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A Additional Analysis

Before presenting the main results, we introduce some necessary background on the delay compensated
gradients.

A.1 Connection Between PC Steps

As discussed above, PC-ASGD relies upon the two steps to determine the updates for each agent at every
time step, as displayed in Fig. 7. We first turn to the clipping step (line 7 of Algorithm 1) where all stale

Figure 7: Predicting-Clipping Steps: in the predicting step, blue lines indicate no delay transmission; green
lines represent delayed transmission that requires gradient prediction to reduce the stale effect; in the clipping
step, the agent selectively drops the delayed information while only receiving information without delay.

information is dropped, which is equivalent to ‘clipping’ the original graph to become a smaller scale graph.
Therefore, between the predicting step and the clipping step, we can observe two static graphs switching
alternatively. This also suggests that element values of the mixing matrix W̃ in the clipping step are different
from those in the predicting step. In the predicting step (line 6 of Algorithm 1), the agent still requires all the
information from its neighbors while asking for gradient prediction from the unreliable neighbors. However,
the update is determined by the combination of these two steps in Algorithm 1, which relies on the θ value
to balance the tradeoff. For simplicity, we set the initialization of each agent 0.

We now turn to the practical variant of PC-ASGD in Algorithm 2 in the Appendix. The condition (line 9)
adopted for PC-ASGD is based on the approximate cosine value of the angle between gi(xi

t) and ∆pre (or
∆clip). When the angle between gi(xi

t) and ∆pre (or ∆clip) is smaller, leading to a larger cosine value, the
corresponding step should be chosen as it enables a larger descent amount along with the direction of gi(xi

t).
Hence, with a sequence of graphs and the properly set condition, these two alternating steps are connected
to each other, allowing for convergence.

A.2 Delay compensated gradient

We detail how to arrive at Eq. 2. Specifically, given the outdated weights of agent k, xk
t−τ , due to the delay

equal to τ , by induction, we can obtain for agent k

xk
t−τ+1 =xk

t−τ − ηgk(xk
t−τ )

=xk
t−τ − η

0∑
r=0

[gk(xk
t−τ ) + λgk(xk

t−τ ) ⊙ gk(xk
t−τ ) ⊙ (xi

t−τ+r − xi
t−τ )]

(17)

xk
t−τ+2 =xk

t−τ+1 − ηgk(xk
t−τ+1) = xk

t−τ − ηgk(xk
t−τ ) − ηgk(xk

t−τ+1)

≈xk
t−τ − η

1∑
r=0

[gk(xk
t−τ ) + λgk(xk

t−τ ) ⊙ gk(xk
t−τ ) ⊙ (xi

t−τ+r − xi
t−τ )]

· · ·

(18)

xk
t ≈ xk

t−τ − η

τ−1∑
r=0

[gk(xk
t−τ ) + λgk(xk

t−τ ) ⊙ gk(xk
t−τ ) ⊙ (xi

t−τ+r − xi
t−τ )] (19)
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As we mentioned in the main contents, the term (xi
t−τ+r − xi

t−τ ) is from agent i due to the outdated
information of agent k, which intuitively illustrates that the compensation is driven by the agent i when
agent k is in its neighborhood and deemed an unreliable one.

A.3 Compact Form of PC Steps

We next briefly discuss how to arrive at the compact form of the predicting and clipping steps for the analysis.
For the convenience of analysis, we set the current time step as t + τ such that line 6 in Algorithm 1 shifts
τ time steps ahead. Let us start with the predicting step and discuss its associated term

∑
j∈R wijxj

t+τ +∑
k∈Rc wikxk

t+τ , where for the time being, it essentially holds that xk
t+τ := xk

t . Note that R includes
the agents i itself. Although unreliable neighbors are outdated, in the context, the update for agent i still
requires such outdated information, which suggests that the whole graph applies. Additionally, the consensus
is performed in parallel with the local computation, so this term boils down to a similar term in the existing
consensus-based optimization algorithms in the literature. Thus, one can convert the current consensus term
for weights to

∑
p wipxp

t+τ , p ∈ V . To show the evolution of predicting gradient over the past steps ranging
from 0 to τ − 1, we use gdc,r

k (xk
t ) to represent.

Hence, the update law for the predicting step can be rewritten as:

xi
t+τ+1 =

∑
p

wipxp
t+τ − η(gk(xi

t+τ ) +
∑

k∈Rc

wik

τ−1∑
r=0

gdc,r
k (xk

t )) (20)

One may argue that for those outdated agent k ∈ Rc, they have no information ahead of time t, which is
τ time steps back from the current time. As the graph is undirected and connected, the time scale will not
change the connections among agents. Also, for agent i, it receives always information from other agents,
either the current or the outdated to update its weights. Thus, we have,

xp
t+τ =

{
xj

t+τ p = j, j ∈ R
xk

t p = k, k ∈ Rc (21)

Since the term
∑

k∈Rc wik

∑τ−1
r=0 gdc,r

k (xk
t ) applies to unreliable neighbors only, for the convenience of analysis,

we expand it to the whole graph. It means that we establish an expanded graph to cover all of agents by
setting some elements in the mixing matrix W ′ ∈ RN×N equal to 0, but keeping the same connections as in
W . Then Eq. 20 can be modified as

xi
t+τ+1 =

∑
p

wipxp
t+τ − η(gk(xi

t+τ ) +
∑

q

w′
iq

τ−1∑
r=0

gdc,r
k (xq

t )) (22)

where
w′

iq =
{

wik if q = k, k ∈ Rc

0 if q ∈ R (23)

Thus, we know via the above setting that W ′ is at least a row stochastic matrix. We rewrite the update law
into a compact form such that

xt+τ+1 = Wxt+τ − η(g(xt+τ ) +
τ−1∑
r=0

W ′gdc,r(xt)). (24)

where W = W ⊗ Id×d and W ′ = W ′ ⊗ Id×d. Similarly, we rewrite the clipping steps in a vector form as
follows:

xt+τ+1 = W̃xt+τ − ηg(xt+τ ) (25)
where W̃ = W̃ ⊗ Id×d. We are now ready to give the generalized step

xt+τ+1 = Wt+τ xt+τ − η(g(xt+τ ) + θt+τ

τ−1∑
r=0

W ′gdc,r(xt)), (26)
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where Wt+τ is denoted as θt+τ W + (1 − θt+τ )W̃ throughout the rest of the analysis. Though the original
graphs corresponding to the predicting and clipping steps are static, the equivalent graph Wt+τ has become
time-varying due to the time-varying θ value.

A.4 Approximate Hessian Matrix

Based on the update law, we know that the key part of PC-ASGD is the delay compensated gradients using
Taylor expansion and Hessian approximation. Therefore, the Taylor expansion of the stochastic gradient
g(xt+τ ) at xt can be written as follows:

g(xt+τ ) = g(xt) + ∇g(xt)(xt+τ − xt) + O((xt+τ − xt)2)I, (27)

where ∇g denotes the matrix with the element ∇gij = ∂F
∂xi∂xj for all i, j ∈ V .

In most asynchronous SGD works, they used the zero-order item in Taylor expansion as its approximation
to g(xt+τ ) by ignoring the higher order term. Following from Zheng et al. (2017), we have

g(xt+τ ) ≈ g(xt) + ∇g(xt)(xt+τ − xt), (28)

Directly adopting the above equation would be difficult in practice since ∇g(xt) is generically computationally
intractable when the model is very large, such as deep neural networks. To make the delay compensated
gradients in PC-ASGD technically feasible, we apply approximation techniques for the Hessian matrix. We
first use O(xt) to denote the outer product matrix of the gradient at xt, i.e.,

O(xt) = ( ∂

∂xt
F (xt))(

∂

∂xt
F (xt))T (29)

When the objective functions take the form of the cross-entropy loss or negative log-likelihood, the outer
product of the gradient is an asymptotically unbiased estimation of the Hessian, according to the two
equivalent methods to calculate the Fisher information matrix Friedman et al. (2001). That is,

ϵt = E[∥O(xt) − H(xt)∥] → 0, t → 0 (30)

where H(xt) is the Hessian matrix of F at point xt.

The above equivalence relies on assumptions that the underlying distribution equals the model distribution
with parameter x∗ and that the training model xt asymptotically converges to the (globally or locally)
optimal model x∗. According to the universal approximation theorem for DNN and some recent results on
the optimality of the local optimal, such assumptions are technically reasonable. As the above equivalence
was only developed by the negative log-likelihood form, that may not be applicable when we use PC-ASGD
for the mean square error form, such as some time-series predictions with LSTM networks. Therefore, we
introduce one assumption on the top of such an equivalence as follows,

E[∥O(xt) − H(xt)∥] ≤ ϵ ∃ϵ > 0 (31)

which primarily eliminates the computational complexity when directly calculating H(xt). Another concern
would be the large variance probably caused by O(xt), though it is an unbiased estimation of H(xt). Similar
to Zheng et al. (2017), we introduce a new approximator λO(xt) ≜ λ( ∂

∂xt
F (xt))( ∂

∂xt
F (xt))T . The authors

in Zheng et al. (2017) have proved that λO(xt) is able to lead to smaller variance during training. Thus we
refer interested readers to Zheng et al. (2017) for more details.

To reduce the storage of the approximator λO(xt), one widely-used diagonalization trick is adopted Becker
& Lecun (1989). Hence, in the update law for PC-ASGD, we can see in the delay compensated gradient
involving λg(xt) ⊙ λg(xt). By denoting the diagonalized approximator as Diag(λO(xt)), the following
relationship is obtained:

Diag(λO(xt)) = λg(xt) ⊙ λg(xt) (32)
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However, for analysis, when we apply diagonalization to H(xt), it could cause diagonalization error such
that we assume that the error is upper bounded by a constant ϵD > 0, i.e.,

∥Diag(H(xt)) − H(xt)∥ ≤ ϵD (33)

B Additional Proof

For completeness, when presenting proof, we re-present statements for all lemmas and theorems.

Lemma 3: The iterates generated by PC-ASGD satisfy ∀t ≥ 0, and τ ≥ 2:

xt+τ =
t+τ−1∏

v=0
Wt+τ−1−vx0 − η

t+τ−1∑
s=0

t+τ−1∏
v=s+1

Wt+τ+s−vg(xs) − η

t+τ−1∑
s=t

t+τ−1∏
v=s+1

θs+1Wt+τ+s−v

τ−2∑
r=0

W ′g(xs+1).

(34)

Proof. Based on the vector form of the update law, we obtain

xt+τ = Wt+τ−1xt+τ−1 − η(g(xt+τ−1) + θt+τ−1

τ−2∑
r=0

W ′gdc,r(xt)) (35)

With the above equation, it can be observed that xt+τ is a function with respect to xt, which contains all of
agents. This suggests that by xt, there were no delay compensated gradients, while after xt+1, the unreliable
neighbors need the delay compensated gradients due to delay. Hence, applying the above equation from 0
to t + τ − 1 yields the desired result.

Bounded (stochastic) gradient assumption: As E[∥g(x)∥2] ≤ G2 and E[g(x)] = ∇F (x), one can get
that ∥∇F (x)∥ = ∥E[g(x)]∥ ≤ E[∥g(x)∥] =

√
(E[∥g(x)∥])2 ≤

√
E[∥g(x)∥2] = G.

Lemma 1: Let Assumptions 2 and 3 hold. Assume that the delay compensated gradients are uniformly
bounded, i.e., there exists a scalar B > 0, such that

∥gdc,r(xt)∥ ≤ B, ∀t ≥ 0 and 0 ≤ r ≤ τ − 1, (36)

Then for all i ∈ V and t ≥ 0, ∃η > 0, we have

E[∥xi
t − yt∥] ≤ η

G + (τ − 1)Bθm

1 − δ2
, (37)

where θm = max{θs+1}t+τ−1
s=t , δ2 = max{θse2 + (1 − θs)ẽ2}t+τ−1

s=0 < 1, where e2 := e2(W ) < 1 and ẽ2 :=
e2(W̃ ) < 1.

Proof. Since

∥xi
t+τ − yt+τ ∥ ≤ ∥xt+τ − yt+τ 1∥ = ∥xt+τ − 1

N
1T xt+τ 1∥

= ∥xt+τ − 1
N

11T xt+τ ∥ = ∥(I − 1
N

11T )xt+τ ∥,

(38)
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where 1 is the column vector with entries all being 1. According to Assumption 2, we have 1
N 11T W = 1

N 11T .
Hence, by induction, setting x0 = 0, and Lemma 3, the following relationship can be obtained

∥xt+τ − yt+τ 1∥

=η∥
t+τ−1∑

s=0
(

t+τ−1∏
v=s+1

Wt+τ+s−v − 1
N

11T )g(xs) +
t+τ−1∑

s=t

(
t+τ−1∏
v=s+1

Wt+τ+s−v − 1
N

11T )θs+1

τ−2∑
r=0

W ′gdc,r(xt)∥

≤η

t+τ−1∑
s=0

∥
t+τ−1∏
v=s+1

Wt+τ+s−v − 1
N

11T ∥∥g(xs)∥ + η

t+τ−1∑
s=t

∥
t+τ−1∏
v=s+1

Wt+τ+s−v − 1
N

11T ∥∥θs+1

τ−2∑
r=0

W ′gdc,r(xt)∥

≤ηG

t+τ−1∑
s=0

δt+τ−1−s
2 + η

t+τ−1∑
s=t

δt+τ−1−s
2 θs+1(τ − 1)B

≤ηG
1

1 − δ2
+ η(τ − 1)Bθm

δt
2 − δt+τ−1

2
1 − δ2

≤η
G + (τ − 1)Bθm

1 − δ2
.

(39)
The second inequality follows from the Triangle inequality and Cauthy-Schwartz inequality and the third
inequality follows from Assumption 2 and that the matrix 1

N 11T is the projection of W onto the eigenspace
associated with the eigenvalue equal to 1. The last inequality follows from the property of geometric sequence.
The proof is completed by replacing t + τ with t on the left hand side.

To prove the main results, we present several auxiliary lemmas first. We define

Gh(xt) =
τ−1∑
r=0

g(xt+r) + H(xt)(vt+r − xt)

∇Fh(xt) =
τ−1∑
r=0

∇F (xt+r) + E[H(xt)(vt+r − xt)]

(40)

which are the incrementally delay compensated gradient and its expectation, respectively. It can be ob-
served that Gh(xt) is the unbiased estimator of ∇Fh(xt). It should be noted that H(xt) = ∇g(xt).
Let vt+τ = Wt+τ xt+τ . We next present a lemma to upper bound ∥∇F (vt+r) − ∇Fh,r(xt)∥, where
∇Fh,r(xt) = ∇F (xt+r) + E[H(xt)(vt+r − xt)].

Lemma 4: Let Assumptions 1,2 and 3 hold. Assume that ∇F (xt) is ξm-smooth. For t ≥ 0, the iterates
generated by PC-ASGD satisfy the following relationship, when r ≥ 1

∥∇F (vt+r) − ∇Fh,r(xt)∥ ≤ ξm

2
η2(2G + (r − 1)Bθm

1 − δ2
)2; (41)

when r = 0, we have

∥∇F (vt) − ∇F (xt)∥ ≤ 2γm
η(G + (τ − 1)Bθm)

1 − δ2
. (42)

Proof. By the smoothness condition for ∇F (x), we have

∥∇F (vt+r) − ∇Fh,r(xt)∥ ≤ ξm

2
∥vt+r − xt∥2 ≤ ξm

2
∥xt+r − xt∥2 (43)

Let ∆t+r = xt+r − xt. Thus, based on Lemma 1, we have

xt+r =
t+r−1∏

v=t

Wt+r−1−vxt −η

t+r−1∑
s=t

t+r−1∏
v=s+1

Wt+r+s−vg(xs)−η

t+r−1∑
s=t

t+r−1∏
v=s+1

Wt+s+r−v

r−2∑
z=0

θs+1W ′gdc,z(xs+1−r)

(44)
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Hence, we can obtain

∥∆t+r∥2 = ∥(
t+r−1∏

v=t

Wt+r−1−v−I)xt−η

t+r−1∑
s=t

t+r−1∏
v=s+1

Wt+r+s−vg(xs)−η

t+r−1∑
s=t

t+r−1∏
v=s+1

Wt+s+r−v

r−2∑
z=0

θs+1W ′gdc,z(xs+1−r)∥2

(45)
Due to x0 = 0 and no delay compensated gradients before time step t, we can obtain

∥∆t+r∥2

=∥ − η

t+r−1∑
s=0

t+r−1∏
v=s+1

Wt+r+s−vg(xs) − η

t+r−1∑
s=t

t+r−1∏
v=s+1

Wt+s+r−v

r−2∑
z=0

θs+1W ′gdc,z(xs+1−r) + η

t∑
s=0

t∏
v=s

Wt+s−vg(xs)∥2

≤η2(∥
t+r−1∑

s=0

t+r−1∏
v=s+1

Wt+r+s−vg(xs)∥ + ∥
t+r−1∑

s=t

t+r−1∏
v=s+1

Wt+s+r−v

r−2∑
z=0

θs+1W ′gdc,z(xs+1−r)∥ + ∥
t∑

s=0

t∏
v=s

Wt+s−vg(xs)∥)2

≤η2(
t+r−1∑

s=0
∥

t+r−1∏
v=s+1

Wt+r+s−vg(xs)∥ +
t+r−1∑

s=t

∥
t+r−1∏
v=s+1

Wt+s+r−v

r−2∑
z=0

θs+1W ′gdc,z(xs+1−r)∥ +
t∑

s=0
∥

t∏
v=s

Wt+s−vg(xs)∥)2

≤η2(
t+r−1∑

s=0

t+r−1∏
v=s+1

∥Wt+r+s−v∥∥g(xs)∥ +
t+r−1∑

s=t

t+r−1∏
v=s+1

∥Wt+s+r−v∥∥
r−2∑
z=0

θs+1W ′gdc,z(xs+1−r)∥

+
t∑

s=0

t∏
v=s

∥Wt+s−v∥∥g(xs)∥)2

≤η2( 2G

1 − δ2
+ 1

1 − δ2
B(r − 1)θm)2

≤η2(2G + θm(r − 1)B
1 − δ2

)2

(46)
The first inequality follows from the Triangle inequality. The second inequality follows from the Jensen
inequality. The third inequality follows from the Cauthy-Schwartz inequality and the submultiplicative
matrix norm applied to stochastic matrices. The fourth inequality follows from the Assumption 2 and
bounded gradient. We have observed that this holds when r ≥ 1. While r = 0 enables ∥∇F (vt+r)−Fh,r(xt)∥
to degenerate to ∥∇F (vt) − ∇F (xt)∥ based on the definition of Fh(xt). Using the smoothness condition of
F (x), we can immediately obtain

∥∇F (vt) − ∇F (xt)∥ ≤ 2γmη
G + (τ − 1)Bθm

1 − δ2
. (47)

The proof is completed.

Lemma 5: Let Assumptions 1, 2 and 3 hold. Assume that the delay compensated gradients are uniformly
bounded, i.e., there exists a scalar B > 0 such that

∥gdc,r(xt)∥ ≤ B, ∀t ≥ 0 and 0 ≤ r ≤ τ − 1, (48)

Then for the iterates generated by PC-ASGD, ∃η > 0, they satisfy

∥E[Gh(xt)] −
τ−1∑
r=0

W ′gdc,r(xt)∥

≤
τ−1∑
r=1

(γm + ϵD + ϵ + (1 − λ)G2)η 2G + (r − 1)Bθm

1 − δ2
+ τσ

(49)
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Proof. Based on the definition of EGh(xt), we have

∥E[Gh(xt)] −
τ−1∑
r=0

W ′gdc,r(xt)∥ = ∥E[
τ−1∑
r=0

g(xt+r) +
τ−1∑
r=0

H(xt)(xt+r − xt)] −
τ−1∑
r=0

W ′gdc,r(xt)∥

=∥E[Gh,r=0(xt)] − W ′gdc,r=0(xt) + E[Gh,r=1(xt)] − W ′gdc,r=1(xt) + · · · + E[Gh,r=τ−1(xt)] − W ′gdc,r=τ−1(xt)∥
≤∥E[Gh,r=0(xt)] − W ′gdc,r=0(xt)∥ + ∥E[Gh,r=1(xt)] − W ′gdc,r=1(xt)∥ + · · · + ∥E[Gh,r=τ−1(xt)] − W ′gdc,r=τ−1(xt)∥

(50)
The last inequality follows from the Triangle inequality. Now let us discuss ∥EGh,r(xt) − W ′gdc,r(xt)∥. The
following analysis is for cases where r ≥ 1. We give a brief analysis for the case in which r = 0 subsequently.

∥E[Gh(xt)] − W ′gdc,r(xt)∥
=∥E[g(xt+r) + H(xt)(xt+r − xt)]W ′[g(xt) + λg(xt) ⊙ g(xt) ⊙ (xt+r − xt)]∥
=∥∇F (xt+r) − W ′g(xt) + [H(xt) − λW ′g(xt) ⊙ g(xt)](xt+r − xt)∥
≤∥∇F (xt+r) − W ′g(xt)∥ + ∥[H(xt) − λW ′g(xt) ⊙ g(xt)](xt+r − xt)∥
≤∥∇F (xt+r) − W ′g(xt)∥ + ∥[H(xt) − λW ′g(xt) ⊙ g(xt) + g(xt) ⊙ g(xt) − g(xt) ⊙ g(xt)

− Diag(H(xt)) + Diag(H(xt))](xt+r − xt)∥
≤∥∇F (xt+r) − W ′g(xt)∥ + ∥xt+r − xt∥∥(λW ′g(xt) ⊙ g(xt) − g(xt) ⊙ g(xt)) + (g(xt) ⊙ g(xt)

− Diag(H(xt))) + (Diag(H(xt)) − H(xt))∥
≤∥∇F (xt+r) − W ′g(xt)∥ + ∥xt+r − xt∥(∥λW ′g(xt) ⊙ g(xt) − g(xt) ⊙ g(xt)∥ + ∥g(xt) ⊙ g(xt)

− Diag(H(xt))∥ + ∥Diag(H(xt)) − H(xt)∥)

The third inequality follows from Cauthy-Schwarz inequality while the last one follows from the Triangle
inequality. It should be noted that when we combine H(xt)(xt+r − xt) and λW ′g(xt) ⊙ g(xt) ⊙ (xt+r − xt),
we follow the update law. Since in a rigorously mathematical sense, g(xt) ⊙ g(xt) should be g(xt)g(xt)T .
However, for reducing the computational complexity when implementing the algorithm, as discussed above,
we have made the approximation and diagonalization trick. Hence, we assume that H(xt)−λW ′g(xt)⊙g(xt)
can hold for simplicity and convenience.

Then we discuss E[∥∇F (xt+r) − W ′g(xt)∥].

E[∥∇F (xt+r) − W ′g(xt)∥] ≤ E[∥∇F (xt+r) − g(xt)∥]
=E[∥∇F (xt+r) − ∇F (xt) + ∇F (xt) − g(xt)∥]
≤E[∥∇F (xt+r) − ∇F (xt)∥] + E[∥∇F (xt) − g(xt)∥]

≤γm∥xt+r − xt∥ +
√

(E[∥∇F (xt) − g(xt)∥])2

≤γmη
2G + (r − 1)Bθm

1 − δ2
+

√
E[∥∇F (xt) − g(xt)∥]2

≤γmη
2G + (r − 1)Bθm

1 − δ2
+ σ

(51)

Hence, we have

∥E[Gh(xt)] −
τ−1∑
r=0

W ′gdc,r(xt)∥ ≤γmη
2G + (r − 1)Bθm

1 − δ2
+ [(1 − λ)G2 + ϵD + ϵ]η 2G + (r − 1)Bθm

1 − δ2
+ σ

=(γm + ϵD + ϵ + (1 − λ)G2)η 2G + (r − 1)Bθm

1 − δ2
+ σ

(52)

The above relationship is obtained for cases where r ≥ 1. There still is r = 0 left. For r = 0,

∥∇F (xt) − W ′g(xt)∥ ≤ σ (53)
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Thus, combining each upper bound for ∥E[Gh,r(xt)] − W ′gdc,r(xt)∥, we can obtain

∥E[Gh(xt)] −
τ−1∑
r=0

W ′gdc,r(xt)∥ ≤
τ−1∑
r=1

(γm + ϵD + ϵ + (1 − λ)G2)η 2G + (r − 1)Bθm

1 − δ2
+ τσ, (54)

which completes the proof.

Lemma 6: Let Assumptions 1, 2 and 3 hold. Assume that the delay compensated gradients are uniformly
bounded, i.e., there exists a scalar B > 0 such that

∥gdc,r(xt)∥ ≤ B, ∀t ≥ 0 and 0 ≤ r ≤ τ − 1, (55)

Then for the iterates generated by PC-ASGD, ∃η > 0, they satisfy

F (xt+τ ) ≥ F (vt+τ ) − 2Gη
G + (τ − 1)Bθm

1 − δ2
(56)

Proof. Due to the convexity, we have

F (xt+τ ) ≥ F (vt+τ ) + ∇F (vt+τ )(xt+τ − vt+τ )
≥ F (vt+τ ) − ∥∇F (vt+τ )∥∥vt+τ − xt+τ ∥
≥ F (vt+τ ) − G∥vt+τ − xt+τ ∥
≥ F (vt+τ ) − G∥vt+τ − yt+τ 1 + yt+τ 1 − xt+τ ∥
≥ F (vt+τ ) − G(∥vt+τ − yt+τ 1∥ + ∥yt+τ 1 − xt+τ ∥)

≥ F (vt+τ ) − 2Gη
G + (τ − 1)Bθm

1 − δ2

(57)

The second inequality follows from the Cauthy-Schwarz inequality. The proof is completed.

Theorem 1: Let Assumptions 1,2 and 3 hold. Assume that the delay compensated gradients are uniformly
bounded, i.e., there exists a scalar B > 0 such that

∥gdc,r(xt)∥ ≤ B, ∀t ≥ 0 and 0 ≤ r ≤ τ − 1, (58)

and that ∇F (xt) is ξm-smooth for all t ≥ 0. Then for the iterates generated by PC-ASGD, when 0 < η ≤ 1
2µτ

and the objective satisfies the PL condition, they satisfy

E[F (xt) − F ∗] ≤ (1 − 2µητ)t−1(F (x1) − F ∗ − Q

2µητ
) + Q

2µητ
, (59)

Q = 2(1 − 2µητ)GηC1 + η3ξmG

2

τ−1∑
r=1

Cr + 2η2GγmC1

+ Gητσ + η2G(γm + ϵD + ϵ + (1 − λ)G2)
τ−1∑
r=1

Cr + ηG2 + η2γmGτC2

(60)

and,

C1 = G + (τ − 1)Bθm

1 − δ2

Cr = 2G + (r − 1)Bθm

1 − δ2

C2 = 2G + (τ − 1)Bθm

1 − δ2
,

(61)

ϵD > 0 and ϵ > 0 are upper bounds for the approximation errors of the Hessian matrix.
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Proof. According to the smoothness condition of F (x). We have

E[F (xt+τ+1) − F (x∗)] ≤ E[F (vt+τ ) − F (x∗)] + E[⟨∇F (vt+τ ), (xt+τ+1 − vt+τ )⟩] + γm

2
E[∥xt+τ+1 − vt+τ ∥2]

(62)

Based on the update law, we can obtain

E[F (xt+τ+1) − F (x∗)]

≤E[F (vt+τ ) − F ∗] − ηE[⟨∇F (vt+τ ), g(xt+τ )⟩] − ηE[⟨∇F (vt+τ ),
τ−1∑
r=0

W ′gdc,r(xt)⟩]

+ γmη2

2
E[∥g(xt+τ ) +

τ−1∑
r=0

W ′gdc,r(xt)∥2]

≤E[F (vt+τ ) − F ∗] − ηE[⟨∇F (vt+τ ), g(xt+τ )⟩] − ηE[⟨∇F (vt+τ ), τ∇F (vt+τ )⟩]

+ ηE[⟨∇F (vt+τ ), τ∇F (vt+τ ) −
τ−1∑
r=0

∇F (vt+r)⟩] + ηE[⟨∇F (vt+τ ),
τ−1∑
r=0

∇F (vt+r) − Fh(xt)⟩]

+ ηE[⟨∇F (vt+τ ),E[Gh] −
τ−1∑
r=0

W ′gdc,r(xt)⟩] + γmη2

2
E[∥g(xt+τ ) +

τ−1∑
r=0

W ′gdc,r(xt)∥2]

(63)

We next investigate each term on the right hand side. Based on Lemma 6, we can obtain

F (xt+τ ) ≥ F (vt+τ ) − 2Gη
G + (τ − 1)Bθm

1 − δ2
(64)

such that
F (xt+τ ) − F ∗ ≥ F (vt+τ ) − F ∗ − 2Gη

G + (τ − 1)Bθm

1 − δ2
(65)

For the term −ηE[⟨∇F (vt+τ ), g(xt+τ )⟩], we can quickly get that is is bounded above by ηG2 due to the
Cauthy-Schwarz inequality. Then for term −ηE[⟨∇F (vt+τ ), τ∇F (vt+τ )⟩], one can get the following relation-
ship due to the PL condition.

−ηE[⟨∇F (vt+τ ), τ∇F (vt+τ )⟩] ≤ −2ητµ(F (vt+τ ) − F ∗) (66)

Combining F (vt+τ ) − F ∗, we have

(1 − 2ητµ)(F (vt+τ ) − F ∗)

≤ (1 − 2ητµ)[(F (xt+τ ) − F ∗) + 2Gη
G + (τ − 1)Bθm

1 − δ2
]

(67)

Based on Lemma 4, we have known that

∥∇F (vt+r) − ∇Fh,r(xt)∥ ≤ ξm

2
η2[ 2G + (r − 1)Bθm

1 − δ2
]2; (68)

for r ≥ 1, while for r = 0, it can be obtained that

∥∇F (vt) − ∇F (xt)∥ ≤ 2γmη
G + (τ − 1)Bθm

1 − δ2
. (69)

Since

ηE[⟨∇F (vt+τ ),
τ−1∑
r=0

∇F (vt+r) − Fh(xt)⟩] ≤ ηE[∥∇F (vt+τ )∥∥
τ−1∑
r=0

∇F (vt+r) − Fh(xt)∥]

≤ E[∥∇F (vt+τ )∥
τ−1∑
r=0

∥∇F (vt+r) − Fh(xt)∥]

(70)
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The first inequality follows from Cauthy-Schwarz inequality and the second one follows from Triangle in-
equality. Hence, we can have

ηE[⟨∇F (vt+τ ),
τ−1∑
r=0

∇F (vt+r) − Fh(xt)⟩] ≤ η3ξmG

2(1 − δ2)

τ−1∑
r=1

[2G + B(r − 1)θm] + 2η2Gγm
G + (τ − 1)Bθm

1 − δ2

(71)

According to Lemma 4, the following relationship can be obtained,

E[⟨∇F (vt+τ ),E[Gh(xt)] −
τ−1∑
r=0

W ′gdc,r(xt)⟩] ≤ η2G

1 − δ2
(γm + ϵD + ϵ + (1 − λ)G2)

τ−1∑
r=1

[2G + (r − 1)Bθm] + Gητσ

(72)

The last term is ηE[⟨∇F (vt+τ ), τ∇F (vt+τ ) −
∑τ−1

r=0 ∇F (vt+r)⟩], which can be rewritten such that

ηE[⟨∇F (vt+τ ), τ∇F (vt+τ ) −
τ−1∑
r=0

∇F (vt+r)⟩]

≤ηE[∥∇F (vt+τ )∥∥∇F (vt+τ ) − ∇F (vt) + · · · + ∇F (vt+τ ) − ∇F (vt+τ−1)∥]
≤ηE[∥∇F (vt+τ )∥∥∇F (vt+τ ) − ∇F (vt)∥ + · · · + ∥∇F (vt+τ ) − ∇F (xt+τ−1)∥]

(73)

Using the smoothness condition, we then can bound the term by deriving the following relationship with
Lemma 1 and Lemma 3,

ηE[⟨∇F (vt+τ ), τ∇F (vt+τ ) −
τ−1∑
r=0

∇F (vt+r)⟩] ≤ η2γmGτ
2G + (τ − 1)Bθm

1 − δ2
(74)

We combine the upper bounds of each term on the right hand side to produce the following relationship.

E[F (xt+τ+1) − F (x∗)] ≤ (1 − 2ηµτ)(F (xt+τ ) − F ∗) + 2(1 − 2ηµτ)Gη
G + (τ − 1)Bθm

1 − δ2

+ η3ξmG

2(1 − δ2)

τ−1∑
r=1

[2G + (r − 1)Bθm] + 2η2Gγm
G + (τ − 1)Bθm

1 − δ2
+ Gητσ + ηG2

+ η2G

1 − δ2
(γm + ϵD + ϵ + (1 − λ)G2)

τ−1∑
r=1

[2G + (r − 1)Bθm] + η2γmGτ
2G + (τ − 1)Bθm

1 − δ2
.

(75)

We now know that
E[F (xt+1) − F ∗] ≤ (1 − 2ητµ)E[F (xt) − F ∗] + Q, (76)

subtracting the constant Q
2µτη from both sides, one obtains

E[F (xt+1) − F ∗] − Q

2µτη
≤ (1 − 2ηµτ)E[F (xt) − F ∗] + Q − Q

2µτη

= (1 − 2ηµτ)(E[F (xt) − F ∗] − Q

2µτη
)

(77)

Observe that the above inequality is a contraction inequality since 0 < 2ηµτ ≤ 1 due to 0 < η ≤ 1
2µτ . The

result thus follows by applying the inequality repeatedly through iteration t ∈ N.

Another scenario that could be of interest is the strongly convex objective. As Theorem 1 has shown with a
properly set constant step size, PC-ASGD is able to converge to the neighborhood of the optimal solution
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with a linear rate. This also applies to the strongly convex objective in which the strong convexity implies
the PL condition, while the constants are subject to changes. We now proceed to give the proof for the
generally convex case.

Theorem 2: Let Assumptions 1, 2 and 3 hold. Assume that the delay compensated gradients are uniformly
bounded, i.e., there exists a scalar B > 0 such that for all T ≥ 1

∥gdc,r(xt)∥ ≤ B, ∀t ≥ 0 and 0 ≤ r ≤ τ − 1, (78)

and there exists C > 0,
E[∥xt − x∗∥] ≤ C, (79)

where x∗ ∈ argminF (x). Then for the iterations generated by PC-ASGD, there exists 0 < η < 1
20γm

, such
that

E[F (x̄T ) − F ∗] ≤ ∥x1 − x∗∥2

Tη
+ A

η
, (80)

where A = 10η2σ2
∗ +10η2σ2+20η4G2C2

1 +5η2θ2
mτ2B2+2ηCθmτB+2Gη2C1(2C+1), C1 = G+(τ−1)Bθm

1−δ2
, σ2

∗ :=
E∥g(x∗) − ∇F (x∗)∥2, x̄T := 1

T

∑T
t=1 xt.

Proof. According to the compact update law, we have

∥xt+τ+1 − x∗∥2 = ∥Wt+τ xt+τ − η(g(xt+τ ) + θt+τ

τ−1∑
r=0

W ′gdc,r(xt)) − x∗∥2. (81)

As vt+τ = Wt+τ xt+τ , we can obtain

∥xt+τ+1 − x∗∥2 = ∥vt+τ − x∗∥2 − 2η⟨vt+τ − x∗, g(xt+τ ) + θt+τ

τ−1∑
r=0

W ′gdc,r(xt)⟩

+ η2∥g(xt+τ ) + θt+τ

τ−1∑
r=0

W ′gdc,r(xt)∥2.

(82)

For convenience, we define that Γt+τ = g(xt+τ ) + θt+τ

∑τ−1
r=0 W ′gdc,r(xt). Hence, the above equation can be

rewritten as

∥xt+τ+1 − x∗∥2 = ∥vt+τ − x∗∥2 + η2∥Γt+τ ∥2

+ 2η⟨x∗ − vt+τ , g(vt+τ )⟩ + 2η⟨x∗ − vt+τ , g(xt+τ ) − g(vt+τ )⟩

+ 2η⟨x∗ − vt+τ , θt+τ

τ−1∑
r=0

W ′gdc,r(xt)⟩.
(83)

Taking expectation on both sides leads to the following relationship:

E[∥xt+τ+1 − x∗∥2] ≤ E[∥xt+τ − x∗∥2] + η2E[∥Γt+τ ∥2]
+ 2ηE[⟨x∗ − vt+τ , ∇F (vt+τ )⟩] + 2ηE[⟨x∗ − vt+τ , ∇F (xt+τ ) − ∇F (vt+τ )⟩]

+ 2ηE[⟨x∗ − vt+τ , θt+τ

τ−1∑
r=0

W ′gdc,r(xt)⟩].
(84)

The inequality holds due to the basic property for the projection Sundhar Ram et al. (2010). For the last two
terms on the right hand side of the above inequality, we can leverage Cauchy-Schwartz inequality to obtain
the upper bounds. For 2ηE[⟨x∗ −vt+τ , ∇F (vt+τ )⟩], we will use Lemma 2 to reformulate. We next investigate
η2E[∥Γt+τ ∥2]. Before that, we introduce a theoretical fact for the generally convex smooth functions.

Variance transfer: gradient noise (Lemma 4.20) in Garrigos & Gower (2023). If F is smooth and convex,
then for all x we have that

E[∥g(x)∥2] ≤ 4γm(F (x) − F ∗) + 2σ2
∗, (85)
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where g(x) is the stochastic gradient, σ2
∗ is the variance of stochastic gradient at x∗. Rewrite ∥Γt+τ ∥2 =

∥g(xt+τ ) + ∇F (xt+τ ) − ∇F (xt+τ ) + g(vt+τ ) − g(vt+τ ) + ∇F (vt+τ ) − ∇F (vt+τ ) + θt+τ

∑τ−1
r=0 W ′gdc,r(xt)∥2.

We then have the following relationship:
E[∥xt+τ+1 − x∗∥2] ≤ E[∥xt+τ − x∗∥2] + 5η2E[∥g(vt+τ )∥2] + 5η2E[∥g(xt+τ ) − ∇F (xt+τ )∥2]

+ 5η2E[∥g(vt+τ ) − ∇F (vt+τ )∥2] + 5η2E[∥∇F (xt+τ ) − ∇F (vt+τ )∥2]

+ 5η2E[∥θt+τ

τ−1∑
r=0

W ′gdc,r(xt)∥2] + 2ηE[F ∗ − F (vt+τ )]

+ 2ηE[∥x∗ − vt+τ ∥∥∇F (xt+τ ) − ∇F (vt+τ )∥] + 2ηE[∥x∗ − vt+τ ∥∥θt+τ

τ−1∑
r=0

W ′gdc,r(xt)∥].

(86)

The last inequality holds due to the basic inequality ∥
∑N

i=1 ai∥2 ≤ N
∑N

i=1 ∥ai∥2, the convexity property,
and Cauchy-Schwartz inequality. By substituting Eq. 85 into Eq. 86, the following relationship can be
obtained
E[∥xt+τ+1 − x∗∥2] ≤ E[∥xt+τ − x∗∥2] + 20η2γmE[F (vt+τ ) − F ∗] + 10η2σ2

∗

+ 5η2E[∥g(xt+τ ) − ∇F (xt+τ )∥2]
+ 5η2E[∥g(vt+τ ) − ∇F (vt+τ )∥2] + 5η2E[∥∇F (xt+τ ) − ∇F (vt+τ )∥2]

+ 5η2E[∥θt+τ

τ−1∑
r=0

W ′gdc,r(xt)∥2] + 2ηE[F ∗ − F (vt+τ )]

+ 2ηE[∥x∗ − vt+τ ∥∥∇F (xt+τ ) − ∇F (vt+τ )∥] + 2ηE[∥x∗ − vt+τ ∥∥θt+τ

τ−1∑
r=0

W ′gdc,r(xt)∥]

≤ E[∥xt+τ − x∗∥2] + 2η(10γmη − 1)E[F (xt+τ ) − F ∗] + 10η2σ2
∗

+ 10η2σ2 + 20η4G2C2
1 + 5η2θ2

mτ2B2 + 2ηC(2GηC1 + θmτB).
(87)

The second inequality follows from Assumption 3, Eq. 47 and bounds for the predicted gradients. With
mathematical manipulation, the above inequality can be written as

2η(1 − 10γmη)E[F (vt+τ ) − F ∗] ≤ E[∥xt+τ − x∗∥2] − E[∥xt+τ+1 − x∗∥2]
+ 10η2σ2

∗ + 10η2σ2 + 20η4G2C2
1 + 5η2θ2

mτ2B2 + 2ηC(2GηC1 + θmτB)
(88)

Due to η ≤ 1
20γm

, 1 − 10γmη ≥ 1
2 such that ηE[F (vt+τ ) − F ∗] ≤ 2η(1 − 10γmη)E[F (vt+τ ) − F ∗]. Dividing

both sides of Eq. 88 by η yields the following

E[F (vt+τ ) − F ∗] ≤ 1
η

(E[∥xt+τ − x∗∥2] − E[∥xt+τ+1 − x∗∥2])

+ 1
η

(10η2σ2
∗ + 10η2σ2 + 20η4G2C2

1 + 5η2θ2
mτ2B2 + 2ηC(2GηC1 + θmτB)).

(89)

Similar to Lemma 6, we can obtain that F (vt+τ ) ≥ F (xt+τ ) − 2Gη G+(τ−1)Bθm

1−δ2
. Then it is immediately

obtained that F (vt+τ ) − F ∗ ≥ F (xt+τ ) − F ∗ − 2Gη G+(τ−1)Bθm

1−δ2
. With this, the following relationship can

be obtained

E[F (xt+τ ) − F ∗] ≤ 1
η

(E[∥xt+τ − x∗∥2] − E[∥xt+τ+1 − x∗∥2]) + A

η
, (90)

where A = 10η2σ2
∗ +10η2σ2 +20η4G2C2

1 +5η2θ2
mτ2B2 +2ηCθmτB +2Gη2C1(2C +1). Recursively summing

over t from 1 to T and replacing t + τ with t grants us the following relationship
T∑

t=1
E[F (xt) − F ∗] ≤ ∥x1 − x∗∥2

η
+ AT

η
. (91)
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Dividing both sides by T in the last relationship attains the following

1
T

T∑
t=1

E[F (xt) − F ∗] ≤ ∥x1 − x∗∥2

Tη
+ A

η
. (92)

Using that F is convex with Jensen inequality gives the desirable result.

In the sequel, we provide the details for the smooth nonconvex functions.

Theorem 3: Let Assumptions 1,2 and 3 hold. Assume that the delay compensated gradients are uniformly
bounded, i.e., there exists a scalar B > 0 such that

∥gdc,r(xt)∥ ≤ B, ∀t ≥ 0 and 0 ≤ r ≤ τ − 1, (93)

and that
E[∥gdc(xt)∥2] ≤ M. (94)

Then for the iterates generated by PC-ASGD, there exists 0 < η < 1
γm

, such that for all T ≥ 1,

1
T

T∑
t=1

E[∥∇F (xt)∥2] ≤ 2(F (x1) − F ∗)
Tη

+ R

η
, (95)

where

R = 2Gη2C1 + τη2γmM

2
+ ησ2

2
+ ηστB + 2η2γm(τB + G)C1.

Proof. According to the smoothness condition of F (x), we have

F (xt+τ+1) − F (vt+τ )

≤⟨∇F (vt+τ ), xt+τ+1 − vt+τ ⟩ + γm

2
+ ∥xt+τ+1 − vt+τ ∥2

=⟨∇F (vt+τ ), −η(
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ ))⟩ + η2γm

2
∥

τ−1∑
r=0

W ′gdc,r + g(xt+τ )∥2

=⟨∇F (vt+τ ) − ∇F (xt+τ ) + ∇F (xt+τ ), η(
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ ))⟩ + η2γm

2
∥

τ−1∑
r=0

W ′gdc,r + g(xt+τ )∥2

= − η⟨∇F (xt+τ ),
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ )⟩ + η⟨(∇F (vt+τ ) − ∇F (xt+τ ),
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ ))⟩

+ η2γm

2
∥

τ−1∑
r=0

W ′gdc,r + g(xt+τ )∥2

= − η

2
[∥∇F (xt+τ )∥2 + ∥

τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ )∥2 − ∥∇F (xt+τ ) − (
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ ))∥2]

+ η⟨∇F (xt+τ ) − ∇F (vt+τ ),
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ )⟩ + η2γm

2
∥

τ−1∑
r=0

W ′gdc,r + g(xt+τ )∥2

= − η

2
∥∇F (xt+τ )∥2 − η

2
∥

τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ )∥2 + η

2
(∥∇F (xt+τ ) − g(xt+τ )∥2 + ∥

τ−1∑
r=0

W ′gdc,r(xt)∥2

− 2⟨∇F (xt+τ ) − g(xt+τ ),
τ−1∑
r=0

W ′gdc,r(xt)⟩) + η⟨∇F (xt+τ ) − ∇F (vt+τ ),
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ )⟩
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+ η2γm

2
∥

τ−1∑
r=0

W ′gdc,r + g(xt+τ )∥2

= − η

2
∥∇F (xt+τ )∥2 − (η

2
− η2γm

2
)∥

τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ )∥2 + η

2
∥∇F (xt+τ ) − g(xt+τ )∥2 + η

2
∥

τ−1∑
r=1

W ′gdc,r(xt)∥2

− η⟨∇F (xt+τ ) − g(xt+τ ),
τ−1∑
r=1

W ′gdc,r(xt)⟩ + η⟨∇F (xt+τ ) − ∇F (vt+τ ),
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ )⟩

= − η

2
∥∇F (xt+τ )∥2 + (η2γm

2
− η

2
)∥

τ−1∑
r=0

W ′gdc,r(xt)∥2 + (η2γm

2
− η

2
)∥g(xt+τ )∥2

+ (η2γm

2
− η

2
)⟨g(xt+τ ),

τ−1∑
r=0

W ′gdc,r(xt)⟩ + η

2
∥∇F (xt+τ ) − g(xt+τ )∥2 + η

2
∥

τ−1∑
r=1

W ′gdc,r(xt)∥2

− η⟨∇F (xt+τ ) − g(xt+τ ),
τ−1∑
r=1

W ′gdc,r(xt)⟩ + η⟨∇F (xt+τ ) − ∇F (vt+τ ),
τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ )⟩

≤ − η

2
∥∇F (xt+τ )∥2 + (η2γm

2
− η

2
)∥

τ−1∑
r=0

W ′gdc,r(xt)∥2 + (η2γm

2
− η

2
)∥g(xt+τ )∥2

+ (η2γm

2
− η

2
)∥g(xt+τ )∥∥

τ−1∑
r=0

W ′gdc,r(xt)∥ + η

2
∥∇F (xt+τ ) − g(xt+τ )∥2 + η

2
∥
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r=1
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W ′gdc,r(xt) + g(xt+τ )∥.

The first inequality follows from the smooth property of the objective. The last inequality follows from
Cauthy-Schwarz inequality. The left hand side of the above inequality can be rewritten:

F (xt+τ+1) − F (xt+τ ) + F (xt+τ ) − F (vt+τ )

Taking expectations for both sides, with the last inequality, we have

E[F (xt+τ+1) − F (xt+τ )]

≤E[F (vt+τ ) − F (xt+τ )] − η

2
E[∥∇F (xt+τ )∥2] + η2γm − η

2
E[∥
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2
E[∥g(xt+τ )∥2]
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2
E[∥g(xt+τ )∥∥
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W ′gdc,r(xt)∥] + η

2
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2
E[∥
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r=1

W ′gdc,r(xt)∥2]
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τ−1∑
r=0

W ′gdc,r(xt) + g(xt+τ )∥]

≤GE[∥vt+τ − xt+τ ∥] − η

2
E[∥∇F (xt+τ )∥2] + η2γm − η

2
τ

τ−1∑
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2
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2
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ηγm
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(96)
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The last inequality follows from the smoothness condition of F (x) and the bounded gradient, respectively,
as well as η < 1

γm
. Hence, by replacing t + τ with t, one can obtain

E[F (xt+1) − F (xt)] ≤ −η

2
E[∥∇F (xt)∥2] + R (97)

where R indicates the constant term on the right hand side of the inequality. As we assume that F (x) is
bounded from below, applying the last inequality from 1 to T , one can get

F ∗ − F (x1) ≤ E[F (xt+1)] − F (x1) ≤ −η

2

T∑
t=1

E[∥∇F (xt)∥2] + TR (98)

which results in
T∑

t=1
E[∥∇F (xt)∥2] ≤ 2[(F (x1) − F ∗) + TR]

η
(99)

Dividing both sides by T , the desirable results are obtained.

C Detailed Settings of Deep Learning Models

Model Settings For the PreResNet110 (model 1 ), DenseNet (model 2 ), ResNet20 (model 3 ) and Efficient-
Net (model 4 ), models’ architectures are shown in He et al. (2016b), Huang et al. (2017), He et al. (2016a)
and Tan & Le (2019) respectively. The batch size is selected as 128. After hyperparameter searching in
(0.1, 0.01, 0.001), the learning rate is set as 0.01 for the first 160 epochs and changed to 0.001. The decays
are applied in epochs (80, 120, 160, 200). The approximation coefficient λ is set as 1. λ = 0.001 is first tried
as suggested by DC-ASGD Zheng et al. (2017) and the results show that the predicting step doesn’t affect
the training process. By considering the upper bound of 1, a set of values (0.001, 0.1, 1) are tried, and λ = 1
is applied according to the performance.

Hardware environment. Our experiments are implemented and evaluated at GTX-1080 ti with Intel
Xenon 2.55GHz processor with 32GB RAM.

Table 5: Performance comparison in TinyImageNet and Time Series dataset

Model & dataset Pre110
TinyImageNet

DesNet
TinyImageNet

EfficientNet
TinyImageNet

LSTM
Wind Turbine Data

PC-ASGD (Ours) 58.0 ± 1.4 61.4 ± 0.7 74.8 ± 0.9 71.2 ± 0.5
D-ASGD

Lian et al. (2017) 52.1 ± 0.3 57.5 ± 0.2 70.4 ± 0.5 66.2 ± 0.1

DC-s3gd
Rigazzi (2019) 55.1 ± 0.8 58.5 ± 1.4 73.2 ± 1.2 61.4 ± 1.1

D-ASGD with IS
Du et al. (2020) 53.2 ± 0.9 58.1 ± 1.2 73.4 ± 0.7 69.2 ± 0.2

Adaptive Braking
Venigalla et al. (2020) 55.2 ± 1.2 60.2 ± 1.1 67.3 ± 1.5 66.5 ± 1.2

Table 6: Performance evaluation of ResNet20 on CIFAR-10

20 agents

Model & dataset
PC-ASGD P-ASGD C-ASGD Baseline

acc. (%) o.p. (%) acc. (%) o.p. (%) acc.(%) o.p. (%) acc. (%)
ResNet 20, CIFAR-10 84.9 ± 0.6 2.4 ± 0.7 82.9 ± 0.7 0.4 ± 0.8 83.8 ± 0.8 1.3 ± 0.9 82.5 ± 0.1

acc.–accuracy, o.p.–outperformed comparing to baseline.
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D More Empirical Results with different datasets

We also adopt our numerical studies on TinyImageNet Le & Yang (2015) and Wind turbine data set Liu
et al. (2014). For TinyImageNet, we adopt PreResNet110 He et al. (2016b), DenseNet Huang et al. (2017),
and EfficientNet Tan & Le (2019). For the wind turbine data set, we use LSTM3 in Lei et al. (2019) to
classify the fault in the wind turbine.

Results in Tab. 5 shows the effectiveness of our proposed methods in different models, datasets, and even
different tasks (time series classification). It further demonstrates the generality of our proposed framework.

We also supplement the experiment with ResNet20 on CIFAR-10 to ablate the functions of the P-step and
C-step in Tab. 6. The quantitative results are consistent with Tab. 2, showing the benefits of our PC steps
design.

3Actually, we use SGD-based optimizer for better analysis instead of Adam in Lei et al. (2019), hence we do not achieve the
best results in Lei et al. (2019). But our framework shows the best performances among other framework handling delay.
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