
Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Sec. 5.2.
(c) Did you discuss any potential negative societal impacts of your work? [No] There are

no obvious consequences stemming from this early research project.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [No] Code release
is complicated in the authors’ organization; a full release will happen on acceptance.
However, we release the PYPIBUGS along with relevant instructions in Appx. D.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appx. A.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] Due to cost of running experiments often enough to get
meaningful error bars.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See footnote 3.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We re-used cuBERT

code & models and cited Kanade et al. [15].
(b) Did you mention the license of the assets? [No] New dataset is drawn from thousands

of projects with individual licenses (though all are open source).
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

Supplemental material contains a metadata file of sources & script to download the
buggy source code. For licensing complexity reasons, we cannot easily redistribute this
code directly.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [No] Data are source code samples from GitHub.

(e) Did you discuss whether the data you are using/curating contains personally iden-
tifiable information or offensive content? [No] Data are source code samples from
GitHub.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

A Model Architectures

We implemented our models in PyTorch, using a shared codebase for GNN and GREAT models. The
shared code covers both the input modules (embedding tokens into vectors) and the subnetworks
used for bug localization and rewrite scoring.

In particular, the embedding of tokens uses a subtokenization strategy in which subtokens are em-
bedded separately, and the token embedding is obtained by using max pooling over the subtoken
embeddings. We have also experimented with alternative strategies (token-level embeddings and
character-level embeddings followed by 1D-CNNs to obtain a single representation), but found
subtokens to work best. We use a subtoken vocabulary of size 15000 and consider at most the first
6 subtokens of a token (dropping the remainder, if more exist), and an embedding dimension that
matches the hidden dimension d of the used GNN/GREAT architecture.

We discuss the details of the used GNN/GREAT models in the subsections below.

For localization, we use an architecture similar to pointer nets [19]. Let ` ∈ L be the potential
locations for rewrites, and r` ∈ Rd their corresponding representations as computed by the GNN/-
GREAT, and rNoBug the representation of the special NoBug location. We first compute a “location
query” as maximum over the projected representations of all considered locations, and then use a
simple 2-layer MLP to compute per-location scores s`:

q = max{Wqr` | ` ∈ L}
s` = Wmlp,2σ(Wmlp,1(r`‖q)).

Here, Wq ∈ Rd×d is a learnable projection and Wmlp,2 ∈ R1×d,Wmlp,1 ∈ Rd×d are the learnable
weights of our MLP. We can then model our distribution ploc from Sec. 3 by a softmax over these
scores.

To model the distribution prew, we use the rewrite-scoring functions described in Sec. 4 followed by
a softmax.

For all models, we use dropout between message passing/GREAT layers with rate 0.2, and train using
the Adam optimizer with learning rate 1e-4 and a linear warm-up of 800 steps, additionally clipping
gradient norms at 0.5. Bug selectors sample the distribution S(·) with an epsilon-greedy policy, with
epsilon 0.02.

A.1 GNN Architecture

Our GNN architecture follows a standard message-passing graph neural network [11], i.e. each
message passing layer is defined as

h(t+1)
vi = f (t)

h(t)
vi ,

⊕
∀vj :vi

k→vj

(
m(t)

(
h(t)
vi , k,h

(t)
vj

)) .

Let H(t) = [h(t)
v0 , · · · ,h

(t)
v|V |

] be a |V | × D matrix containing the output node states for all nodes
vi ∈ V we can write the GNN computation as H(t+1) = GNN(H(t)).

Our specific GNN message passing layers uses the structure defined as follows. Messages are com-
puted as

mt
(
h(t)
vi , k,h

(t)
vj

)
=W

(t)
k

[
h(t)
vi ,h

(t)
vj

]
, (3)

i.e. a linear layer of the concatenation of the source and target node representations at time t and
W

(t)
k is a edge type-specific linear layer. We use element-wise max pooling operator as

⊕
. The node

update function is defined as

f (t)(·) = tanh
(
W

(t)
f · LAYERNORM (GELU(m)) + bf

)
,

where Wf and bf are learnable parameters and m is the output of the aggregation of the messages
in Eq. 3 Backwards edge types are added for each existing edge type k, as in Li et al. [18].

14

Table 7: Accuracies on VarMisuse data of Hellendoorn et al. [13].

Localization (on buggy data) Localization (on non-buggy data) Repair

GREAT-6L [13] 86.14% 88.98% 85.85%
GREAT-6L (ours) 86.10% 93.33% 89.69%

GREAT-10L [13] 87.61% 89.72% 87.41%
GREAT-10L (ours) 89.04% 93.47% 91.84%

Table 8: Results of GREAT-based PYBUGLAB models in fully supervised setting.

Joint Loc Repair

GREAT-5L 48.63% 59.30% 75.66%
GREAT-6L 46.73% 57.68% 74.90%
GREAT-7L 43.33% 54.08% 73.20%
GREAT-8L 51.04% 61.87% 76.26%
GREAT-9L 47.91% 58.84% 75.10%
GREAT-10L 47.86% 58.67% 75.28%

We use 8 GNN layers like the one discussed above but with residual layers, i.e.

H(4) = GNN4

([
H(0),GNN3

(
GNN2

(
GNN1

(
H(0)

)))])
H(8) = GNN8

([
H(4),GNN7

(
GNN6

(
GNN5

(
H(4)

)))])
,

where the concatenations of the residual layers is over the node vectors. Finally, we set the represen-
tation of each entity vi as rvi = h(8)

vi .

We use a node hidden size of 256 and a minibatch size up to 300 graphs with no more than 10000
nodes in total.

A.2 GREAT Architecture

We re-implemented GREAT [13] in PyTorch, following the paper and consulting the TensorFlow
reference implementation where necessary. We verified that our implementation matches the ref-
erence implementation by using the model to train for the VarMisuse task defined for the dataset
released by Hellendoorn et al. [13]. To this end, we considered two model configurations (6 and 10
layers, both with hidden representation size 512). The results are shown in Tbl. 7, indicating that our
implementation matches (and in some regards, even outperforms) the reference implementation.

However, in our main PYBUGLAB experiments, we found that our GREAT models were usually
outperformed by their GNN equivalents, contradicting earlier results by Hellendoorn et al. [13].
We tried to tune hyperparameters (such as number of layers) on the fully supervised bug detection
detection dataset (row “Supervised” in Tbl. 1), first varying the number of layers from 5 to 10. This
yielded the results shown in Tbl. 8. From the lack of a trend in these results we concluded that model
capacity is not a limiting factor, and our reproduction results on the original GREAT data indicated
that no implementation bugs in the GREAT layers needed to be suspected. As everything but the
core code entity representation subnetwork is shared with the GNN models, which do not show such
behavior, we ruled out implementation issues overall. Finally, we experimented with methods to
stabilize training of deep Transformer networks such as ReZero [5] and LayerScale [29], and varying
where LayerNorm is applied (before/after each sublayer). All of these experiments did not show
significant improvement.

Consequently, our main results in Sec. 5 are reported on the GREAT configuration performing best
in the fully supervised setting; yielding 8 layers with a hidden representation size of 512, 8 heads,
and an intermediate size of 2048. During training, we have set the the maximum sequence length to
400 and used a minibatch size of 20.

15

Table 9: List of Entity (Node) Types in PYBUGLAB Representation.

Entity Type Description

Token A token in the Python.
SyntaxNode An AST node as defined in libCST’s concrete syntax trees.
Type The fully-qualified name of a type inferred by Jedi.
Documentation The full docstring comment of an invoked method.
Symbol A symbol (variable, function, etc.) in Python’s symbol table.
Subtoken A subtoken of an identifier, deterministically split on camelCase and

pascal case.
FormalArgName The name of a formal argument of a method declaration.

Table 10: List of Relationship (Edge) Types in PYBUGLAB Representation.

Relation Type Description

NextToken Links two consecutive Token nodes.
SyntaxChild Links a parent SyntaxNode to its child SyntaxNode or Token.
SyntaxNextSibling Links a SyntaxNode to its subsequent sibling.
Type Links a Symbol to its candidate type, if one has been inferred.
CallDoc Links a method invocation SyntaxNode to its candidate Documenta-

tion.
FormalArg Links an argument SyntaxNode to its FormalArgName.
ControlFlowNext Link an statement SyntaxNode to a potentially succeeding statement

SyntaxNode in terms of control flow. When branching occurs, a state-
ment my have multiple links to other statements.

AssignedFrom Links a target value SyntaxNode to the expression SyntaxNode syntax
node.

ReturnsFrom Links a function definition SyntaxNode to a return statement SyntaxN-
ode it contains.

YieldsFrom Links a generator definition SyntaxNode to a yield statement SyntaxN-
ode it contains.

OccurenceOf Links a variable Token or attribute SyntaxNode to the Symbol node it
refers to.

LastMayUse Links a usage of a variable Token or attribute SyntaxNode to all the
potential immediately previous usages.

LastMayWrite Links a usage of a variable Token or attribute SyntaxNode to all the
last potential write operations.

MayFinalUseOf Links any potential last usage of a variable Token or attribute SyntaxN-
ode to its Symbol node.

B Python Code Representation

To extract the entities and relationships we use libCST and Jedi that either directly provide the
necessary data or allow to compute them. Tbl. 9 briefly describes the included entities and Tbl. 10
the relationships among the entities. Most of those entities and relationships are first used or inspired
from Raychev et al. [25], Allamanis et al. [3, 4], Wei et al. [33], Cvitkovic et al. [7].

For the synthetic code snippet of Fig. 2, Fig. 4 shows the entities and relationship within that snippet.
The signature of bar is set to def bar(formal bar arg1, formal bar arg2) for illustration
purposes.

C PYBUGLAB Evaluation Metrics

Fig. 5 shows the definitions of the evaluation metrics used in this work.

16

https://libcst.readthedocs.io/
https://jedi.readthedocs.io/

Tokens

FunctionDef

IndentedBlock

Child.body

Parameters

Child.params

ComparisonTarget

ControlFlowNext

Return

ReturnsFrom

Return

ReturnsFrom

foo

OccurrenceOf

(

Childfoo

Child.name

)

Child

:

Child

<INDENT>

Child

def
Child

SimpleStatementLine

Child.bodyIf

Child.body

SimpleStatementLine

Child.body

If

Child.body

Sibling

Param

Child.params

Param

Child.params

Param

Child.params

Siblingb

Child.name

,

Child.comma

=

Child.equal

0

Child.default

c

Child.name

Sibling

,

Child.comma

a
Child.name

Sibling

Assign

Child.body

Sibling

IndentedBlock

Child.body Comparison

Child.test

if

Child

:

Child

<INDENT>

Child

Child.body

Sibling

BooleanOperation

Child.test

IndentedBlock

Child.bodyif

Child

:

Child

<INDENT>

Child

SimpleStatementLine

Child.body

Sibling

Child.comparisonsa

Child.left

Call

ControlFlowNext

ComparisonTarget

ControlFlowNext

in

Child.operator

b

Child.comparator

AugAssign

Child.body

Child.value

ControlFlowNext

+=

Child.operatorc

Child.target

ControlFlowNext

Arg

Child.args

Arg

Child.args figs.sampleSnippet.sampleSnippet.bar

CandidateCall

bar
Child.func

(

Child

)

Child

Sibling

formal_bar_arg1

MayFormalName

,

Child.commab

Child.value

formal_bar_arg2

MayFormalName

c

Child.value

Comparison

Child.value AssignTarget

Child.targets

ComparisonTarget

ControlFlowNext

=

Child

Child.comparisons

c

Child.left

SiblingAssignedFrom

c_is_neg

Child.target

foo.<locals>.c_is_neg

OccurrenceOf

<DEDENT>

Child

c_is_neg

Child

c_is_neg

LastMayWrite

ControlFlowNext

<

Child.operator

0

Child.comparator

Sibling

Comparison

Child.right

ControlFlowNext

ComparisonTarget

ControlFlowNext

Child.left

or

Child.operator

SimpleStatementLine

Child.body

Child.comparisons

a

Child.left

ControlFlowNext

int

Child.comparatoris

Child.operator

Child.body

Tuple

Child.value

return

Child

Element

Child.elements

Element

Child.elements

Sibling

True

Child.value

,

Child.comma

c

Child.value

Tuple

Child.value

<DEDENT>

Child

return

Child

Element

Child.elements

Element

Child.elements

Sibling

Comparison

Child.value

,

Child.comma

c

Child.value

Child.comparisons

c

Child.left

Sibling

ControlFlowNext

>

Child.operator

1

Child.comparator

foo.<locals>.a

foo.<locals>.b

foo.<locals>.c

bar

builtins.int

builtins.True

OccurrenceOf

NextToken Sibling

LastMayWrite

LastMayWrite

NextToken

NextTokenSibling

NextToken

SiblingNextToken

SiblingOccurrenceOf MayFinalUseOfNextToken

NextToken Sibling

NextToken

NextToken

NextToken

SiblingNextToken

OccurrenceOfNextToken

OccurrenceOf MayFinalUseOf

<DEDENT>

NextToken

NextToken

NextToken

NextToken

OccurrenceOf

NextMayUse

NextToken

NextToken

OccurrenceOfNextToken Sibling

NextToken

AssignedFrom

OccurrenceOf

NextTokenSibling

LastMayWrite

LastMayWrite

LastMayWrite

LastMayWrite

LastMayWrite

Sibling

OccurrenceOf

NextToken

NextMayUse

NextMayUse

NextToken

NextToken

NextToken

NextToken

NextToken Sibling

OccurrenceOfMayFinalUseOf

NextMayUse

NextToken

NextToken

OccurrenceOfMayFinalUseOfNextToken Sibling

Sibling

OccurrenceOf MayFinalUseOfNextToken

NextToken Sibling

NextToken

NextToken

OccurrenceOf

NextTokenSibling

OccurrenceOfMayFinalUseOfNextToken Sibling

Sibling

NextToken

NextToken

NextToken

NextToken

OccurrenceOf

NextToken Sibling

LastMayWrite

LastMayWrite

NextToken

NextToken

NextTokenSibling

NextToken

Sibling

OccurrenceOf

NextToken

NextMayUse

NextToken

OccurrenceOfMayFinalUseOf

NextToken

NextToken

Sibling

OccurrenceOf

NextMayUse

NextToken

NextToken

NextToken

Figure 4: The graph representation of the entities and relationships for the snippet of Fig. 2. Please
zoom this pdf. 17

Detection False Warnings (DFW) = PredictedLoc 6= GroundLoc AND PredictedLoc6=NoBug
Detection True Warnings (DTW) = PredictedLoc = GroundLoc AND GroundLoc 6=NoBug

False Detection Rate (FDR) = DFW / (DFW + DTW)
Detection Precision (DPr) = 1 - FDR

Detection Recall (DRe) = DTW / (# buggy samples)
Repair Accuracy Given Location (RAcc) = (# correct rewrite predictions) / (# buggy samples)

Detect and Repair True Warning (TW) = LTW AND PredictedRewrite = GroundRewrite
Detect and Repair False Warning (FW) = DFW OR (PredictedLoc6=NoBug AND PredictedRewrite

6= GroundRewrite)
Detect and Repair Precision (Pr) = TW / (TW + FW)

Detect and Repair Recall (Re) = TW / (# buggy samples)

Figure 5: Evaluation Metrics for Bug Detection and Repair

D PYPIBUGS Description

We collected a dataset, called PYPIBUGS, by crawling all commits across all PyPi python packages
found in the libraries.io v1.6.0 dataset [17]. If any of the rewrites of Sec. 4.1 yields a change that is
identical (modulo formatting and comments) to the observed commit, we consider it a candidate bug
fix.

This yielded around 9000 changes. Note that here, to increase the precision of the dataset we require
that a change is the sole code change within a file of code. This excludes cases where more than one
bug-fixing change happened within a file, but also removes many changes that are not bug fixes.

The collected commits, along with the commit message, were then shown to one of the authors
of this paper to filter out any non-bug fixing snippets. The annotation guideline was to look at the
diff and the commit message and reject it if it is does not look like a bug-fixing commit. Through
this process 2377 changes remain. The human annotation process removed various changes that
mainly concerned configuration-like “constants”, mainly literals such as changing the verbosity level,
changing the default values of flags and arguments, turning off or on different parts of the software, etc.
It also removed other deployment-related artifacts such as the version number of the software. Finally,
we checked out each software project and attempted to extract our different code representations,
which removed another 3 samples due to parsing issues. The result is PYPIBUGS, a highly sanitized
dataset of 2374 samples representing a large variety of real-world “stupid simple bugs”.

Note that PYPIBUGS differs from ManySStUBs [16] in many ways. First our dataset only includes
Python code exposing the issues that can be represented by the different types of rewrites discussed
in Sec. 4.1. It is also aims to achieve high precision, by looking at sole changes within a single file
and commit and using manual annotation to filter changes that do not fix bugs. The breakdown of
the different kinds of bugs in the dataset follows:

Table 11: Kinds of Bugs in PYPIBUGS

Bug Kind Num Pct (%)

Argument Swapping 283 11.9
Wrong Assignment 45 1.9
Wrong Binary Operator 81 3.4
Wrong Boolean Operator 192 8.1
Wrong Comparison Operator 407 17.1
Wrong Literal 88 3.7
Variable Misuse 1278 53.8

Total 2374 (100%)

Replication of dataset Due to licensing concerns, we cannot release the raw data. Instead, we
provide the GitHub git URLs of the projects along with the commit SHAs, filepaths, and bug types as
a jsonl file. Anyone wishing to replicate the dataset can do so by cloning the projects and looking
for the appropriate commits. We also provide a Python script in the supplementary material. The

18

https://libraries.io

script automates the whole cloning and checkout process, but requires the user to implement the
visit buggy code and visit fixed code with code extracting the appropriate representation of
the code for each of the bugs in PYPIBUGS.

E RANDOMBUGS Description

The following table contains the statistics per kind of bug for the the RANDOMBUGS dataset.

Table 12: Kinds of Bugs in RANDOMBUGS

Bug Kind Num Pct (%)

Argument Swapping 58459 7.7
Wrong Assignment 58821 7.7
Wrong Binary Operator 16848 2.2
Wrong Boolean Operator 15070 2.0
Wrong Comparison Operator 57037 7.5
Wrong Literal 80025 10.5
Variable Misuse 405950 53.3
NoBug 69235 9.1

Total 761445 (100%)

F Additional Evaluation Results

Some additional evaluation results are included in this appendix.

F.1 Localization & Repair Assuming Code is Buggy

In this subsection, we mask out the NoBug option for both the GNN and GREAT models and ask
these models to localize and repair bugs only in buggy code. The results are shown in Tbl. 13.

G Detected Bugs in Open-Source Projects

The following real-life bugs were detected by PYBUGLAB and a pull request was submitted.

G.1 Bug in spulec/moto

@@ -45,7 +45,7 @@ def describe_identity_pool(self, identity_pool_id):
identity_pool = self.identity_pools.get(identity_pool_id, None)

Table 13: Localization (%) per bug kind for the PYBUGLAB +Aug models when masking out the
NoBug option. This is similar to Tbl. 3 but only buggy examples are input to the models and they are
disallowed to predict NoBug. Note that repair results in Tbl. 3 are intact.

RANDOMBUGS PYPIBUGS
Bug Type GNN GREAT GNN GREAT

Argument Swapping 86.5 72.1 41.0 39.3
Wrong Assign Op 92.6 95.5 20.0 18.6
Wrong Binary Op 84.7 81.7 33.3 45.1
Wrong Boolean Op 74.3 49.3 32.8 24.7
Wrong Comparison Op 85.4 84.0 41.3 46.5
Wrong Literal 73.8 72.3 29.5 24.3
Variable Misuse 85.5 80.3 37.9 40.1
All Bug Kinds 84.9 79.6 37.6 39.0

19

if not identity_pool:
- raise ResourceNotFoundError(identity_pool)
+ raise ResourceNotFoundError(identity_pool_id)

response = json.dumps(
{

Pull request: https://github.com/spulec/moto/pull/3582 (Merged)

G.2 Bug in apache/tinkerpop

@@ -64,7 +64,7 @@ def __init__(self, partition_key=None, write_partition=None, read_partitions=Non
self.configuration["partitionKey"] = partition_key

if write_partition is not None:
self.configuration["writePartition"] = write_partition

- if write_partition is not None:
+ if read_partitions is not None:

self.configuration["readPartitions"] = read_partitions
if include_meta_properties is not None:

self.configuration["includeMetaProperties"] = include_meta_properties

Pull request: https://github.com/apache/tinkerpop/pull/1379 (Merged)

G.3 Bug in certbot/certbot

@@ -166,7 +166,7 @@ def probe_sni(name, host, port=443, timeout=300, # pylint: disable=too-many-argu
" from {0}:{1}".format(

source_address[0],
source_address[1]

-) if socket_kwargs else ""
+) if any(source_address) else ""
)
socket_tuple = (host, port) # type: Tuple[str, int]
sock = socket.create_connection(socket_tuple, **socket_kwargs) # type: ignore

Pull request: https://github.com/certbot/certbot/pull/8605 (Merged)

Note that here PYBUGLAB detected a variable misuse bug, however the repair was more nuanced
that replacing socket_kwargs with source_address.

G.4 Bug in Polyconseil/aioamqp

@@ -305,7 +305,7 @@ def _close_channels(self, reply_code=None, reply_text=None, exception=None):
if asyncio.iscoroutinefunction(self._on_error_callback):

asyncio.ensure_future(self._on_error_callback(exception), loop=self._loop)
else:

- self._on_error_callback(exceptions.ChannelClosed(exception))
+ self._on_error_callback(exception)

for channel in self.channels.values():
channel.connection_closed(reply_code, reply_text, exception)

Pull request: https://github.com/Polyconseil/aioamqp/pull/224 (Open)

G.5 Bug in apache/beam

@@ -636,7 +636,7 @@ def test_track_pcoll_unbounded(self):
pcoll2 = pcoll1 | ’do1’ >> FlatMap(lambda x: [x + 1])
pcoll3 = pcoll2 | ’do2’ >> FlatMap(lambda x: [x + 1])
self.assertIs(pcoll1.is_bounded, False)

- self.assertIs(pcoll1.is_bounded, False)
+ self.assertIs(pcoll2.is_bounded, False)

self.assertIs(pcoll3.is_bounded, False)

def test_track_pcoll_bounded(self):

20

https://github.com/spulec/moto/pull/3582
https://github.com/apache/tinkerpop/pull/1379
https://github.com/certbot/certbot/pull/8605
https://github.com/Polyconseil/aioamqp/pull/224

Pull request: https://github.com/apache/beam/pull/13761 (Merged)

G.6 Bug in sarugaku/requirementslib

@@ -487,15 +487,13 @@ def get_dependencies_from_index(dep, sources=None, pip_options=None, wheel_cache
session, finder = get_finder(sources=sources, pip_options=pip_options)
dep.is_direct = True
requirements = None

- setup_requires = {}
with temp_environ(), ExitStack() as stack:

if not wheel_cache:
wheel_cache = stack.enter_context(_get_wheel_cache())

os.environ["PIP_EXISTS_ACTION"] = "i"
if dep.editable and not dep.prepared and not dep.req:

setup_info = SetupInfo.from_ireq(dep)
results = setup_info.get_info()

- setup_requires.update(results["setup_requires"])
requirements = set(results["requires"].values())

else:
results = pip_shims.shims.resolve(dep)

Pull request: https://github.com/sarugaku/requirementslib/pull/282 (Open)

Note that the bug detected by PYBUGLAB is caused by dead/unused code with this pull request
removes.

G.7 Bug in CiscoDevNet/webexteamssdk

@@ -233,7 +233,7 @@ def update(self, roomId, title, **request_parameters):
"""
check_type(roomId, basestring)

- check_type(roomId, basestring)
+ check_type(title, basestring)

put_data = dict_from_items_with_values(
request_parameters,

Pull request: https://github.com/CiscoDevNet/webexteamssdk/pull/150 (Merged)

G.8 Bug in percolate/redset

@@ -250,7 +250,7 @@ def _pop_items(self, num_items):
try:

res.append(self._load_item(item_str))
except Exception:

- log.exception("Could not deserialize ’%s’" % res)
+ log.exception("Could not deserialize ’%s’" % item_str)

return res

Pull request: https://github.com/percolate/redset/pull/12 (Open)

G.9 Bug in pytorch/pytorch

if extra_inputs:
extra_input_names, extra_input_sizes = zip(*extra_inputs)

- extra_inputs = _RectifyNames(extra_input_names)
+ extra_input_names = _RectifyNames(extra_input_names)

extra_inputs = zip(extra_input_names, extra_input_sizes)

Issue: https://github.com/pytorch/pytorch/issues/51410 (Open, Triaged)

G.10 Two Bugs in saltstack/salt

@@ -494,7 +494,7 @@ def enable(**kwargs):
if "enabled" in beacons and beacons["enabled"]:

21

https://github.com/apache/beam/pull/13761
https://github.com/sarugaku/requirementslib/pull/282
https://github.com/CiscoDevNet/webexteamssdk/pull/150
https://github.com/percolate/redset/pull/12
https://github.com/pytorch/pytorch/issues/51410

ret["result"] = True
ret["comment"] = "Enabled beacons on minion."

- elif event_ret:
+ elif "enabled" in beacons and not beacons["enabled"]:

ret["result"] = False
ret["comment"] = "Failed to enable beacons on minion."

else:

@@ -546,7 +546,7 @@ def disable(**kwargs):
if "enabled" in beacons and not beacons["enabled"]:

ret["result"] = True
ret["comment"] = "Disabled beacons on minion."

- elif event_ret:
+ elif "enabled" in beacons and beacons["enabled"]:

ret["result"] = False
ret["comment"] = "Failed to disable beacons on minion."

else:

Pull request: https://github.com/saltstack/salt/pull/59381 (Open)

G.11 Bug in mahmoud/botons

@@ -286,7 +286,7 @@ class DeferredValue(object):
"""
def __init__(self, func, cache_value=True):

self.func = func
- self.cache_value = True
+ self.cache_value = cache_value

self._value = _UNSET

def get_value(self):

Pull request: https://github.com/mahmoud/boltons/pull/277 (Merged)

G.12 Bug in geopy/geopy

@@ -426,8 +426,6 @@ def testContentAttrib(selector, key):
for key, value in iter(el.items()):

if value is not None:
place[key] = value.text

- if value.text is None:
- place[key] = None

else:
place[key] = None

Pull request: https://github.com/geopy/geopy/pull/469 (Merged)

G.13 Bug in allure-framework/allure-python

@@ -51,7 +51,7 @@ def parse_tag(tag, issue_pattern=None, link_pattern=None):
if issue_pattern and kind == "issue" and not value.startswith("http"):

value = issue_pattern.format(value)
if link_pattern and kind == "link" and not value.startswith("http"):

- value = issue_pattern.format(value)
+ value = link_pattern.format(value)

return Link(type=kind, name=name or value, url=value)

if __is(kind, LabelType):

Fixed in-between: https://github.com/allure-framework/allure-python/commit/
34a91fa1f32e9f5279f14a595cb5401469b75ad8

G.14 Bug in qiniu/python-sdk

@@ -38,7 +38,7 @@ def set_default(

22

https://github.com/saltstack/salt/pull/59381
https://github.com/mahmoud/boltons/pull/277
https://github.com/geopy/geopy/pull/469
https://github.com/allure-framework/allure-python/commit/34a91fa1f32e9f5279f14a595cb5401469b75ad8
https://github.com/allure-framework/allure-python/commit/34a91fa1f32e9f5279f14a595cb5401469b75ad8

if default_api_host:
_config[’default_api_host’] = default_api_host

if default_uc_host:
- _config[’default_uc_host’] = default_api_host
+ _config[’default_uc_host’] = default_uc_host

if connection_retries:
_config[’connection_retries’] = connection_retries

if connection_pool:

Fixed in-between: https://github.com/qiniu/python-sdk/commit/
71cf09cc04060524b4835a9b5d45a8ae3a4483c6

23

https://github.com/qiniu/python-sdk/commit/71cf09cc04060524b4835a9b5d45a8ae3a4483c6
https://github.com/qiniu/python-sdk/commit/71cf09cc04060524b4835a9b5d45a8ae3a4483c6

