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1 (RA2+3+4) Imply (RA1)1

Theorem 3.1. In a pre-activation ResNet, assuming the Jacobian linearizations are exact and satisfy2

(RA2+3+4), then (RA1) holds for the intermediate representations.3

Proof. In a pre-activation ResNet,4

hi+1 = hi + F(hi;Wi).

Since Jacobian linearizations are exact, we have:5

hi+1 = (I + Ji)hi.

Recall, the singular value decomposition of Ji is given by6

Ji = UiSiV
⊤
i ,

where Ui and Vi are the respective left and right singular vectors, and Si is the singular value matrix.7

Invoking (RA2) ,8

Ji = USiU
⊤,

and therefore9

hi+1 = (I + USiU
⊤)hi.

Applying recursively the above equality leads to10

hk =

(
k−1∏
i=1

(I + USiU
⊤)

)
h1 = U

(
k−1∏
i=1

(I + Si)

)
U⊤h1. (1)

For binary classification, (RA3) implies the Jacobians are rank 1 and therefore11

hk = Uk,1

(
k−1∏
i=1

(1 + Si,1)

)
U⊤
k,1h1.

According to (RA4) ,12

Si,1 =
1

i
and13

k−1∏
i=1

(1 + Si,1) =

k−1∏
i=1

(1 + 1/i) = k.

Substituting the above into Equation (1), we obtain14

hk = kUi,1 U
⊤
i,1h1.

This proves that the intermediate representations of a given input are equispaced on a line embedded15

in high dimensional space, i.e., (RA1) .16

17
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2 Unconstrained Jacobians Model Leads to RA18

We start by providing motivation for the unconstrained Jacobians problem introduced in the main text.19

Assume a training example, x, is situated next to a point on the classification boundary, denoted by20

xmid, satisfying f(xmid;W) = 0. Performing a Taylor expansion of the logits of x around xmid yields21

f(x;W) = f(xmid;W) +
∂f(x;W)

∂x

∣∣∣∣
xmid

∆x + h(x, xmid)

=
∂f(x;W)

∂x

∣∣∣∣
xmid

∆x + h(x, xmid), (2)

where ∆x = x− xmid and h(x, xmid) accounts for the approximation error, which is O(∥∆x∥22) and22

assumed to be negligible in our analysis.23

Recall the loss associated with training a ResNet:24

minimize
{Wi}L+1

i=1

1

N

N∑
n=1

L(f(xn;W), yn) +
λ

2
∥W∥22. (3)

Substituting Equation (2) into the above, neglecting the approximation error, and considering only25

the objective associated with the training sample x and its label y, we get26

L

(
∂f(x;W)

∂x

∣∣∣∣
xmid

∆x, y

)
+

λ

2
∥W∥22.

By using the chain rule, we can then obtain the following:127

L

(
∂C(hL+1;WL+1)

∂hL+1

L∏
i=1

(
I +

∂F(hi;Wi)

∂hi

)
∆x, y

)
+

λ

2

L∑
i=1

∥Wi∥2F +
λ

2
∥WL+1∥2F , (4)

where all the Jacobians are evaluated at the point xmid. This naturally gives rise to the following28

definition, as introduced in the main text.29

Definition 3.2 (Unconstrained Jacobians Model). Given a fixed input ∆x ∈ RD and its label30

y ∈ {+1,−1}, find matrices Ji ∈ RD×D, 1 ≤ i ≤ L, and vector w ∈ RD that31

minimize
w,{Ji}L

i=1

L(w⊤
L∏

i=1

(I + Ji)∆x, y) +
λ

2

L∑
i=1

∥Ji∥2F +
λ

2
∥w∥22.

In the main text, we stated the following theorem.32

Theorem 3.3. There exists a global optimum of the Unconstrained Jacobians Model where the top33

Jacobian singular vectors are aligned (RA2) , all Jacobians are rank one, analogous to (RA3) , and34

the top Jacobian singular values are equal, analogous to (RA4) .35

Proof. Throughout the proof, we assume, without loss of generality, that the label is y = 1. Using36

the cyclic property of the trace, the logit, w⊤∏L
i=1(I + Ji)∆x, equals37

tr

{
∆xw

⊤
L∏

i=1

(I + Ji)

}
.

Denoting the power set of all natural numbers between 1 and L by P(L), the above can be expressed38

as follows:39 ∑
s∈P(L)

tr

{
∆xw

⊤
∏
i∈s

Ji

}
.

Each element in the above summation can be upper bounded through the following theorem (a40

generalization of Von Neumann’s trace inequality [Mirsky, 1975] to the product of more than two41

real matrices).42

1For simplicity, we ignore the input transformation that maps the input ∆x to the first representation h1 ∈ RD

by simply assuming ∆x ∈ RD .
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Theorem 2 ([Miranda and Thompson, 1993]). Let A1, . . . , Am be matrices with real entries. Take43

the singular values of Aj to be s1(Aj) ≥ · · · ≥ sn(Aj), for j = 1, . . . ,m, and denote Sj =44

diag(s1(Aj), . . . , sn(Aj)). Then, as the matrices P1, . . . , Pm range over all possible rotations, i.e.,45

the special orthogonal group SO(n),46

sup
P1,...,Pm∈SO(n)

tr(A1P1 . . . AmPm)

=

n−1∑
i=1

m∏
j=1

si(Aj) + [sign det(A1 . . . Am)]

m∏
j=1

sn(Aj).

Moreover, assuming sign det(A1 . . . Am) = 1,47

sup
P1,...,Pm∈SO(n)

tr(A1P1 . . . AmPm) = tr

{
m∏
i=1

Si

}
.

We will continue our proof using contradiction. Suppose all existing global optima of the uncon-48

strained Jacobians problem consist of Jacobians that do not have aligning singular vectors, or do49

not have equal singular values, or are not rank 1. Then take any solution {Ji}Li=1 and w. Using the50

singular value decomposition, we have51

Ji = UiSiV
⊤
i , for i = 1, . . . , L,

and52

∆xw
⊤ = UL+1SL+1V

⊤
L+1.

Then Theorem 2 implies53 ∑
s∈P(L)

tr

{
∆xw

⊤
∏
i∈s

Ji

}
≤
∑

s∈P(L)

tr

{
SL+1

∏
i∈s

Si

}

=tr

{
SL+1

L∏
i=1

(I + Si)

}
.

For all s ∈ P(L), the inequality becomes equality once the singular vectors of all the Jacobians align54

with those of ∆xw
⊤ and once the vector w is chosen to be proportional to ∆x (so that the matrix55

∆xw
⊤ is symmetric). The implication of the steps thus far is that one can increase, or at least keep56

constant the logit, and consequently reduce, or at least keep constant the loss by simply aligning the57

singular vectors of the Jacobians. In addition, since the regularization term ∥Ji∥2F = tr
{
S2
i

}
, this58

change of Jacobians does not affect the regularization terms.59

Notice that ∆xw
⊤ is a rank one matrix and so SL+1 has a single non-zero diagonal entry. Furthermore,60

the matrices Si, for 1 ≤ i ≤ L, are all diagonal. As such, we can zero out all their other diagonal61

entries and leave a single non-zero entry at the location that SL+1 has one, which does not affect the62

logits but reduces the regularization terms.63

Using the inequality of arithmetic and geometric means on this only non-zero entry si of every64

diagonal matrix Si gives65

sL+1

L∏
i=1

(1 + si) ≤ sL+1

(
1 +

1

L

L∑
i=1

si

)L

.

The implication of the above inequality is that, once the singular vectors of the Jacobians are aligned,66

one can further increase the logits and reduce the loss by averaging all the top singular values, si67

for 1 ≤ i ≤ L + 1, and forcing them to be equal. Furthermore, since ∥Ji∥2F = tr
{
S2
i

}
= s2i is68

convex, by Jensen’s inequality, averaging the singular values only decreases the value of the Jacobian69

regularization.70

All in all, we obtain higher, or at least no lower logit, and lower, or at least no higher loss when71

all singular vectors are aligned, all top singular values are equal and all other singular values are72

zero, which contradicts the statement that no global optima of the unconstrained Jacobians problem73

satisfies all of these conditions.74
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3 Additional Empirical Evidence75

3.1 (RA1)76

Figure 1: Fully-connected ResNet34 (Type 1 model) trained on MNIST.

Figure 2: Fully-connected ResNet34 (Type 1 model) trained on FashionMNIST.

77

78

79
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Figure 3: Fully-connected ResNet34 (Type 1 model) trained on CIFAR10.

Figure 4: Convolutional ResNet34 (Type 2 model) trained on MNIST.
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Figure 5: Convolutional ResNet34 (Type 2 model) trained on FashionMNIST.

Figure 6: Convolutional ResNet34 (Type 2 model) trained on CIFAR10.
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Figure 7: Convolutional ResNet34 with downsampling (Type 3 model) trained on MNIST.

Figure 8: Convolutional ResNet34 with downsampling (Type 3 model) trained on FashionMNIST.
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Figure 9: Convolutional ResNet34 with downsampling (Type 3 model) trained on CIFAR10.
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3.2 (RA2) : U⊤
j,KJiVj,K80

Figure 10: Fully-connected ResNet34 (Type 1 model) trained on MNIST.

81

82

83
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Figure 11: Fully-connected ResNet34 (Type 1 model) trained on FashionMNIST.
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Figure 12: Fully-connected ResNet34 (Type 1 model) trained on CIFAR10.
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Figure 13: Fully-connected ResNet34 (Type 1 model) trained on CIFAR100.
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Figure 14: Convolutional ResNet34 (Type 2 model) trained on MNIST.
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Figure 15: Convolutional ResNet34 (Type 2 model) trained on FashionMNIST.
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Figure 16: Convolutional ResNet34 (Type 2 model) trained on CIFAR10.
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Figure 17: Convolutional ResNet34 (Type 2 model) trained on CIFAR100.
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Figure 18: Convolutional ResNet34 (Type 2 model) trained on ImageNette.
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Figure 19: Convolutional ResNet34 with downsampling (Type 3 model) trained on MNIST.
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Figure 20: Convolutional ResNet34 with downsampling (Type 3 model) trained on FashionMNIST.
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Figure 21: Convolutional ResNet34 with downsampling (Type 3 model) trained on CIFAR10.
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Figure 22: Convolutional ResNet34 with downsampling (Type 3 model) trained on CIFAR100.
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Figure 23: Convolutional ResNet34 with downsampling (Type 3 model) trained on ImageNette.
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3.3 (RA2) : V ⊤
j,KJiUj,K84

Figure 24: Fully-connected ResNet34 (Type 1 model) trained on MNIST.

85

86
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Figure 25: Fully-connected ResNet34 (Type 1 model) trained on FashionMNIST.
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Figure 26: Fully-connected ResNet34 (Type 1 model) trained on CIFAR10.
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Figure 27: Fully-connected ResNet34 (Type 1 model) trained on CIFAR100.
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Figure 28: Convolutional ResNet34 (Type 2 model) trained on MNIST.
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Figure 29: Convolutional ResNet34 (Type 2 model) trained on FashionMNIST.
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Figure 30: Convolutional ResNet34 (Type 2 model) trained on CIFAR10.
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Figure 31: Convolutional ResNet34 (Type 2 model) trained on CIFAR100.
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Figure 32: Convolutional ResNet34 (Type 2 model) trained on ImageNette.
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Figure 33: Convolutional ResNet34 with downsampling (Type 3 model) trained on MNIST.
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Figure 34: Convolutional ResNet34 with downsampling (Type 3 model) trained on FashionMNIST.
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Figure 35: Convolutional ResNet34 with downsampling (Type 3 model) trained on CIFAR10.
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Figure 36: Convolutional ResNet34 with downsampling (Type 3 model) trained on CIFAR100.
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Figure 37: Convolutional ResNet34 with downsampling (Type 3 model) trained on ImageNette.
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3.4 (RA3) and (RA4)88

Figure 38: Fully-connected ResNet34 (Type 1 model) trained on MNIST.

Figure 39: Fully-connected ResNet34 (Type 1 model) trained on FashionMNIST.

Figure 40: Fully-connected ResNet34 (Type 1 model) trained on CIFAR10.
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90
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Figure 41: Fully-connected ResNet34 (Type 1 model) trained on CIFAR100.

Figure 42: Convolutional ResNet34 (Type 2 model) trained on MNIST.

Figure 43: Convolutional ResNet34 (Type 2 model) trained on FashionMNIST.
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Figure 44: Convolutional ResNet34 (Type 2 model) trained on CIFAR10.

Figure 45: Convolutional ResNet34 (Type 2 model) trained on CIFAR100.

Figure 46: Convolutional ResNet34 (Type 2 model) trained on ImageNette.
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4 Broader Impacts91

This work presents foundational research and we do not foresee any potential negative societal92

impacts.93
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