functional antibodies as measured by synthetic biophysical property distributions, similarity
metrics, and in vitro experiments. The strong regularization provided by fitting the energy function
to noisy data completely prevents overfitting and training instabilities, resulting in fast and efficient
training and sampling with low compute requirements. dWJS discards many of the commonly used
techniques for improving EBM training with Langevin MCMC (replay buffers, ℓ2 norm penalty,
simulated annealing, rejection sampling, etc.) and reduces the engineering complexity of training
EBMs and diffusion-based models to a single hyperparameter choice: the noise level, σ. Altogether,
our results suggest a simplified, more general and robust framework for training and sampling from
discrete energy- and score-based models with applications to therapeutic molecule design. Future
work will probe the generality of our results to other classes of molecules and even other data
modalities (e.g., images), as well as theoretical investigation into the results presented here.

4https://github.com/prescient-design/walk-jump
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A NETWORK ARCHITECTURES AND TRAINING DETAILS

A.1 DISCRETE WALK-JUMP SAMPLERS

For all experiments we use an identical architecture for the EBM consisting of three Conv1D layers
with kernel sizes 15, 5, and 3 and padding 1, ReLU non-linearities and an output linear layer of
size 128. The denoising model is a 35-layer ByteNet (Kalchbrenner et al., 2016) architecture with a
hidden dimension of 128, trained from scratch. The Bytenet architecture has been shown to perform
competitively with transformers for protein sequence pretraining tasks (Yang et al., 2022). All models
were trained with the AdamW (Loshchilov & Hutter, 2017) optimizer in PyTorch (Paszke et al., 2019).
We used a batch size of 256, an initial learning rate of 1× 10−4, and trained with early stopping.

Transformer implementation of dWJS denoising model In addition to the ByteNet implementa-
tion, we implemented a transformer-based architecture for the denoising network, with 12 hidden
layers, 8 attention heads, a dimension of 2048 for the feed-forward layers, 256 features in the en-
coder/decoder inputs, and SiLU activations. The score-based dWJS with a transformer architecture
exhibits comparable performance to the ByteNet architecture, indicating that the performance of our
method is not reliant on a particular architecture, and any sufficiently expressive architecture will
work.
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Taxonomy of Smoothed Discrete Sampling Because of the decoupled walk and jump steps, there
are many natural implementations of Smoothed Discrete Sampling. Empirically, we find that Algo. 1
takes advantage of both energy- and score-based modeling to produce the highest quality, novel,
unique, diverse samples. Four natural choices for performing sampling, which arise from different
combinations of energy- and score-based parameterizations, are summarized in Table 5. Discrete
Walk-Jump Sampling refers to walking with the EBM, fθ(y), and jumping with the denoising network,
gϕ(y). Score-based dWJS uses gϕ(y) for both walking and jump steps. The Deep Energy Estimator
Network (DEEN) (Saremi et al., 2018) approach uses a denoiser that is trained by taking the derivative
of an energy and using the same learning objective as Eq. 4. DEEN can be thought of as an energy
parameterization of a score-based generative model. Finally, dWJS-EBM uses an EBM for sampling
and the gradient of the energy,∇fθ(y), for denoising. Empirically, we find that the most performative
method in terms of efficiency, sample quality, and diversity is the EBM walk and denoiser jump,
which we refer to as Discrete Walk-Jump Sampling.

Table 5: Smoothed Discrete Sampling implementations.

Model Walk (sampling) Jump (denoising)

dWJS (energy-based) EBM Denoiser
dWJS (score-based) Denoiser Denoiser
Deep Energy Estimator Network Denoiser (energy) Denoiser (energy)
dWJS-EBM EBM EBM

A.2 DWJS STABILIZES AND SIMPLIFIES TRAINING

We observe that the dWJS algorithm prevents instabilities during maximum likelihood training. EBMs
commonly exhibit issues with training stability and divergences in the energy, due to the energy
landscape becoming too complicated to sample. Noising the data provides strong regularization
that prevents overfitting and instabilities. This is seen over a range of noise levels σ ∈ [0.5, 4.0] for
EBMs trained over 3,000 steps. Training instabilities recur for σ < 0.5. We investigate the effects of
discarding many of the techniques for improved EBM training that, while introduced to ameliorate
challenges with EBMs, also introduce complexities that make EBMs brittle, inflexible, and difficult
to optimize. In particular, we discard the replay buffer, the ℓ2 norm penalty loss term to regularize
the energies, Metropolis rejection sampling, and time step annealing. We use the Langevin MCMC
algorithm (Algo. 4) from (Sachs et al., 2017) and eliminate the need for careful hyperparameter
finetuning; σ is the only free hyperparameter in dWJS.

A.3 DIFFUSION BASELINES

In our comparison study we use the Sequence-based Variational Diffusion Model (SeqVDM) proposed
by Kingma et al. Kingma et al. (2021), adapted for protein sequence data. The model deals with the
discrete sequences by first projecting them into a continuous latent space and then performing the
discrete denoising diffusion in the latent space. The VDM learns the data distribution by modeling
the reverse of a diffusion process in a latent space. In all our experiments we used T = 1000 steps
with the fixed noise schedule γmin = −13 and γmax = 5. The encoder, decoder and score network
model are parameterized with 3 blocks of residual MLP layers applied on flattened 1-hot encoding
representations of sequences. The MLP layers project the initial sequence representation down to
a d = 512 dimensional latent space. The model is simultaneously trained to optimize the diffusion
loss (i.e., the score-matching loss) and the sequence reconstruction loss. SeqVDM is trained on
paired OAS with the AdamW optimizer and the initial learning rate of 2× 10−4 for 50 epochs. The
sampling is done by starting from a latent vector initialized with Gaussian noise.

A.4 LANGUAGE MODEL BASELINES

We generate samples from IgLM using the prompt given in Appendix D. IgLM is a GPT2-style
model trained to conditionally generate antibody heavy and light chains. It is therefore a strong
autoregressive baseline for antibody design.
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To mimic the ab initio generation task presented in Table 2, we increase the masking percentage of
the masked language model ESM2 Lin et al. (2023) as high as possible (40%) and infill validation set
sequences to generate new samples. Beyond 40% masking, the model produces invalid sequences
containing non-amino acid characters. As a masked language model, ESM2 is capable of limited
infilling tasks, but it is not designed to perform true ab initio protein discovery. Indeed, it does not
generate antibody-like sequences, and the high Edist and IntDiv scores are therefore meaningless.
We include it purely as a familiar and powerful general protein language model baseline to show the
gap in performance between a general, pre-trained protein MLM and our methods.

A.5 EFFECT OF CHOICE OF σ

In Table 6 we show sample quality results for score-based dWJS as a function of the noise level, σ.
We see that σ = 0.5 produces the best quality samples, while maintaining uniqueness and diversity.
Setting the noise too low (σ = 0.1) leads to samples that do not capture the biophysical property
distribution of the training set (high Wproperty) and have extremely high edit distances from the
training set (Edist > 120). This is because at low σ, the density is not smoothed and sampling
does not perform well. At extremely high noise level (σ = 3), the samples more closely match the
training distribution, but they start to show signs of “mode collapse" (lower average edit distance to
the training set and lower internal diversity), because the density is over-smoothed.

Table 6: σ, ablikeness metrics, uniqueness, diversity for score-based dWJS.

σ Wproperty ↓ Unique ↑ Edist ↑ IntDiv ↑

0.1 0.378 1.0 120.6* 60.0
0.5 (From Table 2) 0.065 1.0 62.7 65.1
3.0 0.130 0.995 44.2 30.0

A.6 ESTIMATION OF σc HYPERPARAMETER
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Figure 4: Histogram of χii′ values for random samples from the paired observed antibody space
(Olsen et al., 2022) dataset.

B ADDITIONAL ALGORITHMS

B.1 GRADIENT FLOW ENABLES LOCAL MINIMA FINDING

We define the gradient flow as y′(t) = −∇ log f(y(t)), where sampling is performed by following
the flow of the gradient of the probability density function in a deterministic dynamics, rather than
stochastic Langevin dynamics. We initialize sampling from noise at t = 0, y0 = ε0, ε0 ∼ N(0, Id),
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and sample noisy samples y′(t) following the gradient flow. In this way, we discover local “attractors"
on the data manifold that correspond to local minima of the learned energy function. The algorithm
for discrete gradient flow is given in Algo. 3.

Algorithm 3: Discrete gradient flow
Input: Denoiser, gϕ(y), energy-based model, fθ(y)
Output: Denoised samples x̂(y, t)

1 y0 ∼ N(0, σ2Id)
2 for t = 0, . . . , T − 1 do
3 yt+1 ← yt − δ∇yfθ(yt)
4 end
5 x̂T ← yT + σ2gϕ(yT )
6 return argmax x̂T

B.2 LANGEVIN MCMC UPDATE

Algorithm 4: Walk-jump sampling (Saremi & Hyvärinen, 2019) using the discretization of
Langevin diffusion by Sachs et al. (2017). Lines 6-13 correspond to walk step and line 14 is the
jump step.

1: Input δ (step size), u (inverse mass), γ (friction), K (steps taken)
2: Input Learned score function gθ(y) ≈ ∇ log p(y) and noise level σ
3: Output x̂K

4: y0 ∼ N(0, σ2Id) + Ud(0, 1)
5: v0 ← 0
6: for k = 0, . . . ,K − 1 do
7: yk+1 ← yk + δ

2vk
8: gk+1 ← gθ(yk+1)
9: vk+1 ← vk + uδ

2 gk+1

10: ε ∼ N(0, Id)

11: vk+1 ← exp(−γδ)vk+1 +
uδ
2 gk+1 +

√
u (1− exp(−2γδ))ε

12: yk+1 ← yk+1 +
δ
2vk+1

13: end for
14: x̂K ← yK + σ2gθ(yK)

B.3 NEURAL EMPIRICAL BAYES

Here, we include additional discussion and motivation for Neural Empirical Bayes and generating
discrete samples with decoupled walk and jump steps. Discrete data in this work is viewed as taking
continuous values (embedded in Euclidean space) in the NEB formalism, and by choosing large noise
levels we can smooth out the original distribution greatly which makes it easier to sample from. In
addition, we can use single-step denoising back to discrete values. In short, the walk-jump sampling
is especially well suited for discrete data.

In line 1 of Algorithm 1, we followed the initialization scheme in (Saremi & Srivastava, 2022), since
here the discrete data is viewed as being embedded in Euclidean space. Typically having the normal
distribution as part of the initialization is more important for high noise levels, and we chose the
uniform distribution for simplicity.

The walk and jump steps are completely decoupled. The models used for denoising and sampling
can have the same parameterization, but they can also be trained separately. Because the walk and
jump steps do not depend on each other in any way, we consider them to be decoupled. The energy
and score are related by a derivative with respect to the inputs, and any model that gives access to a
score can be used for sampling via Langevin MCMC. However, EBMs and score-based models are
trained in completely different ways with different loss functions and architectures, so the empirical
performance can differ greatly. DEEN models are not trained with contrastive divergence, so the
EBM formulation is completely distinct in terms of parameterization, training, and sampling.
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C PERFORMANCE PROFILING

Table 7: Model size, sampling time and memory consumption.

Model Parameters (M) GPU time / sample (ms) ↓ GPU memory (MB) ↓

dWJS (energy-based) 9.87 64.89 4734.76
dWJS (score-based) 1.03 327.60 16.7
SeqVDM 12.31 940.40 246.39
DEEN 1.03 976.99 16.72
IgLM 12.89 2800 —
ESM2 7.8 5.25 —

D FEW-SHOT, IN-CONTEXT LEARNING AND PROMPTS

D.1 GPT 4 PROMPT

GPT 4 accessed on April 27, 2023. Prompt was repeated 20 times to generate additional samples for
statistics.

Prompt: You are an expert antibody engineer. I am going to give you examples of CDR
H3 variants of trastuzumab that were reported binders to the HER2 antigen in the paper
"Optimization of therapeutic antibodies by predicting antigen specificity from antibody se-
quence via deep learning". You will generate 100 new CDR H3 variants that you predict
will also bind to HER2. Output the 100 samples as a python list. Here are the examples:
[’WHINGFYVFH’, ’FQDHGMYQHV’, ’YLAFGFYVFL’, ’WLNYHSYLFN’, ’YNRYG-
FYVFD’, ’WRKSGFYTFD’, ’WANRSFYAND’, ’WPSCGMFALL’, ’WSNYGMFVFS’, ’WS-
MGGFYVFV’, ’WGQLGFYAYA’, ’WPILGLYVFI’, ’WHRNGMYAFD’, ’WPLYSMYVYK’,
’WGLCGLYAYQ’,]

Response: As an AI language model, I can’t run simulations or generate sequences based on
actual molecular interactions. However, I can use patterns found in your provided list to generate
new sequences that may resemble the CDR H3 variants you’ve shared. Keep in mind that these
new sequences have not been validated experimentally and may not bind to HER2.

D.2 GPT 3.5 PROMPT

GPT 3.5 accessed on May 2, 2023. Prompt was repeated 5 times to generate additional samples for
statistics.

Prompt: You are an expert antibody engineer. I am going to give you examples of antibody
heavy chain variable regions from the paired observed antibody space database. You will
generate 10 new antibody heavy chains that are not in the database. Output the 10 samples as a
python list. Here are the examples: [’QLQLQESGPGLVKPSGTLSLICAVAGSSVTTSNVY-
WDWIRQPPGKGLEWIGTISYSATT’, ’YYNPSLKSRVTLFVDTSKNQFSLKLNSVTAAD-
TAMYYCARHVVDCTGGRCLWKTGFDYWGQGTLVTVSS’, ’QVQLVESGGGVVQP-
GRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVIWYDGSNKYY’, ’ADSVK-
GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDQGLSTYYGYDKDSSYGMD-
VWGQGTTVTVSS’, ’EVQLVESGGGLVKPGGSLRLSCAASGFTFSSYSMNWVRQAPGK-
GLEWVSSISSSSSYIYY’, ’ADSVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARD-
FGYCSGGSCSGWGQGTLVTVSS’, ’QVQLKESGPGLVQPSQTLSLTCTVSGFSLTSYHVH-
WVRQPPGKGLEWMGVMWSDGDTSYN’, ’SALKSRLSISRDTSKSQVFLKMSSLQT-
EDTATYYCARSGKAVMDAWGQGASVTVSS’, ’QVQLVQSGAEVKKPGSSVKVSCK-
ASGGPFRGSTINWVRQAPGQGLEWMGRIIPILNAPNY’, ’AQNFHGRVTITADKST-
STAYMELSSLTSDDTALYFCATYSGTYHMAPGAFDIWGHGTMVTVSS’]
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Response: Sure, I can help you generate 10 new antibody heavy chains. Here’s a list of 10 new
antibody heavy chains that are not in the given database: ...

These heavy chains were generated using the antibody engineering tools and techniques to
create novel heavy chains. The generated sequences have a similar length and structure as the
provided examples, but they have different amino acid sequences, and are unique.

D.3 IGLM PROMPT

IgLM samples were generated using the prompt in the IgLM README, adjusted to produce 2000
samples for comparison with other methods.

iglm_generate --prompt_sequence EVQ \\
--chain_token [HEAVY] \\
--species_token [HUMAN] --num_seqs 2000

E in vitro VALIDATION

E.1 EXPERIMENTAL RESULTS

Figure 5: Expression yield (mg) and binding affinity (pKD) of sequence designs from our method
targeting the ERBB2 antigen.

E.2 EXPERIMENTAL DETAILS

in vitro validation of generated antibody proteins was performed following Hsiao et al. (2020).
Discrete Walk-Jump Sampling (dWJS) was used to generate antibody sequences, which were then
expressed and purified in the laboratory. Surface plasmon resonance (SPR) measurements were used
to determine binding affinity.

Plasmid Construction and Antibody Production: synthesized DNA (provided by Twist Biosciences)
of antibody variable domains were cloned into mammalian expression vectors using Gibson assembly.
We amplified the whole vector using PrimeStar Max polymerase (Takeda). We transfected PCR
products transiently in 1mL Expi293 cell culture. Expression lasted 7 days before harvest. We affinity
purified antibodies over a MAb Select SuRe resin (Cytiva), and measured their concentration by
optical density at 280nM.

Binding Affinity Measurements: we measured affinity of the antibodies towards their target antigen
by surface plasmon resonance (SPR) at 37 °C on a Biacore 8K instrument (Cytiva) in HBS-EP+
buffer (10 mM Hepes, pH 7.4, 150 mM NaCl, 0.3mM EDTA and 0.05% vol/vol Surfactant P20). We
captured antibodies on a Protein A chip and injected their target antigens for 5 minutes and allowed
them to dissociate for 10 minutes at 30 ul/min. We regenerated the surface between cycles with 10
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mM glycine pH 1.5. We obtained affinity constants using Biacore Insight (Cytiva) using a 1:1 binding
kinetics model.

F FURTHER DISCUSSION OF DISTRIBUTIONAL CONFORMITY SCORE

Given a new example z, we use the conformal transducer, A, to measure how similar z is to
(z1, . . . , zn). The conformal transducer is then defined as a system of p-values where for each
label y ∈ Y, a reference sequence (z1, . . . , zl) ∈ Zl, and a test example x ∈ X , we have: py :=

py(z1, . . . , zl, (x, y)) =
1

l+1

∑l+1
i=1[αyi

< αyl+1
] where (αy1

, ..., αyl
, αyl+1

) := A(z1, ..., zl, (x, y)).
Intuitively, py is the fraction of examples that have a smaller degree of conformity to the reference
distribution than (x, y).

The difference between DCS and property alignment (Wproperty) provides valuable insights into the
nature of the DCS statistic. DCS, being a measure of joint distribution alignment, might prioritize
capturing relationships among properties as opposed to alignment of individual properties. Addi-
tionally, given that DCS uses KDE, it might be more influenced by extreme data points within the
distribution. These factors suggest that DCS offers a distinct perspective on the overall quality of
generative model performance.

We considered sequence-based properties (calculated with BioPython (Cock et al., 2009)) of average
hydprophilicity, molecular weight, grand average of hydropathy, as well as two structure-based
properties (calculated with the Therapeutic Antibody Profiler (Raybould et al., 2019)): surface
hydrophobicity patches around the CDR region and the symmetry of structural variable chain charges.

No multiple sequence alignment or pre-processing of the sequences is required. For convenience and
because we have small numbers of examples and low dimensions, we use kernel density estimation
(KDE) to compute the joint density. However, DCS is completely general and can be combined with
any density estimator.

Kernel density estimation was performed using Gaussian kernels as implemented in the open-source
library awkde available at https://github.com/mennthor/awkde. We estimated the global bandwidth
of the kernel using Silverman’s method, set the adaptive local kernel bandwidth to 0.15, and employed
a diagonal covariance matrix.

G FURTHER DISCUSSION OF RELATED WORK

Contrastive divergence (Hinton, 2002) training using Gibbs sampling was proposed to estimate the
gradient of the log partition function, wherein input data is usually discrete and MCMC chains are
initialized from training data, leading to long mixing times in high dimensions. Using continuous
inputs and Langevin MCMC initialized from uniform noise with a replay buffer of past samples,
efficient training was achieved (Du & Mordatch, 2019). The Langevin MCMC approach to sampling
and maximum likelihood training yield advantages in simplicity (only one network is trained),
flexibility (no constraints imposed by a prior distribution), and compositionality (energy functions
can be summed). Whereas our approach relies on smoothing discrete data and learning energies
and scores over the smooth distribution, Meng et al. (2023) formulates discrete score matching by
constructing a faithful approximation of continuous score matching via an inductive prior on the local
topology of the data space.

Although generative modeling is widely adopted in image and natural language generation, successful
applications of generative modeling in the sciences are few and far between, due to the over-
representation of image and text datasets, challenges in evaluation, and the need for generating
samples that are novel and diverse while respecting the underlying symmetries and structure of a
particular domain. We consider the application of designing new molecules, focusing on therapeutic
antibodies. Antibodies are proteins consisting of a heavy and light chain that can be represented as
discrete sequences of amino acids (AAs), which comprise a standard vocabulary of 20 characters.
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