
A Gradient Manipulation Methods

In this section, we provide a brief overview of representative gradient manipulation methods in
multitask/multiobjective optimization. Specifically, we will also discuss the connections among these
methods.

Multiple Gradient Descent Algorithm (MGDA) [9, 35] The MGDA algorithm is one of the
earliest gradient manipulation methods for multitask learning. In MGDA, the per step update dt is
found by solving

max
d∈Rm

min
i∈[k]∇`

�
i,td −

1

2
�d�

2
.

As a result, the solution d
∗ of MGDA optimizes the “worst improvement" across all tasks or

equivalently seeks an equal descent across all task losses as much as possible. But in practice,
MGDA suffers from slow convergence since the update d

∗ can be very small. For instance, if one
task has a very small loss scale, the progress of all other tasks will be bounded by the progress on this
task. Note that the original objective in (6) is similar to the MGDA objective in the sense that we
can view optimizing (6) as optimizing the log of the task losses. Hence, when we compare FAMO
against MGDA, one can regard FAMO as balancing the rate of loss improvement while MGDA
balances the absolute improvement across task losses.

Projecting Gradient Descent (PCGRAD) [43] PCGRAD initializes viPC = ∇`i,t, then for each task
i, PCGRAD loops over all task j ≠ i (in a random order, which is crucial as mentioned in [43]) and
removes the “conflict"

v
i
PC ← v

i
PC −

v
i
PC
�
∇`j,t

�`j,t�
2 ∇`j,t if v

i
PC
�
∇`j,t < 0.

In the end, PCGRAD produces dt = 1
k ∑

k
i=1 viPC. Due to the construction, PCGRAD will also help

improve the “worst improvement" across all tasks since the “conflicts" have been removed. However,
due to the stochastic iterative procedural of this algorithm, it is hard to understand PCGRAD from a
first principle approach.

Conflict-averse Gradient Descent (CAGRAD) [24] dt is found by solving

max
d∈Rm

min
i∈[k]∇`

�
i,td s.t. �d −∇`0,t� ≤ c�∇`0,t�.

Here, `0,t = 1
k ∑

k
i=1 `i,t. CAGRAD seeks an update dt that optimizes the “worst improvement" as

much as possible, conditioned on that the update still decreases the average loss. By controlling the
hyperparameter c, CAGRAD can recover MGDA (c→∞) and the vanilla averaged gradient descent
(c→ 0). Due to the extra constraint, CAGRAD provably converges to the stationary points of `0 when
0 ≤ c < 1.

Impartial Multi-Task Learning (IMTL-G) [25] IMTL-G finds dt such that it shares the same
cosine similarity with any task gradients:

∀i ≠ j, d
�
t

∇`i,t

�∇`i,t�
= d
�
t

∇`j,t

�∇`j,t�
, and dt =

k

�

i=1
wi,t∇`i,t, for some wt ∈ Sk.

The constraint that dt = ∑k
i=1wi,t∇`i,t is for preventing the problem from being under-determined.

From the above equation, we can see that IMTL-G ignores the “size" of each task gradient and only
cares about the “direction". As a result, one can think of IMTL-G as a variant of MGDA that
applies to the normalized gradients. By doing so, IMTL-G does not suffer from the straggler effect
due to slow objectives. Furthermore, one can view IMTL-G as the equal angle descent, which is
also proposed in Katrutsa et al. [17], where the objective is to find d such that

∀i ≠ j, cos(d,∇`i,t) = cos(d,∇`j,t).

14

NASHMTL[32] NASHMTL finds dt by solving a bargaining game treating the local improvement
of each task loss as the utility for each task:

max
d∈Rm,�d�≤1

k

�

i=1
log �∇`�i,td�.

Note that the objective of NASHMTL implicitly assumes that there exists d such that ∀ i, ∇`
�
i,td > 0

(otherwise we reach the Pareto front). It is easy to see that

max�d�≤1
k

�

i=1
log �∇`�i,td� = max�d�≤1

k

�

i=1
log�

∇`i,t

�∇`i,t�
, d� = max�d�≤1

k

�

i=1
log cos �∇`i,t, d�.

Therefore, due to the log, NASHMTL also ignores the “size" of task gradients and only cares about
their “directions". Moreover, denote ui =

∇`i,t�∇`i,t� . Then, according to the KKT condition, we know:

�

i

ui

u
�
i d
− ↵d = 0, ↵ ≥ 0 �⇒ d =

1

↵
�

i

1

u
�
i d

ui.

Consider when k = 2, if we take the equal angle descent direction: d∠ = (u1 + u2)�2 (note that as u1

and u2 are normalized, their bisector is just their average). Then it is easy to check that

d∠ = 1

↵
�

2

u
�
1(u1 + u2)

u1 +
2

u
�
2(u1 + u2)

u2�, where ↵ =
u
�
1(u1 + u2)

4
=
u
�
2(u1 + u2)

4
.

As a result, we can see that when k = 2, NASHMTL is equivalent to IMTL-G (or the equal angle
descent). However, when k > 2, this is not in general true.

Remark Note that all of these gradient manipulation methods require computing and storing K task
gradients before applying f to compute dt, which often involves solving an additional optimization
problem. Hence, these methods can be slow for large K and large model sizes.

B Amortizing other Gradient Manipulation Methods

Although FAMO uses iterative update on w, it is not immediately clear whether we can apply the
same amortization easily on other existing gradient manipulation methods. In this section, we discuss
such possibilities and point out the challenges.

Amortizing MGDA This is almost the same as in FAMO, except that MGDA acts on the original
task losses while FAMO acts on the log of task losses.

Amortizing PCGRAD For PCGRAD, finding the final update vector requires iteratively projecting
one task gradient to the other, so there is no straightforward way of bypassing the computation of
task gradients.

Amortizing IMTL-G The task weighting in IMTL-G is computed by a series of matrix-matrix
and matrix-vector products using task gradients [25]. Hence, it is also hard to amortize its computation
over time.

Therefore, we focus on deriving the amortization for CAGRAD and NASHMTL.

Amortizing CAGRAD For CAGRAD, the dual objective is

min
w∈Sk F (w) = g

�
wg0 + c�gw��g0�, (15)

where g0 = ∇`0,t and gw = ∑
k
i=1wi∇`i. Denote

G =

�
�
�
�
�
�
�

∇`
�
1,t
⋮

∇`
�
k,t

�
�
�
�
�
�
�

.

15

Now, if we take the gradient with respect to w in (15), we have:
@F

@w
= G

�
g0 + c

�g0�

�gw�
G
�
gw. (16)

As a result, in order to approximate this gradient, one can separately estimate:

G
�
g0 ≈

`(✓) − `(✓ − ↵g0)

↵

G
�
gw ≈

`(✓) − `(✓ − ↵gw)

↵

�g0� ≈
�

1�G�g0
�gw� ≈

�

w�G�gw

. (17)

Once all these are estimated, one can combine them together to perform a single update on w. But
note that this will require 3 forward and backward passes through the model, making it harder to
implement in practice.

Amortizing NASHMTL Per derivation from NASHMTL [32], the objective is to solve for w:
G
�
Gw = 1�w. (18)

One can therefore form an objective:

min
w

F (w) = �G
�
Gw − 1�w�

2

2
. (19)

Taking the derivative of F with respect to w, we have
@F

@w
= 2G�G�G�gw − 1�w� + 2�G�gw − 1�w�� (w ⊙w). (20)

Therefore, to approximate the gradient of w, one needs to first estimate

G
�
gw ≈

L(✓) −L(✓ − ↵gw)

↵
= ⌘. (21)

Then we estimate
G
�
G(⌘ − 1�w) ≈

L(✓) −L(✓ − ↵G(⌘ − 1�w))

↵
. (22)

Again, this results in 3 forward and backward passes through the model, let alone the overhead of
resetting the model back to ✓ (requires a copy of the original weights).

In short, though it is possible to derive fast approximation algorithm to approximate the gradient
update on w for some of the existing gradient manipulation methods, it often involves much more
complicated computation compared to that of FAMO.

C FAMO Pseudocode in PyTorch

We provide the pseudocode for FAMO in Algorithm 2. To use FAMO, one just first compute the
task losses, call get_weighted_loss to get the weighted loss, and do the normal backpropagation
through the weighted loss. After that, one call update to update the task weighting.

D Toy Example

We provide the task objectives for the toy example in the following. The model parameter ✓ =
(✓1, ✓2) ∈ R2 and the task objectives are L

1 and L
2:

L
1
(✓) = 0.1 ⋅ (c1(✓)f1(✓) + c2(✓)g1(✓)) and L

2
(✓) = c1(✓)f2(✓) + c2(✓)g2(✓), where

f1(✓) = log �max(�0.5(−✓1 − 7) − tanh (−✓2)�, 0.000005)� + 6,

f2(✓) = log �max(�0.5(−✓1 + 3) − tanh (−✓2) + 2�, 0.000005)� + 6,

g1(✓) = �(−✓1 + 7)
2
+ 0.1 ∗ (−✓2 − 8)

2
��10 − 20,

g2(✓) = �(−✓1 − 7)
2
+ 0.1 ∗ (−✓2 − 8)

2
)�10 − 20,

c1(✓) =max(tanh (0.5 ∗ ✓2), 0) and c2(✓) =max(tanh (−0.5 ∗ ✓2), 0).

16

Algorithm 2 Implementation of FAMO in PyTorch-like Pseudocode
class FAMO:

def __init__(self, num_tasks, min_losses, ↵=0.025, �=0.001):

min_losses (num_tasks,) the loss lower bound for each task.

self.min_losses = min_losses

self.xi = torch.tensor([0.0] * num_tasks, requires_grad=True)

self.xi_opt = torch.optim.Adam([self.xi], lr=↵, weight_decay=�)

def get_weighted_loss(self, losses):

losses (num_tasks,)

z = F.softmax(self.xi, -1)

D = losses - self.min_losses + 1e-8

c = 1 / (z / D).sum().detach()

loss = (c * D.log() * z).sum()

return loss

def update(self, prev_losses, curr_losses):

prev_losses (num_tasks,)

curr_losses (num_tasks,)

delta = (prev_losses - self.min_losses + 1e-8).log() -

(curr_losses - self.min_losses + 1e-8).log()

with torch.enable_grad():

d = torch.autograd.grad(F.softmax(self.xi, -1),

self.xi,

grad_outputs=delta.detach())[0]

self.xi_opt.zero_grad()

self.xi.grad = d

self.xi_opt.step

E Experimental Results with Error Bars

We followed the exact experimental setup from NASHMTL [32]. Therefore, the numbers for baseline
methods are taken from their original paper. In the following, we provide FAMO’s result with error
bars.

17

Segmentation Depth Surface Normal

Method mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓ Angle Dist ↓ Within t
○
↑ �m% ↓

Mean Median 11.25 22.5 30

FAMO (mean) 38.88 64.90 0.5474 0.2194 25.06 19.57 29.21 56.61 68.98 -4.10
FAMO (stderr) ±0.54 ±0.21 ±0.0016 ±0.0026 ±0.06 ±0.09 ±0.17 ±0.19 ±0.14 ±0.39

Table 5: Results on NYU-v2 dataset (3 tasks). Each experiment is repeated over 3 random seeds and the mean is
reported. The best average result is marked in bold. MR and �m% are the main metrics for MTL performance.

Method µ ↵ ✏HOMO ✏LUMO �R
2
� ZPVE U0 U H G cv �m% ↓
MAE ↓

FAMO (mean) 0.15 0.30 94.0 95.2 1.63 4.95 70.82 71.2 71.2 70.3 0.10 58.5
FAMO (stderr) ±0.0046 ±0.0070 ±3.074 ±2.413 ±0.0211 ±0.0871 ±2.17 ±2.19 ±2.19 ±2.21 ±0.0026 ±3.26

Table 6: Results on QM-9 dataset (11 tasks). Each experiment is repeated over 3 random seeds and the mean is
reported. The best average result is marked in bold. MR and �m% are the main metrics for MTL performance.

Method
CityScapes CelebA

Segmentation Depth
�m% ↓ �m% ↓

mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓

FAMO (mean) 74.54 93.29 0.0145 32.59 8.13 1.21
FAMO (stderr) ±0.11 ±0.04 ±0.0009 ±1.06 ±1.98 ±0.24

Table 7: Results on CityScapes (2 tasks) and CelebA (40 tasks) datasets. Each experiment is repeated over 3
random seeds and the mean is reported. The best average result is marked in bold. MR and �m% are the main
metrics for MTL performance.

18

	Introduction
	Background
	Fast Adaptive Multitask Optimization (FAMO)
	Balanced Rate of Loss Improvement
	Fast Approximation by Amortizing over Time
	Practical Implementation
	The Continuous Limit of FAMO

	Related Work
	Empirical Results
	A Toy 2-Task Example
	MTL Performance
	MTL Efficiency (Training Time Comparison)
	Ablation on

	Conclusion and Limitations
	Gradient Manipulation Methods
	Amortizing other Gradient Manipulation Methods
	FAMO Pseudocode in PyTorch
	Toy Example
	Experimental Results with Error Bars

