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A APPENDIX

A.1 THE IMPACT OF THE BIJECTIVE PRIOR ON VAES
A.1.1 MOTIVATION

Bijective neural networks were first introduced to increase the expressibility of the encoder, due to
its forced limitations to follow a mean-field variational family of Gaussian distributions. As they
demand the base function to be known and simple (i.e. a distribution that is easy to estimate and
sample from), the mapping of the input space to the latent follows a two step process; first the input
sample is mapped to the base distribution though the encoder, and then transformed to match the
unimodal Gaussian prior. However, despite the richer variational posterior, Rosca et al. (2018) proved
that the optimal prior may still not much a fixed unit Gaussian distribution, which in addition, is
known to result in over-regularized models that tend to ignore more of the latent codes (Burda et al.,
2015; Tomczak & Welling, 2017).
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Figure 7: VAE employed with bijective prior.

However, little attention has been paid to adapt bijective neural networks as a learnable, data-driven
prior of Variational Auto-Encoders. Since the prior of the latent dimensions plays a crucial part in the
objective function, it will contribute into a better likelihood estimation of the data, while providing
more informative latent codes. There are a couple of advantages using a bijective network to estimate
the prior distribution:

- Arbitrary complex, data-driven prior Instead of forcing the encoder to match a fixed
distribution, we follow the intuitive process, that now, the prior distribution adapts to the
posterior during the training progress. Thus, the posterior is not being dragged to the centre
of a standard Gaussian distribution and it is allowed to move freely in the latent space. As the
normalizing flows framework allows the transformation of a simple function to an arbitrary
complex one, the result would be a richer, multi-modal distribution that incorporates causal
knowledge of the data at hand.

- Simple implementation and integration Instead of breaking the encoder into a two step
process, we fit a flow-based generative model to the latent codes produced by the encoder.
Additionally, getting advantage of the invertible nature of the network, we can generate a
datapoint by simply sampling a point from its base distribution, and transforming it (through
the inverse process) into a latent code of the variational posterior.
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a) Standard Gaussian Prior b) Learnable Multivariate Prior

Figure 8: Left: The standard prior is too strong and over-regularizes the encoder and create "holes" in
the latent space. Right: Learnable prior adjusts to the posterior distribution, surrounding the variable
posterior with smooth transitions.

- Fast sampling and inference. An alternative way of retrieving a powerful latent prior is
through autoregressive modelling of the latent codes. Formally, p(z) is factorized as

d
p(z) = Hp (zilz<i)

so that estimating p(z) reduces to the estimation of each single conditional probability den-
sity (CPD) expressed as p(z|z«;), where the symbol < implies an order over random vari-
ables. However, because high-dimensional data often requires a relatively high-dimensional
latent space, in order to extract the highly informative causal components, the sampling
process can be an important barrier for fast generation of novel content. On the contrary,
the bijective neural networks require only a forward pass of a sampled point, reducing
significantly the inference time.

It is straightforward to obtain a rich, multi-modal prior, and the process its described on section 2.2.

A.1.2 EXPERIMENTS

On this section, we will evaluate the performance of Variational Auto-Encoder with using different
latent variable prior distributions, both on a quantitatively and qualitatively view. The models named
as "VAE" represents the plain architecture with standard normal prior, while "VAE + MoG" and
"VAE + RealNVP" represent data-driven priors, where the former employs 10 mixture of Gaussians
and the latter the bijective network RealNVP. For fair comparison, all the models share the same
neural networks architectures both on the encoder and decoder. For the specific architecture of the
neural networks, please refer to the section .

Quantitative Analysis Table 2 represents the quantitative results of density estimation on the
natural image dataset CIFAR-10. We measure performance by estimating the log-likelihood with
512 importance weighted samples on the test set. To begin with, the use of a mixture of Gaussians, a
learned distribution, performs better that the VAE with fix prior, with a negligible cost on additional
trainable parameters, which do not allocate extra time in sample generation. However, the adaption
of RealN'VP as a bijective network, improves significantly the likelihood score. Interestingly, both
models with learned priors perform better than the fixed one, by reaching better reconstruction loss
with the cost of allocating more regularization cost. This behavior exactly reflects the relationship
between variational posterior and the prior; when a fix unimodal Gaussian is used, it pulls the
variational ones to its pick. As a result, all the variational posteriors are close to the mean of the
prior, resulting into a smaller KL diverge but blurry reconstructions. On the contrary, the learned
multi-modal priors allow the posteriors to move more freely and are able to adjust to the variational
family (see figure 8). This distribution mismatch is the greatest when the RealN'VP prior is used,
indicating that the prior allows the encoder to form more and more complex distributions, by trading
of regularization loss for better reconstructions.
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Figure 9: Qualitatively results on CIFAR-10 for VAEs with various latent prior distributions. The
depicted results show A) unconditional generative samples B) image interpolations and C) image
reconstructions.

Qualitative Analysis The difference in performance becomes more obvious by looking at the
qualitatively results, presented in Figure 9. Looking at the generative samples, we see a clear
improvement when moving to richer prior. The plain VAE with standard normal distribution generates
random patters while the model with a mixture of Gaussian prior enhance them with colors. However,
only VAE with RealNVP showcases generations that manage to display a global context. To examine
the richness of the learnt space, we also perform interpolation on the latent codes between two
ground-truth images. Ideally, the internal generations should result into meaningful modifications of
the provided samples. In the case of VAE, we see that the inner generations produce blurry samples,
indicating the unexpressivety of the latent codes. The generations are getting better with the MoG
prior, but the most impressive results are coming from the framework with ReaINVP. We can see
that the samples are more influenced by their closest ground-truth image, while adapting more and
more core characteristics when moving closer to the other. For example, on the second row of Btiii,
the original brown horse first turns into red, adapting the color of the firetruck, before it smoothly
result into it. Lastly, on image reconstructions we again witness the same patent, when the richer
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Table 2: Generative modelling performance on CIFAR-10 obtained from different priors in bits per
dimension. The generation time is based on 100 runs on a singe GeForce GTX 1080 Ti GPU for 1
image (and 100 images).

Model . nll ' reconstruction loss regularization loss #params generation time (sec)
(bits/dim) RE, KL,

VAE 3.88 6675 1596 20M 0.01 (0.07)

VAE + MoG 3.83 6512 1653 22M 0.01 (0.07)

VAE + RealNVP 3.51 5540 1966 32M 0.07 (0.14)

prior does result into better reconstructions, confirming the quantitatively results presented on table
2. Specifically, the VAE with the bijective prior showcases an excellent performance on the natural
image reconstruction task, which is contrary to the performance of the other two approaches. This
is associated with the effectiveness of the powerful, invertible, data-driven prior (in our case, the
RealNVP) and its ability to boost the performance significantly with negligible sacrifice on generation
speed, and none on inference.

A.2 NEURAL NETWORK ARCHITECTURE

The choice of the NN architecture is crucial for the performance and the scalability of the overall
framework, and usually architectures that showcased great performance in discriminate tasks (i.e.
classification) are used in generative modelling tasks as well. However, the internal representations
that the networks have to discover are fundamentally different, and little attention has been given
into designing a NN specifically for an auto-encoder setting. For example, in classification tasks
the network extracts specific representation of a particular object, in contrast with the generative
models, where we aim for discovering the semantic structure of the data. Thus, as we argue that we
can benefit from a carefully designed architecture, in this section we present our approach.

For building blocks of the network, we employed densely connected convolutional networks instead
of residual ones. The motivation for this choice is that since DenseNets encourage feature reuse,
it will help preserve visual information from the very first layer effectively, while requiring less
trainable parameters. Thus, the network could discover easier generic graphical features and local
pixel correlations. The concatenation of the filters will also alleviate the vanishing-gradient problem
and allow us to build deep architectures. Additionally, exponential linear units (ELUs) are used
everywhere as activation functions. In contrast to ReL.Us, ELUs have negative values which allows
them to push mean unit activations closer to zero, which speeds up the learning process. This is due
to a reduced bias shift effect; bias that is introduced to the units from those of the previous layer
which have a non-zero mean activation.

Typically, every convolution operation precedes a batch normalization layer, as they empirically
exhibit a boost in performance in discriminate tasks. However, their performance is known to
degrade for small batch sizes, as the variance of the activation noise that they contribute is inversely
proportional to the number of data that is processed. This noise injection, in combination with
their intensive memory demands, can be critical drawbacks when we process image data, especially
high-dimensional ones. We instead use weight normalization, where even though it separates the
weight vector from its direction just like batch normalization, they do not make use of the variance.
This allows them to get the desired output even in small mini-batches, while allocating a small
proportion of memory. We empirically find out that indeed using weight normalization reduces the
overfitting of the model. In addition, we used a data-dependant initialization of the model parameters,
by sampling the first batch of the training set. This will allow the parameters to be adjusted by the
output of the previous layers, taking into account and thus resulting into a faster learning process.

An important element of the auto-encoding scheme is the process of feature downscaling and
upscaling. Despite its success in classification tasks, pooling is a fixed operation that replacing it
with a stride-convolution layer can also be seen as generalization, as the scaling process is now
learned. This will increase the models’ expressibility with the cost of adding a negligible amount of
learning parameters. For the upscaling operation, even though various methods have been proposed
(Shi et al., 2016), we found out that the plain transposed convolution generalised better than the
others, while requiring far less trainable parameters. Finally, inspired from the recent advantages on
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super-resolution neural network architectures, we used channel-wise attention blocks (CA) at the end
of every DenseNet block (Zhang et al., 2018). The CA blocks will help the network to focus on more
informative features, by exploiting the inter-dependencies among feature channels. Thus, it performs
feature recalibration in a global way, where the per-channel summary statistics are calculated and
then used to selectively emphasise informative feature-maps as well as suppress useless ones (e.g.
redundant feature-maps). This is done through a global average pooling, that squeezes global spatial
information into a channel statistical descriptor, followed by a gating mechanism, where it learns
nonlinear interactions between the input channels.

The core building blocks and the network of an auto-encoding network are illustrated in Figure 10.

A.3 SELF-SUPERVISED VAE - SKETCH RECONSTRUCTIONS

Given the astonishing performance on visual tasks, CNNs are commonly thought to recognise objects
by learning increasingly complex representations of object shapes. However, Geirhos et al. (2019)
showed that where humans see shapes, CNNs are strongly biased towards recognising textures. Fur-
thermore, architectures that learn shape-based representations come with several unexpected emergent
benefits such as previously unseen robustness towards a wide range of image distortions. This acted
as a motivation to employ the framework of self-supervised auto-encoder with a representation that
captures the shape of the object. Thus, the first part will model the outlines of the given object while
the second will be responsible for its texture.

We can retrieve a shape-based representation of an image by detecting its edges. Edges appear when
there is a sharp change in brightness and it usually corresponds to the boundaries of an object. There
are many different techniques for computing the edges, like using filters that extract the gradient of
the image (Sobel kernels, Laplacian of Gaussian, etc.). In this experiment, we will use the method
proposed in Gastal & Oliveira (2011), as it is a fast, high-quality edge-preserving filtering of images.
Specifically, in order to obtain a pencil sketch (that is, a black-and-white drawing) of the input image,
we will make use of two image-blending techniques, known as dodging and burning. The former
lightens an image, whereas the latter darkens it. A sketch transformation can be obtained by using
dodge to blend the grayscale image with its blurred inverse. In this way, we produce high-quality
edge-preserving filtering of the image efficiently performed in linear time.

Qualitative Analysis Similar to the case when we used a downscaled transformation of the input
image as conditional representation, the self VAE framework here also allows for different ways to
reconstruct an image. The qualitative results when we employ a sketch representation are visible
in Figure 11. To start with, we see that even though because of the sketch representation we lose
the texture of the image, we preserve not only the global information but also high-level details that
characterize each person. In this way, we let the generative model emphasise on these specifics at
its first step, which through the latent variable u, manages to reconstruct with tremendous accuracy.
This can be confirmed by visually comparing the images of the original compressed images (CM)
with those of the reconstructed ones. These great results hold also for the conditional reconstruction,
where the original sample (OG) is synthesised from conditioning on the original sketch representation
(CM). Furthermore, we gain further interpretation of the model through the reconstructions that use
only the latent variable u (RS1) and both latent variables (RS2). Given that both methods infer the
sketch image, the end results still preserve all detail concepts of the human portrait. However, they
are different in terms of the texture (colour) of the image, which is modelled through z. One the one
hand, in the first case its value is inferred through the sketch, and thus it produces the most probable
values. That is why we see on ground-truth images that incorporate unusual lighting, it outputs a
more natural outcome. On the other hand, in the second case, the latent codes of z are computed
given the original sample. And from the results, we can see that, indeed, all the information about
the texture of the image can be compressed into the latent z, as these reconstructions are identical
with the input ones. Additionally, the compressed generation (CG) process is alike to this of RS1 as
they both infer the texture but different as it uses the ground-truth sketch representation. It is worth
to note that the end result in both cases share the same quality, which is another indication that the
reconstructions of the sketch images are excellent.
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Figure 10: Architecture of our autoencoder. On the right, there are some basic buildings block of
the network. The notation as G’ on the Conv2D channels indicate the growth rate of the densely
connected network. The e indicates a random variable drawn from a standard Gaussian, which helps
us to make use of the reparametrization trick. Until z, we refer to this architecture as Encoder NN
and thereafter as Decoder NN. The former and the later form the building blocks to every model that
we train and evaluate.

A.4 INTERPOLATION THROUGH LATENT SPACES AND CONDITIONAL GENERATIONS

In Figure 12 we visualise i) interpolations through two ground-truth images through the latent code u
and ii) image reconstructions, where we keep the latent code u but varying all the others (z; and z3)

16



Under review as a conference paper at ICLR 2021

Compressed Compressed Conditional . . Conditional VAE
. . Reconstruction 1 Reconstruction 2 . .
Gi Reconstruction Reconstruction

Input Sample

sketch.

3lv

cale-’

i) selfVAE-downs.

ii) selfVAE - sketch

1 &"6"&"6"@"@ ) @ @ 5 @ 288
[=)[ f%][%]@%]%i%)%l&&&&&&ba

iii) VAE - RealNVP

yAhdRR AR RAARAE
| sssssssssssasf
&g 1S 1S 1S 1S S i1 1S G 1G g g vg

ii) Image generation given the latent variable u and sampling the latent codes of z;, z,.

Figure 12: Latent space interpolations and conditional generations of the selfVAEs.

of the 3-leveled self VAE architecture. Just like the previous cases, in the first case, we see that the
model incorporated a rich latent space U, which is responsible for the generation and construction of
the global structure of the image. Moving from one latent code u of a given image to another, we
obtain meaningful modifications of the image that result in images that share characteristics from
both of them. However, in the latter case, we see that we can alter only high-level features of the
image when we keep the values of u but vary the others; z; and zs. Interestingly, we see that given
that ground-truth image that is illustrated on the very left, we can sample different expressions and
characteristics of the same person, as the latent variable u is kept constant.

A.5 ADDITIONAL RESULTS

Additional results of reconstructions for CelebA are shown in Figure 13.
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ii) selfVAE 3-level downsample model reconstructions using; (a) First row: 1 latent code (u);
(b) Second row: 2 latent codes (u, z,); (c) Third row: all three latent codes (u, z, z,); Fourth row: latent code z; and y,
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iii) selfVAE 2-level sketch model reconstructions usmg, (a) First row: 1 latent code (u)
(b) Second row: 2 latent codes (u, z,).

Figure 13: Comparison on image reconstructions with different amount of sent information.
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