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A. Proofs of theoretical results

The aim of this section is to detail the proofs of the theoretical results presented in the main manuscript. The key theoretical
tools driving our analysis are prepared separately in Section C.

Throughout our analysis, we assume that all spaces (e.g., A and X ) are subspaces of Euclidean space and therefore admit
a Lebesgue measure. We also assume that all distributions (e.g., a ⇠ A and x ⇠ X ) admit a density with respect to the
Lebesgue measure. With these conditions in mind, we recall the loss function that is the main object of study:

Lequi(f) = Ea⇠AEx,x0⇠X
⇥
f(a(x0))>f(a(x))� f(x)>f(x0)

⇤2 (1)

Next, we re-state and prove Proposition 1, our first key result.

Proposition 1. Suppose Lequi(f) = 0. Then for almost every a 2 A, there is an orthogonal matrix Ra 2 O(d) such that
f(a(x)) = Raf(x) for almost all x 2 X .

Proof. Suppose that Lequi(f) = 0. This means that f(a(x0))>f(a(x)) = f(x)>f(x0) for almost all a 2 G, and x, x0 2 X .
Setting ga(x) = f(a(x)), we have that ga(x0)>ga(x) = f(x)>f(x0). The continuous version of the First Fundamental
Theorem of invariant theory for the orthogonal group (see Proposition 4) implies that there is an Ra 2 O(d) such that
f(a(x)) = ga(x) = Raf(x).

As discussed in greater detail in the main manuscript, these results show that minimizing Lequi produces a model where an
augmentation a corresponds to a single orthogonal transformation of embeddings Ra, independent of the input. This result
is continuous in flavor as it studies the loss over the full data distribution p(x). There exists a corresponding result for the
finite sample loss

Lequi,n(f) = Ea⇠A

nX

i,j=1

⇥
f(a(xj))

>f(a(xi))� f(xi)
>f(xj)

⇤2
.

Proposition 2. Suppose Lequi,n(f) = 0. Then for almost every a 2 A, there is an orthogonal matrix Ra 2 O(d) such that
f(a(xi)) = Raf(xi) for all i = 1, . . . , n.

As for the population counterpart, the proof of this result directly follows from the application of the First Fundamental
Theorem of invariant theory for the orthogonal group.

Proof of Proposition 2. Suppose that Lequi(f) = 0. This means that for almost every a 2 G, and every i, j = 1, . . . , n we
have f(a(xj))>f(a(xi)) = f(xi)>f(xj). In other words AAT = BBT where A,B 2 Rn⇥d are matrices whose ith rows
are Ai = f(a(xi))> and Bi = f(xi)> respectively. This implies, by the First Fundamental Theorem of invariant theory for
the orthogonal group (see Corollary 2), that there is an Ra 2 O(d) such that A = BRa. Considering only the ith rows of A
and B leads us to conclude that f(a(xi)) = Raf(xi).

A corollary of Proposition 1 is that compositions of augmentations correspond to compositions of rotations.

Corollary 1. If Lequi(f) = 0, then ⇢ : A ! O(d) given by ⇢(a) = Ra satisfies ⇢(a0 � a) = ⇢(a0)⇢(a) for almost all a, a0.
That is, ⇢ defines a group action on Sd�1 up to a set of measure zero.

Proof. Applying Proposition 1 on a0 � a as the sampled augmentation, we have that f(a0 � a(xi)) = Ra0�af(xi) =
⇢(a0 �a)f(xi). However, taking x̄ = a(xi) and applying Proposition 1 twice we also know that f(a0 �a(xi)) = f(a0(x̄)) =
Raf(x̄) = Ra0f(a(xi)) = Ra0Raf(x) = ⇢(a0)⇢(a)f(xi). That is, ⇢(a0 � a)f(xi) = f(a0 � a(xi)) = ⇢(a0)⇢(a)f(xi).
Since this holds for all i, we have that ⇢(a0 � a) = ⇢(a0)⇢(a).

This corollary requires us to assume that A is a semi-group. That is, A is closed under compositions, but group elements do
not necessarily have inverses and it does not need to include an identity element.
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Ra f (x+1 )
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Figure 5: When Lequi = 0, compositions of augmentations correspond to compositions of rotations.

B. Background on role of augmentations in self supervised learning

Given access only to samples from a marginal distribution p(x) on some input space X such as images, the goal of
representation learning is commonly to train a feature extracting model f : X ! Sd�1 mapping to the unit sphere
Sd�1 = {z 2 Rd : kzk2 = 1}. A common strategy to automatically generate supervision from the data is to additionally
introduce a space of augmentations A, containing maps a : X ! X which slightly perturb inputs x̄ (blurring, cropping,
jittering, etc.). Siamese self-supervised methods learn representation spaces that reflect the relationship between the
embeddings of x = a(x̄) and x+ = a+(x̄), commonly by training f to be invariant or equivariant to the augmentations in
the input space (Chen & He, 2021).

Invariance to augmentation. One approach is to train f to embed x and x+ nearby—i.e., so that f(x) = f(x+) is
invariant to augmentations. The InfoNCE loss (van den Oord et al., 2018; Gutmann & Hyvärinen, 2010) used in contrastive
learning achieves precisely this:

LInfoNCE(f) = E
x,x+,{x�

i }N
i=1


� log

ef(x)
>
f(x+)/⌧

ef(x)>f(x+)/⌧ +
P

N

i=1 e
f(x)>f(x�

i )/⌧

�
, (2)

where ⌧ > 0 is a temperature hyperparameter, and x�
i
⇠ p are negative samples from the marginal distribution on X . As

noted by (Wang & Isola, 2020), the contrastive training mechanism balances invariance to augmentations with a competing
objective: uniformly distributing embeddings over the sphere, which rules out trivial solutions such as constant functions.

Whilst contrastive learning has produced considerable advances in large-scale learning (Radford et al., 2021), several lines
of work have begun to probe the fundamental role of invariance in contrastive learning. Two key conclusions of recent
investigations include: 1) invariance limits the expressive power of features learned by f , as it removes information about
features or transformations that may be relevant in fine-grained tasks (Lee et al., 2021; Xie et al., 2022), and 2) contrastive
learning actually benefits from not having exact invariance. For instance, a critical role of the projection head is to expand
the feature space so that f is not fully invariant (Jing et al., 2022), suggesting that it is preferable for the embeddings of x
and x+ to be close, but not identical.

Equivariance to augmentation. To address the limitations of invariance, recent work has additionally proposed to control
equivariance (i.e., sensitivity) of f to data transformations (Dangovski et al., 2022; Devillers & Lefort, 2023; Garrido
et al., 2023). Prior works can broadly be viewed as training a set of features f (sometimes alongside the usual invariant
features) so that f(a(x)) ⇡ Taf(x) for samples x ⇠ p from the data distribution where Ta is some transformation of the
embedding space. A common choice is to take Taf(x) = MLP(f(x), a), a learnable feed-forward network, and optimize a
loss kMLP(f(x), a)� f(a(x))k2. Whilst a learnable MLP ensures that information about a is encoded into the embedding
of a(x), it permits complex non-linear relations between embeddings and hence does not necessarily encode relations in a
linearly separable way. Furthermore, it does not enjoy the beneficial properties of equivariance in the formal group-theoretic
sense, such as consistency under compositions in general: Ta2�a1f(x) 6= Ta2Ta1f(x).
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C. Background on invariance theory for the orthogonal group

This section recalls some classical theory on orthogonal groups and an extension that we use for proving results over
continuous data distributions.

A function f : (Rd)n ! R is said to be O(d)-invariant if f(Rv1, . . . , Rvn) = f(v1, . . . , vn) for all R 2 O(d). Throughout
this section, we are especially interested in determining easily computed statistics that characterize an O(d) invariant
function f . In other words, we would like to write f as a function of these statistics. The following theorem was first proved
by Hermann Weyl using Capelli’s identity (Weyl, 1946) and shows that the inner products v>

i
vj suffice.

Theorem 3 (First fundamental theorem of invariant theory for the orthogonal group). Suppose that f : (Rd)n ! R is
O(d)-invariant. Then there exists a function g : Rn⇥n ! R for which

f(v1, . . . , vn) = g
�
[v>

i
vj ]

n

i,j=1

�
.

In other words, to compute f at a given input, it is not necessary to know all of v1, . . . , vn. Computing the value of f at a
point can be done using only the inner products v>

i
vj , which are invariant to O(d). Letting V be the n⇥ d matrix whose ith

row is v>
i

, we may also write f(v1, . . . , nn) = g(V V >). The map V 7! V V > is known as the orthogonal projection of V .

A corollary of this result has recently been used to develop O(d) equivariant architectures in machine learning (Villar et al.,
2021).

Corollary 2. Suppose that A,B are n⇥ d matrices and AA> = BB>. Then A = BR for some R 2 O(d).

(Villar et al., 2021) use this characterization of orthogonally equivariant functions to parameterize function classes of neural
networks that have the same equivariance. This result is also useful in our context; However, we put it to use for a very
different purpose: studying Lequi.

Intuitively this result says the following: given two point clouds A,B of unit length vectors with some fixed correspondence
(bijection) between each point in A and a point in B, if the angles between the ith and jth points in cloud A always equal
the angle between the ith and jth point in cloud B, then A and B are the same up to an orthogonal transformation.

This is the main tool we use to prove the finite sample version of the main result for our equivariant loss (Proposition 2).
However, to analyze the population sample loss Lequi (Proposition 1), we require an extended version of this result to the
continuous limit as n ! 1. To this end, we develop a simple but novel extension to Theorem 3 to the case of continuous
data distributions. This result may be useful in other contexts independent of our setting.

Proposition 4. Let X be any set and f, h : X ! Rd be functions on X . If f(x)>f(y) = h(x)>h(y) for all x, y 2 X , then
there exists R 2 O(d) such that Rf(x) = h(x) for all x 2 X .

The proof of this result directly builds on the finite sample version. The key idea of the proof is that since the embedding
space Rd is finite-dimensional we may select a set of points {f(xi)}i whose span has maximal rank in the linear space
spanned by the outputs of f . This means that any arbitrary point f(x) can be written as a linear combination of the f(xi).
This observation allows us to apply the finite sample result on each f(xi) term in the sum to conclude that f(x) is also a
rotation of a sum of h(xi) terms. Next, we give the formal proof.

Proof of Proposition 4. Choose x1, . . . , xn 2 X such that F = [f(x1) | . . . | f(xn)]> 2 Rn⇥d and h = [h(x1) | . . . |
h(xn)]> 2 Rn⇥d have maximal rank. Note we use “|” to denote the column-wise concatenation of vectors. Note that such
xi can always be chosen. Since we have FF> = HH>, we know by Corollary 2 that F = HR for some R 2 O(d).

Now consider an arbitrary x 2 X and define F̃ = [F | f(x)]> and H̃ = [H | h(x)]>, both of which belong to R(n+1)⇥d.
Note that again we have F̃ F̃> = H̃H̃> so also know that F̃ = H̃R̃ for some R̃ 2 O(d). Since xi were chosen so that F
and H are of maximal rank, we know that h(x) =

P
n

i=1 cih(xi) for some coefficients ci 2 R, since if this were not the
case then we would have rank(H̃) = rank(H) + 1.

From this, we know that
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R>h(x) =
nX

i=1

ciR
>h(xi)

=
nX

i=1

cif(xi)

=
nX

i=1

ciR̃
>h(xi)

= R̃>
nX

i=1

cih(xi)

= R̃>h(x)

= f(x).

So we have that Rf(x) = RR>h(x) = h(x) for all x 2 X .

D. Extensions to other groups: further discussion

In Section 3.2, we explore the possibility of formulating an equivariant loss Lequi for pairs of points that fully captures
equivariance by requiring the group to be the stabilizer of a bilinear form. In this context, the invariants are generated by
polynomials of degree two in two variables, and the equivariant functions can be obtained by computing gradients of these
invariants (Blum-Smith & Villar, 2022). Section 3.2 notes that this holds true not only for the orthogonal group, which is the
primary focus of our research but also for the Lorentz group and the symplectic group, suggesting natural extensions of our
approach.

It is worth noting that the group of rotations SO(d) does not fall into this framework. It can be defined as the set of
transformations that preserve both inner products (a 2-form) and determinants (a d-form). Consequently, some of its
generators have degree 2 while others have degree d (see (Weyl, 1946), Section II.A.9).

Weyl’s theorem states that if a group acts on n copies of a vector space (in our case, (Rd)n for consistency with the rest of
the paper), its action can be characterized by examining how it acts on k copies (i.e., (Rd)k) when the maximum degree of
its irreducible components is k (refer to Section 6 of (Schmid, 2006) for a precise statement of the theorem). Since our
interest lies in understanding equivariance in terms of pairs of objects, we desire invariants that act on pairs of points. One
way to guarantee this is to restrict ourselves to groups that act through representations where the irreducible components
have degrees of at most two (though this is not necessary in all cases, such as the orthogonal group O(d) that we consider
in the main paper). An example of such groups is the product of finite subgroups of the unitary group U(2), which holds
relevance in particle physics. According to Weyl’s theorem, the corresponding invariants can be expressed as polarizations
of degree-2 polynomials on two variables. Polarizations represent an algebraic construction that enables the expression of
homogeneous polynomials in multiple variables by introducing additional variables to polynomials with fewer variables.
In our case, the base polynomials consist of degree-2 polynomials in two variables, while the polarizations incorporate
additional variables. Notably, an interesting open problem lies in leveraging this formulation for contrastive learning.

E. Related work

Geometry of representations. Equivariance is a key tool for encoding geometric structure—e.g., symmetries—into neural
network representations (Cohen & Welling, 2016; Bronstein et al., 2021). Whilst hard-coding equivariance into model
architectures is very successful, approximate learned equivariance (Kaba et al., 2022; Shakerinava et al., 2022), has certain
advantages: 1) when the symmetry is provided only by data, with no closed-form expression, 2) can still be used when it is
unclear how to hard code equivariance into the architecture, and 3) can exploit standard high capacity architectures (He et al.,
2016; Dosovitskiy et al., 2021), benefiting from considerable engineering efforts to optimize their performance. (Shakerinava
et al., 2022) also consider learning orthogonal equivariance, but consider problems where both input and embedding space
are acted on by O(d). Our setting differs from this in two key ways: 1) we consider a very different set of transforms of
input space—jitter, crops, etc.—and 2) can be naturally integrated into contrastive learning, and 3) theoretically study the
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minima of the angle-preserving loss. A related line of work, mechanistic interpretability, hypothesizes that algorithmic
structure—possibly including group symmetries—emerge naturally within network connections during training (Chughtai
et al., 2023). Our approach is very different from this as we directly train models to have the desired structure without
relying on implicit processes. Finally, the geometry of representation space has been used in a very different sense in prior
contrastive learning approaches, for instance bootstrapping useful negatives (Chuang et al., 2020; Robinson et al., 2021)
based on their location in embedding space during training.

Self-superised learning. Prior equivariant contrastive learning approaches extend the usual setup of learning invariance
by learning sensitivity to certain features known to be important for downstream tasks. A subset of these works performs
additional tasks of learning sensitivity to augmentation while learning invariances. For instance, (Dangovski et al., 2022)
learns to predict the augmentation applied but only considers a discrete group of 4-fold rotations. (Lee et al., 2021) learns
the difference of augmentation parameters and (Xiao et al., 2021) constructs separate embedding sub-spaces that capture
invariances to all but one augmentation. However, these approaches do not offer a meaningful structure to the embedding
space. Others attempt to control how this sensitivity occurs. Specifically, (Devillers & Lefort, 2023; Garrido et al., 2023;
Bhardwaj et al., 2023) learn a mapping from one latent representation to another, predicting how data augmentation affects
the resulting embedding. However, none of these approaches constrain the group action in the embedding space, resulting in
complex non-linear augmentation maps.

F. Implementation details

Algorithm 1 presents pytorch-based pseudocode for implementing CARE. This implementation introduces the idea of using
a smaller batch size for the equivariance loss compared to the InfoNCE loss. Specifically, by definition, the equivariance loss
is defined as a double expectation, one over data pairs and the other over augmentations. Empirical observations reveal that
sampling one augmentation per batch leads to unstable yet superior performance when compared to standard invariant-based
baselines such as SimCLR. Since these invariant-based contrastive benchmarks generally perform well with large batch
sizes, we adopt the approach of splitting a batch into multiple chunks to efficiently sample multiple augmentations per batch
for the equivariance loss. Each chunk of the batch is associated with a new pair of augmentations, ensuring a large batch
size for the InfoNCE loss and a smaller batch size for the equivariance loss.

Algorithm 1 PyTorch based pseudocode for CARE

0: Notations: f represents the backbone encoder network, � is the weight on CARE loss, apply same aug function applies the
same augmentation to all samples in the input batch

0: for minibatch x in dataloader do

0: draw two batches of augmentation functions a1, a2 2 A
0: /* Functions a1, a2 apply different augmentation to each sample in batch x */

0: zinv
1 , zinv

2 = f(a1(x)), f(a2(x))
0: divide x into n split chunks to form xchunks
0: /* Module for calculating orthogonal equivariance loss */

0: for ci in xchunks in parallel do

0: draw two augmentation functions ã1, ã2 2 A
0: /* Functions ã1, ã2 apply same augmentation to each sample in batch ci */

0: z̃i1, z̃i2 = f(apply same aug(ci, ã1)), f(apply same aug(ci, ã2))

0: /* Concatenate embedding vectors corresponding to all chunks */

0: merge z̃i1, z̃i2 into zequiv
1 , zequiv

2 respectively
0: /* Loss computation */

0: LInfoNCE(f) = infonce loss(zinv
1 , zinv

2 )
0: Lequiv(f) = orthogonal equivariance loss(zequiv

1 , zequiv
2 ,n split)

0: LCARE(f) = LInfoNCE(f) + � · Lequiv(f)
0: /* Optimization step */

0: LCARE(f).backward()
0: optimizer.step()

=0
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G. Supplementary experimental details and assets disclosure

G.1. Assets

We do not introduce new data in the course of this work. Instead, we use publicly available widely used image datasets for
the purposes of benchmarking and comparison.

G.2. Hardware and setup

All experiments were performed on an HPC computing cluster using 4 NVIDIA Tesla V100 GPUs with 32GB accelerator
RAM for a single training run. The CPUs used were Intel Xeon Gold 6248 processors with 40 cores and 384GB RAM. All
experiments use the PyTorch deep learning framework (Paszke et al., 2019).

G.3. Experimental protocols

We first outline the training protocol adopted for training our proposed approach on a variety of datasets, namely CIFAR10,
CIFAR100, STL10, and ImageNet100.

CIFAR10, CIFAR100 and STL10 All encoders have ResNet-50 backbones and are trained for 400 epochs with
temperature ⌧ = 0.5 for SimCLR and ⌧ = 0.1 for MoCo-v2 1. The encoded features have a dimension of 2048 and are
further processed by a two-layer MLP projection head, producing an output dimension of 128. A batch size of 256 was used
for all datasets. For CIFAR10 and CIFAR100, we employed the Adam optimizer with a learning rate of 1e�3 and weight
decay of 1e�6. For STL10, we employed the SGD optimizer with a learning rate of 0.06, utilizing cosine annealing and a
weight decay of 5e�4, with 10 warmup steps. We use the same set of augmentations as in SimCLR (Chen et al., 2020). To
train the encoder using LCARE-SimCLR, we use the same hyper-parameters for InfoNCE loss. Additionally, we use 4, 8 and 16
batch splits for CIFAR100, STL10 and CIFAR10, respectively. This allows us to sample multiple augmentations per batch,
effectively reducing the batch size of equivariance loss whilst retaining the same for InfoNCE loss. Furthermore, for the
equivariant term, we find it optimal to use a weight of � = 0.01, 0.001, and 0.01 for CIFAR10, CIFAR100, and STL10,
respectively.

ImageNet100 We use ResNet-50 as the encoder architecture and pretrain the model for 200 epochs. A base learning rate
of 0.8 is used in combination with cosine annealing scheduling and a batch size of 512. For MoCo-v2, we use 0.99 as the
momentum and ⌧ = 0.2 as the temperature. All remaining hyperparameters were maintained at their respective official
defaults as in the official MoCo-v2 code. While training with LCARE-SimCLR and LCARE-MoCo, we find it optimal to use splits
of 4 and 8 and weight of � = 0.005 and 0.01 respectively on the equivariant term.

Linear evaluation We train a linear classifier on frozen features for 100 epochs with a batch size of 512 for CIFAR10,
CIFAR100, and STL10 datasets. To optimize the classifier, we employ the Adam optimizer with a learning rate of 1e�3 and
a weight decay of 1e�6. In the case of ImageNet100, we train the linear classifier for 60 epochs using a batch size of 128.
We initialize the learning rate to 30.0 and apply a step scheduler with an annealing rate of 0.1 at epochs 30, 40, and 50. The
remaining hyper-parameters are retained from the official code.

G.4. Reproducibility statement

Algorithm 1 provides the pseudocode for implementing our work using the PyTorch framework. It serves as the primary
public code for our proposed method CARE. To ensure reproducibility, Section G.3 details all the experimental configurations
employed in our work. Additionally, we have included our code as supplementary material and will make it publicly
available.

H. Additional experiments

H.1. Qualitative assessment of equivariance

A key property promised by equivariant contrastive models is sensitivity to specific augmentations. To qualitatively evaluate
the sensitivity, or equivariance, of our models, we consider an image retrieval task on the Flowers-102 dataset (Nilsback &

1https://github.com/facebookresearch/moco

https://github.com/facebookresearch/moco
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Zisserman, 2008), as considered by (Bhardwaj et al., 2023). Specifically, when presented with an input image x, we extract
the top 5 nearest neighbors based on the Euclidean distance of f(x) and f(a(x)), where a 2 A. We report the results of
using color jitter as a transformation of the input, comparing the invariant (SimCLR) and our equivariant (CARE) models in
Figure 6. We see that retrieved results for the CARE model exhibit greater variability in response to a change in query color
compared to the SimCLR model. Notably, the color of the retrieved results for all queries in the SimCLR model remains
largely invariant, thereby confirming its robustness to color changes.

CARE (ours) SimCLRInput Query

Figure 6: CARE exhibits sensitivity to features that invariance-based contrastive methods (e.g., SimCLR) do not. For each
input we apply color jitter to produce the query image. We then retrieve the 5 nearest neighbors in the embedding space of
CARE and SimCLR.

H.2. Quantitative assessment of equivariance

H.2.1. RELATIVE ROTATIONAL EQUIVARIANCE.

Optimizing for the CARE objective may potentially result in learning invariance rather than equivariance. Specifically, for
input image x, f(a(x)) = f(x) for a 2 A is a trivial optimal solution of argminf Lequi(f). To check that our model is
learning non-trivial equivariance, we consider a metric similar to one proposed by (Bhardwaj et al., 2023) for measuring the
equivariance relative to the invariance of f :

�f = Ea⇠AEx,x0⇠X

(
(kf(a(x0))� f(a(x))k2 � kf(x0)� f(x)k2)2

(kf(a(x0))� f(x0)k2 + kf(a(x))� f(x)k2)2

)
. (3)

Here, the denominator measures the invariance of the representation, with smaller values corresponding to greater invariance
to the augmentations. The numerator, on the other hand, measures equivariance and can be simplified to [f(a(x0))>f(a(x))�
f(x)>f(x0)

⇤2 (i.e., Lequi(f)) up to a constant, because f maps to the unit sphere. The ratio �f of these two terms measures
the non-trivial equivariance, with a lower value implying greater non-trivial orthogonal equivariance.

We measure the relative rotational equivariance for both CARE and SimCLR over the course of pretraining by following
the approach outlined in Section 4. Specifically, we compare ResNet-18 models trained using CARE and SimCLR on
CIFAR10. From Figure 7, we observe that both the models produce embeddings with comparable non-zero invariance loss
Linv, indicating approximate invariance. However, they differ in their sensitivity to augmentations, with CARE attaining a
much lower relative equivariance error. Importantly, this shows that CARE is not achieving lower equivariance error Lequi by
collapsing to invariance, a trivial form of equivariance.

H.2.2. ANALYZING STRUCTURE ON A 2D MANIFOLD.

To further study Lequi, we train an encoder f that projects the input onto S1, the unit circle in the 2D plane. In this case,
orthogonal transformations are characterized by angles. We sample an augmentation a ⇠ A and measure the cosine of the
angle between pairs f(x) and f(a(x)) for all x in the test set. This process is repeated for 20 distinct sampled augmentations,
and the density of all recorded cosine angles is recorded in Figure 8. Both CARE and SimCLR exhibit high density close
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Figure 7: Relative rotational equivariance (lower is more equivariant). Both CARE and invariance-based contrastive
methods (e.g., SimCLR) produce approximately invariant embeddings. However, they differ in their residual sensitivity
to augmentations. CARE learns a considerably more rotationally structured embedding space. We note that this is in part
because CARE is less invariant to augmentations (higher invariance loss).

Figure 8: Histogram of the cosine of angles between data pairs for CARE and SimCLR. CARE exhibits a significantly lower
variance of cosine similarity values compared to SimCLR.

to 1, demonstrating approximate invariance. However, unlike CARE, SimCLR exhibits non-zero density in the region
�0.5 to �1.0, indicating that the application of augmentations significantly displaces the embeddings. Additionally, CARE
consistently exhibits lower variance �2 of the cosine angles between f(x) and f(a(x)) for a fixed augmentation, as expected
given that it is supposed to transform all embeddings in the same way.

H.2.3. HISTOGRAM FOR LOSS ABLATION.

To accompany Figure 2, this section plots the cosine similarity between positive pairs. We provide two plots for each
experiment: the first plots the histogram of similarities of positive pairs drawn from the test set; the second plots the average
positive cosine similarity throughout training. The results are reported in Figures 9, 10, 11, 12, 13, 14.

I. Discussion

Converting transformations that are complex in input space into simple transformations in embedding space has many
potential uses. For instance, modifying data (e.g., in order to reason about counterfactuals) can be viewed as transforming
one embedding to another. If the sought after transformation was simple and predictable, it may be easier to find. Similarly,
generalizing out-of-distribution is easier when extrapolating linearly (Xu et al., 2021), suggesting that linear transformations
of embedding space may facilitate more reliable generalization. This work considers several design principles that may be
broadly relevant: 1) learned equivariance preserves the expressivity of backbone architectures, and in some cases may be
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Figure 9: (left) Histogram of positive cosine similarity values at the end of pre-training using the invariance loss; (right)
Evolution of positive cosine similarity values over pre-training epochs using the invariance loss

Figure 10: (left) Histogram of positive cosine similarity values at the end of pre-training using the orthogonal equivariance
loss; (right) Evolution of positive cosine similarity values over pre-training epochs using the orthogonal equivariance loss

Figure 11: (left) Histogram of positive cosine similarity values at the end of pre-training using the uniformity loss; (right)
Evolution of positive cosine similarity values over pre-training epochs using the uniformity loss
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Figure 12: (left) Histogram of positive cosine similarity values at the end of pre-training using the Uniformity + Equivariance
loss; (right) Evolution of positive cosine similarity values over pre-training epochs using the Uniformity + Equivariance loss

Figure 13: (left) Histogram of positive cosine similarity values at the end of pre-training using the InfoNCE (invariance +
uniformity) loss; (right) Evolution of positive cosine similarity values over pre-training epochs using the InfoNCE loss

Figure 14: (left) Histogram of positive cosine similarity values at the end of pre-training using the CARE (InfoNCE +
orthogonal equivariance) loss; (right) Evolution of positive cosine similarity values over pre-training epochs using the CARE
loss
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easier for model design than hard-coded equivariance, 2) linear group actions are desirable, but require carefully designed
objectives (similar in spirit to the principle of parsimony (Ma et al., 2022), also advocated for by (Shakerinava et al., 2022)),
and 3) orthogonal (and related) symmetries are a promising structure for Siamese network training as they can be efficiently
learned using pair-wise data comparisons.

Limitations. While our method, CARE, learns embedding spaces with many advantages over prior contrastive learning
embedding spaces, there are certain limitations that we acknowledge here. First, we do not provide a means to directly
identify the rotation corresponding to a specific transformation. Instead, our approach allows the recovery of the rotation
by solving Wahba’s problem. However, this requires solving an instance of Wahba’s for each augmentation of interest.
Future improvements that develop techniques for quickly and easily (i.e., without needing to solve an optimization problem)
identifying specific rotations would be a valuable improvement, enhancing the steerability of our models. Second, it is
worth noting that equivariant contrastive methods, including CARE, only achieve approximate equivariance. This is a
fundamental challenge shared by all such methods, as it is unclear how to precisely encode exact equivariance. The question
remains open as to a) whether this approximate equivariance should be considered damaging in the first place, and if so, b)
whether scaling techniques can sufficiently produce reliable approximate equivariance to enable the diverse applications that
equivariance promises. Addressing this challenge is a crucial area for future research and exploration in the field. Each of
these limitations points to valuable directions for future work.

Broader impact. Through our self-supervised learning method CARE we explore foundational questions regarding the
structure and nature of neural network representation spaces. Currently, our approaches are exploratory and not ready
for integration into deployed systems. However, this line of work studies self-supervised learning and therefore has the
potential to scale and eventually contribute to systems that do interact with humans. In such cases, it is crucial to consider
the usual safety and alignment considerations. However, beyond this, CARE, offers insights into algorithmic approaches
for controlling and moderating model behavior. Specifically, CARE identifies a simple rotation of embedding space that
corresponds to a change in the attribute of the data. In principle, this transformation could be used to ”canonicalize” data,
preventing the model from relying on certain attributes in decision-making. Additionally, controlled transformations of
embeddings could be used to debias model responses and achieve desired variations in output. It is important to note that
while our focus is on the core methodology, we do not explore these possibilities in this particular work.
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