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Implementation details. We use η0 = 0.01 to adjust the KNN patch resolution. To obtain the
anchor priors, we set the maximum radius as R = 0.2 (i.e. 20 × η0), and the splitting steps along
different axes as ∆ρ = 0.02 (i.e. 2 × η0), ∆θ = π

6 ,∆ϕ = π
6 . It results in a total number of 720

anchor points. We apply a multiplier of β = 16 for the graph convolution, a level of L = 16 for the
positional encoding, and a ratio of 1:20 between positive and negative samples in Eq. (8). We set
λ = 1 in the final loss computation. To train the network, we sample KNN patches with K = 50
randomly from the point cloud. Standard geometric transformations such as scaling, rotating, noisy
perturbation, are applied to augment the point cloud. We use Adam optimizer (Kingma & Ba 2015)
with an initial learning rate of 0.001, which is decayed by 0.5 per 8 × 104 iterations. Our batch
size for the KNN patches is 400. The number of training parameters in the proposed CircNet is
7.5 million (7.5M). See Fig. A for the training details of our detection network. To demonstrate the
quality of our local predictions/triangulations, we report additional metrics in terms of the average
accuracy (mAcc) and average intersection-over-union (mIoU) of the KNN patches. Per triangle
forms a prediction element in those computations.

Surface quality. We evaluate the overall quality of each reconstructed mesh using Chamfer Dis-
tance (CD1), squared Chamfer (CD2) and F-Score (F1), and the quality of their surface normals
with Normal Consistency (NC) and Normal Reconstruction error in degrees (NR). Preserving sharp
edges is also important for the surface reconstruction. We therefore evaluate the Edge Chamfer Dis-
tance (ECD1) and Edge F-score (EF1) of the reconstructed meshes. Note that the computations of
metrics CD1, CD2 and F1 require points to be sampled densely on the entire surface, while those
of ECD1 and EF1 utilizes only points sampled near the edges and corners. We follow the conven-
tion (Sharp & Ovsjanikov 2020) to sample 105 points on the ground-truth and reconstructed meshes
for evaluating the quality of shapes. While for the evaluation of large-scale scenes in Matterport3D,
one million points are sampled for better coverage of the surface.

For explicity, we provide the definitions of Chamfer distance and F-score below. Given a ground-
truth mesh T and its reconstructed mesh T̂ , we sample the same number of points (e.g., 105) uni-
formly on each of them. Let the resulted point clouds be Q and Q̂, respectively. The chamfer
distance (CD1) is calculated as

CD1(Q, Q̂) =
1

|Q|
∑
x∈Q

min
y∈Q̂

∥x− y∥2 +
1

|Q̂|

∑
x∈Q̂

min
y∈Q

∥x− y∥2. (1)

The first term measures completeness of the reconstructed mesh, while the second term measures
its accuracy. For the squared chamfer distance (CD2), ∥x − y∥2 is replaced as ∥x − y∥22. The
computation of F-score follows its standard definition, i.e.,

F1 =
2× recall× precision

recall + precision
. (2)

The recall and precision are calculated as

recall =
1

|Q|
∑
x∈Q

1
(
(min
y∈Q̂

∥x− y∥2) < ϵ
)
, (3)

precision =
1

|Q̂|

∑
x∈Q̂

1
(
(min
y∈Q

∥x− y∥2) < ϵ), (4)

where ϵ is small threshold for the distance and 1(·) is the indicator function.

Efficiency. In addition to surface quality, a triangulation method is expected to reconstruct high-
quality mesh in short time. For efficiency comparison, we report the total reconstruction time of
each method on the same machine with one NVIDIA GeForce RTX 2080Ti GPU and AMD Ryzen
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Threadripper 2990WX CPU. The results of alpha-shapes and ball-pivot are computed based on the
latest ‘pymeshlab’ (i.e. 2022.2.post2) for Python. To be more specific, suppose the bounding box
diagonal of a point cloud is lD. We report the performance of α-shapes using α = 3% × lD and
α = 5% × lD. For ball-pivoting, the radius is set to be 1% × lD. The results of PSR are produced
using ‘open3d’ (i.e. 0.15.2+c074f5d) by setting depth to 9.

More results on robustness. We show the quantitative comparisons of different learning-based
triangulation methods on the ABC point clouds that are uniform, different levels of noise, and non-
uniform distributions in Table A, Table B, Table C, Table D, Table E, respectively. We also report
their performance on data that are sampled under random uniformity in Table F.

More visualizations. Figure B shows the reconstructed meshes of different methods for an-
other building in Matterport3D. The proposed CircNet consistently produces mesh of high qual-
ity. We also compare the reconstruction quality of different methods, using complex shapes in the
Thingi10K dataset (Zhou & Jacobson 2016). It can be seen from Fig. C that the learning-based
triangulation methods, i.e., DSE, PointTriNet and the proposed CircNet are all robust to noise. For
the non-uniform point cloud, only PointTriNet and the proposed CircNet reconstruct the complete
underlying shape without chopping out the 8 thin tails. The other methods either reconstruct an in-
complete mesh or overcomplete mesh. The number right below each mesh indicates the percentage
of non-manifold edges of each specific mesh. Figure D shows a further example.

Hyperparameters. We evaluate the effect of neighborhood size (K) and the number of predictions
per anchor cell (s) on our model performance. Specifically, we compare the model performance of
K = 50 to that of K ∈ {25, 100, 200}. It can be seen from Table G that K = 100 and K = 200
perform similarly to K = 50, while K = 25 results in performance drop. The reason is that K = 25
is too small to cover the 1-ring neighborhood. Given similar performance, smaller K is preferred for
better efficiency. As for s, we do not recommend settings of s > 2 because dominantly, each anchor
cell is observed to be populated by at most two ground-truth circumcenters. We hence compare the
model performance of s = 2 to that of s = 1 only. It shows that s = 2 performs slightly better on
the overall reconstruction quality.
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Figure A: Training and test curves. The mAcc and mIoU metrics are computed based on per triangle.
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Metrics: CD1/CD2/NC/NR 
(b) DSE:


0.106/0.075/0.894/14.798

(d) IER:

0.105/0.072/0.901/13.847

(e) CircNet (Proposed):

0.103/0.066//0.894/14.714

(c) PointTriNet:

0.107/0.078/0.894/14.893

32.3 minutes 23.5 minutes

15.9 minutes 11.6 minutes

Figure B: Reconstructed scene meshes of different learning-based triangulation methods. We com-
pare their surface quality using the metrics CD1, CD2, NC, and NR. It can be seen that the mesh of
CircNet has the lowest Chamfer distances.
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Table A: Poisson.

Method
Surface Quality

overall sharp
CD1(×102)↓ CD2(×105)↓ F1↑ NC↑ NR↓ ECD1(×102)↓ EF1↑

α-shapes-3% 0.421 2.460 0.853 0.948 7.153 4.067 0.434
α-shapes-5% 0.536 5.844 0.834 0.942 7.650 4.462 0.442
ball-pivot (+n) 0.286 0.592 0.938 0.975 4.279 1.514 0.607
DSE 0.276 0.524 0.952 0.981 3.560 1.124 0.667
IER 0.282 0.572 0.945 0.981 3.300 1.065 0.718
PointTriNet 0.278 0.532 0.950 0.978 3.921 1.372 0.667
CircNet (Prop.) 0.278 0.533 0.949 0.976 4.033 1.281 0.660

Table B: Noise level: σ = 0.1.

Method
Surface Quality

overall sharp
CD1(×102)↓ CD2(×105)↓ F1↑ NC↑ NR↓ ECD1(×102)↓ EF1↑

α-shapes-3% 0.453 2.501 0.840 0.948 9.697 4.579 0.398
α-shapes-5% 0.564 5.746 0.822 0.943 9.465 5.301 0.397
ball-pivot (+n) 0.339 0.807 0.892 0.963 10.260 2.392 0.544
DSE 0.326 0.711 0.910 0.970 9.541 1.187 0.639
IER 0.348 0.849 0.881 0.967 9.242 1.413 0.655
PointTriNet 0.328 0.718 0.908 0.966 9.899 1.581 0.634
CircNet (Prop.) 0.328 0.720 0.908 0.965 10.053 1.500 0.630

Table C: Noise level: σ = 0.2.

Method
Surface Quality

overall sharp
CD1(×102)↓ CD2(×105)↓ F1↑ NC↑ NR↓ ECD1(×102)↓ EF1↑

α-shapes-3% 0.542 3.031 0.745 0.942 11.667 6.034 0.315
α-shapes-5% 0.676 6.896 0.716 0.938 11.136 6.918 0.300
ball-pivot (+n) 0.429 1.347 0.783 0.931 16.574 4.901 0.390
DSE 0.415 1.226 0.797 0.937 16.234 2.695 0.515
IER 0.446 1.439 0.761 0.945 13.702 3.327 0.500
PointTriNet 0.416 1.234 0.795 0.934 16.430 3.519 0.500
CircNet (Prop.) 0.419 1.245 0.793 0.931 16.735 4.396 0.467

Table D: Noise level: σ = 0.3.

Method
Surface Quality

overall sharp
CD1(×102)↓ CD2(×105)↓ F1↑ NC↑ NR↓ ECD1(×102)↓ EF1↑

α-shapes-3% 0.653 3.965 0.622 0.934 13.471 6.764 0.260
α-shapes-5% 0.798 8.036 0.562 0.932 12.529 7.402 0.245
ball-pivot (+n) 0.524 2.127 0.697 0.898 21.351 6.819 0.293
DSE 0.517 2.033 0.697 0.883 23.386 6.311 0.325
IER 0.545 2.235 0.668 0.929 16.030 5.682 0.340
PointTriNet 0.517 2.038 0.698 0.888 22.738 6.353 0.324
CircNet (Prop.) 0.523 2.076 0.689 0.880 23.287 6.790 0.294

Table E: Non-uniform data.

Method
Surface Quality

overall sharp
CD1(×102)↓ CD2(×105)↓ F1↑ NC↑ NR↓ ECD1(×102)↓ EF1↑

α-shapes-3% 0.475 3.407 0.825 0.936 8.875 4.760 0.367
α-shapes-5% 0.543 5.723 0.820 0.939 8.308 4.987 0.383
ball-pivot (+n) 1.237 43.581 0.653 0.929 9.288 8.538 0.418
DSE 0.353 1.325 0.891 0.955 7.238 2.842 0.495
IER 0.542 6.629 0.833 0.960 6.044 4.980 0.547
PointTriNet 0.342 1.103 0.894 0.956 7.357 2.535 0.514
CircNet (Prop.) 0.395 1.852 0.858 0.942 8.693 3.490 0.457
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Table F: Random.

Method
Surface Quality

overall sharp
CD1(×102)↓ CD2(×105)↓ F1↑ NC↑ NR↓ ECD1(×102)↓ EF1↑

α-shapes-3% 0.424 2.514 0.851 0.946 7.358 4.248 0.380
α-shapes-5% 0.533 5.750 0.834 0.942 7.634 4.969 0.392
ball-pivot (+n) 0.356 1.327 0.871 0.967 5.471 1.987 0.554
PointTriNet 0.284 0.565 0.942 0.973 4.752 1.863 0.604
IER 0.289 0.599 0.940 0.974 4.475 1.433 0.640
DSE 0.282 0.555 0.945 0.976 4.254 1.380 0.601
CircNet (Prop.) 0.316 0.815 0.905 0.963 5.699 2.373 0.553

Table G: Effects of different hyperparameters on the performance.

Method
Surface Quality

overall sharp
CD1(×102)↓ CD2(×105)↓ F1↑ NC↑ NR↓ ECD1(×102)↓ EF1↑

k = 25, s = 2 0.285 0.548 0.949 0.983 2.012 0.786 0.917
k = 50, s = 1 0.285 0.636 0.950 0.985 1.768 0.686 0.925
k = 50, s = 2 0.284 0.545 0.950 0.985 1.778 0.712 0.924
k = 100, s = 2 0.284 0.544 0.950 0.985 1.766 0.691 0.925
k = 200, s = 2 0.284 0.545 0.950 0.985 1.776 0.697 0.925
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Figure C: Reconstructed surface shapes of different methods for noisy and non-uniform point clouds.
Among those methods, ball-pivot, DSE, IER and the proposed CircNet guarantee an edge-manifold
surface as output, while the other methods produce non-manifold meshes. We show the percentage
of non-manifold edges of each reconstructed mesh right below it.
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Figure D: Further examples of the reconstructed surface shapes of different methods for noisy and
non-uniform point clouds.
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