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Appendices

A Notation Table1

In this paper, scalars are denoted by symbols such as x, vectors are represented by boldface symbols2

such as x, and matrices are described by uppercase boldface symbols such as X. To provide a3

comprehensive overview of the notations used throughout the paper, we present a summary of4

notations in Table 1.5

Table 1: Notations

Notation Description

D, di EMR data, each sample in EMR data
D+, D− Positive samples, negative samples

d−i Each negative sample
xi, yi Input features of d−i , binary label of d−i
F Prediction model
Q A subset of negative samples
M Performance metric function
si Data Shapley value for d−i
π A Monte Carlo permutation

A
d−
i

π All the negative samples before d−i in π
S The Negative Sample Shapley Field
S ′ Transformed space after SDAE-based manifold learning
K Number of DAEs in SDAE
k Each DAE in SDAE, k ∈ {0, . . . ,K − 1}

h
(k)
i Input to the encoder of the k-th DAE

h̃
(k)
i Corrupted version of h(k)

i with masking noise
f
(k+1)
θ (·) Encoder of the k-th DAE
ĥ
(k+1)
i Output from the encoder of the k-th DAE

f
(k+1)
ϕ (·) Decoder of the k-th DAE
z
(k)
i Output from the decoder of the k-th DAE
L(k)
rec Reconstruction loss in the k-th DAE
L(k)
iso Isotropy constraint in the k-th DAE
L(k) Overall loss in the k-th DAE
h
(k+1)
i Input to the encoder of the (k + 1)-th DAE
h
(K)
i Input for medical cohort discovery
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B Negative Sample Shapley Field Construction6

B.1 Proof of Data Shapley Value for Negative Samples7

We establish the proof of the data Shapley value for negative samples by relating our problem to the8

original context of the Shapley value in game theory [40], i.e., reducing it to a cooperative game [38,9

12, 7].10

Specifically, our problem is framed as a negative sample valuation game for a fair distribution of11

the collective performance achieved by the prediction model to each participating negative sample12

in the training data (with positive samples the same), while maintaining consistency with the three13

fundamental properties of an equitable data valuation: (i) null player, (ii) symmetry, and (iii) linearity.14

Null player. We define a negative sample d−i as a “null player” and set its data Shapley value to15

zero if its inclusion in any subsets of the negative sample set in training data does not influence16

the performance of the prediction model. Formally, for a negative sample d−i = (xi, yi) and17

∀R ⊆ D− \ d−i , if the performance remains unchanged by adding d−i , i.e., M(D+ ∪ R, F ) =18

M(D+∪R∪{d−i }, F ), then si = 0. In this negative sample valuation game, the null player property19

ensures that the negative samples with no impact on the prediction performance are assigned zero20

values for their data Shapley values.21

Symmetry. Two negative samples, d−i , and d−j , are assigned the same value if they consistently22

influence the performance of the prediction model when added to any subsets of the negative sample23

set in training data. This property arises from the concept of symmetry. Formally, for two negative24

samples d−i = (xi, yi) and d−j = (xj , yj), and ∀R ⊆ D− \ {d−i , d
−
j }, if the prediction performance25

remains the same after adding d−i or d−j , i.e., M(D+ ∪ R ∪ {d−i }, F ) = M(D+ ∪ R ∪ {d−j }, F ),26

then si = sj . This property ensures that the negative samples with equivalent marginal contributions27

are assigned the same data Shapley values.28

Linearity. The influence of a negative sample d−i on the overall pooled data is equivalent to its29

influence on constituent sub-datasets. We could denote si as si(d−i ,Dtest), representing the data30

Shapley value of the negative sample d−i evaluated on all test data Dtest. The linearity property states31

that for two sets of test data, D1
test and D2

test, the following holds:32

si(d
−
i ,D

1
test ∪ D2

test) = si(d
−
i ,D

1
test) + si(d

−
i ,D

2
test) (1)

This linearity property ensures that the data Shapley value of a negative sample on the pooled test33

dataset is equal to the sum of its data Shapley values on the two individual test datasets, in this34

negative sample valuation game.35

Proposition 1 The data Shapley value si for a negative sample d−i is given by:36

si = H
∑

Q⊆D−−{d−
i }

M(D+ ∪Q ∪ {d−i }, F )−M(D+ ∪Q, F )(
N− − 1
|Q|

) (2)

where H is a constant and the summation is taken over all subsets of negative samples, except d−i .37

Proof 1 We prove Proposition 1 above by establishing the connection between our negative sample38

valuation game and the cooperative game theory context [7]. In a cooperative game, there exists39

a set of n players and a characteristic function m : 2[n] 7→ R that assigns a payment value to40

each selected player [38]. In our case, the players correspond to individual negative samples, and41

the characteristic function m(Q) represents the performance obtained when the subset of negative42

samples Q (Q ⊆ D−) is included in the prediction model. By leveraging the three properties43

discussed above, our negative sample valuation game ensures the fair distribution of collective44

performance to the participating negative samples. Therefore, each negative sample acts as a player,45

and the prediction model F incorporates all the participating negative samples Q (along with the46

positive samples D+) to achieve the overall performance m = M(D+ ∪Q, F ). Consequently, the47

data Shapley value of each negative sample corresponds to the payment received by each player in48

this cooperative game analogy. □49

B.2 Monte Carlo Permutation Sampling50

We adopt Monte Carlo permutation sampling to approximate the data Shapley values for negative51

samples. The detailed procedure of each Monte Carlo iteration is presented in Algorithm 1. The52
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algorithm begins by initializing the necessary variables for computation in lines 1-8. Subsequently,53

for a given permutation, we calculate the marginal contribution of each negative sample in the current54

Monte Carlo iteration towards its overall data Shapley value, as described in lines 9-25.55

In particular, for each indexed negative sample, we include it in the training data and retrain the56

classifier. Then, we measure its marginal contribution by calculating the difference in the AUC metric57

(lines 10-14). Additionally, in line 15, we compute the absolute difference between the full AUC58

(which uses all the training data and evaluates the trained model on the test data) and the new AUC59

(which includes the current negative sample). If this difference falls below a predefined threshold,60

specifically “truncation_tolerance” times the full AUC, for more than five consecutive negative61

samples, we terminate the current Monte Carlo iteration by early stopping (lines 16-21). This early62

stopping criterion is based on the observation that further inclusion of negative samples is unlikely to63

yield a significant improvement in AUC.64

After calculating the marginal contribution of each negative sample in each Monte Carlo iteration,65

the overall data Shapley value of a particular negative sample is derived by taking the mean of its66

marginal contributions across different iterations.67

Algorithm 1: Data Shapley Value Computation for Negative Samples by Monte Carlo Sampling

Input :Negative training data (X−
train,y

−
train), Positive training data (X+

train,y
+
train), Test

data (Xtest,ytest).
Output :The marginal contribution of each negative sample in the current Monte Carlo iteration

to its overall data Shapley value.

1 Initialize permutation of indices of X−
train: perm← random permutation

2 Initialize marginal contributions of X−
train with zeros: marginal_contribs← zeros

3 Initialize truncation counter: truncation_counter← 0
4 Initialize new score with a random score: new_score← random_score // 0.5 for AUC
5 Initialize a classifier: clf← create a new classifier
6 Fit the classifier with all training data: clf.fit(X−

train ∪X+
train, y−

train ∪ y+
train)

7 Evaluate the classifier on test data: full_score← AUC(clf, Xtest, ytest)
8 Initialize training data: (X′,y′)← (X+

train,y
+
train)

9 for idx in perm do
10 Set old score to the current new score: old_score← new_score
11 Update training data with current negative sample:

(X′,y′)← (X′ ∪X−
train[idx],y′ ∪ y−

train[idx])
12 Create a new classifier and train it: clf← new classifier, clf.fit(X′,y′)
13 Update new score: new_score← AUC(clf, Xtest, ytest)
14 Calculate the marginal contribution of the current negative sample:

marginal_contribs[idx]← new_score− old_score
15 Calculate the distance to the full score: distance_to_full_score← |full_score - new_score|
16 if distance_to_full_score ≤ truncation_tolerance × full_score then
17 Increment truncation counter: truncation_counter← truncation_counter + 1
18 if truncation_counter > 5 then
19 break
20 end
21 end
22 else
23 Reset truncation counter: truncation_counter← 0
24 end
25 end
26 return marginal_contribs

68

B.3 Implementation Details69

In the experiments, we perform Monte Carlo permutation sampling 100,000 times to approximate the70

data Shapley values for negative samples. We adopt the early stopping criterion described earlier,71

where the threshold truncation_tolerance is set to 0.025. This means that if the absolute difference72
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between the full AUC and the new AUC falls within 0.025 times the full AUC for more than five73

consecutive negative samples, the current Monte Carlo iteration will be terminated.74

C Manifold Learning with Structure Preservation and Isotropy Constraint75

C.1 Implementation Details76

We utilize the Adam optimizer to train the SDAE in an unsupervised manner, using the loss77

function described in Equation 7 of the paper. Our objective is to obtain an optimal manifold78

space to support subsequent density-based clustering for automatic cohort identification. To deter-79

mine the optimal learning rate for training, we perform a grid search over a range of values, i.e.,80

[0.1, 0.05, 0.01, 0.005, 0.001, 0.0005], and run 10 repeats per learning rate. The model run with the81

lowest loss is selected as the optimal model for subsequent cohort discovery, which corresponds to a82

learning rate of 0.005. Other parameters are held constant during the training process, including a83

batch size of 1024, a mask probability of 0.2 for the denoising process, and a total of 100 epochs.84

These parameters provide stability and ensure sufficient training iterations to learn meaningful85

representations in the SDAE.86

D Cohort Discovery Among High Data Shapley Value Negative Samples87

D.1 Details for DBSCAN88

The DBSCAN (density-based spatial clustering of applications with noise) algorithm follows a89

specific process to perform clustering. It requires two essential parameters: (i) ε, which defines the90

maximum distance between two samples for them to be considered neighbors, and (ii) Pmin, which91

specifies the minimum number of samples required to form a dense region.92

The detailed description of the DBSCAN algorithm is as follows. (i) Start by selecting an unvisited93

sample arbitrarily. (ii) Retrieve its ε-neighborhood, consisting of all samples within a distance of94

ε from the selected sample. (iii) If the ε-neighborhood contains more than Pmin samples, initiate95

a new cluster and designate the selected sample as a “core point”. The core point is a sample that96

has a sufficient number of neighbors within its ε-neighborhood to form a dense region. (iv) If the97

ε-neighborhood has fewer than Pmin samples, label the selected sample as noise. However, note that98

this sample may later fall within the ε-neighborhood of another sample, causing it to be assigned99

to a different cluster. (v) For each sample that is determined to belong to a dense region within a100

cluster, consider its ε-neighborhood as part of the same cluster. Add all the samples found within101

this neighborhood to the cluster and check if these samples’ respective ε-neighborhoods are also102

dense (if so, add them to the cluster as well). This process continues recursively until the entire103

densely connected cluster is detected. (vi) Proceed to the next unvisited sample and repeat steps (ii)104

to (v) until all samples have been assigned to a cluster or labeled as noise. By following this process,105

DBSCAN identifies densely connected {C1, C2, . . . , CR} and recognizes noisy samples Ψ.106

D.2 Cluster vs. Cohort107

We illustrate the relationship between clusters and cohorts using an example within the DBSCAN108

algorithm, as depicted in Figure 1. In this example, we set Pmin to 4, and the value of ε is indicated109

in the figure as the radius of the circles.110

As shown in the figure, Point A and all the other blue points are core points because their ε-111

neighborhoods contain at least Pmin points. Therefore, they form a single cluster. Additionally, Point112

B and Point C are reachable from Point A via existing paths, making them belong to the same cluster113

as well. However, Point N is labeled as noise since it does not meet the criteria to be a core point and114

is not reachable from any core points.115

According to Definition 2 mentioned in the paper, for this identified cluster by the DBSCAN algorithm,116

we consider each core point (i.e., all the blue points) and define a spherical space with the core point117

as its center and ε as its radius. The combined area covered by all such spherical spaces, depicted in118

blue, represents the cohort that we aim to discover from this cluster.119
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Figure 1: Relationship between clusters and cohorts in a DBSCAN example.

D.3 Implementation Details120

The choice of parameters in the DBSCAN algorithm, specifically the search radius (ε) and the121

minimum number of points (Pmin), has a significant impact on the quality of the clustering results.122

To determine the optimal parameter combination, we start by exploring various values for Pmin.123

Given a specific Pmin value, we calculate the 75th percentile of the distribution of (Pmin/2)-nearest124

distances for the extracted 40% samples with high data Shapley values (as described in Section 4.1125

of the paper). We consider this calculated value as the appropriate ε for the clustering process. The126

underlying rationale is that regions with local densities exceeding twice the upper bound of the global127

density represent distinct high-density areas.128

By iterating over different values of Pmin and adjusting the corresponding ε values, we assess129

the clustering quality achieved by each parameter combination using the Silhouette score, which130

measures the cohesion and separation of clusters to evaluate their quality. After a thorough evaluation,131

we determine that a value of Pmin equal to 100 yields the most suitable parameter choice for our132

DBSCAN clustering. This method ensures that the clustering process considers the distribution133

of distances within high-density areas and selects an appropriate value for ε, leading to improved134

clustering results based on the Silhouette score assessment.135

E Experimental Set-up136

E.1 Hospital-acquired AKI Prediction and Data Processing137

Hospital-acquired AKI (short for acute kidney injury) is a disease we strive to handle in our medical138

practice as front-line clinicians and medical researchers. According to the KDIGO criteria [19], the139

definition of AKI is based on the rise of sCr (i.e., serum creatinine), a lab test, beyond a threshold140

limit within a defined timeline. The definition includes two criteria: absolute AKI and relative AKI,141

as depicted in Figure 2. Absolute AKI is defined as an increase in sCr of more than 26.5 umol/L142

within the past two days. Relative AKI, on the other hand, is defined as a rise in sCr of 1.5 times or143

higher compared to the lowest sCr value within the last seven days.144

In hospital-acquired AKI prediction, our goal is to predict whether a patient will develop AKI within145

two days of hospital admission. We evaluate our approach on our hospital’s EMR data, containing146

709 lab tests as input features. Each hospitalized admission in the data is treated as a sample for147

analysis. In total, we receive 20,732 admissions, with 911 of them resulting in AKI development. We148

partition the dataset into 90% training data and 10% testing data.149

For positive samples where AKI develops during admission, we record the time of AKI detection150

and define a two-day window, referred to as the “Output Window”, that counts backward from the151

detection time. This window is not used as input but is crucial in medical practice as it provides152

a 48-hour lead time, enabling clinicians to take timely interventions following AKI prediction if153

necessary. The “Input Window”, which serves as input for analysis, spans seven days prior to the154

Output Window. The relationship between the Input Window and the Output Window is depicted in155
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2 days
Time

7 days

Input Window Output Window

sCr

sCr rises to 1.5×lowest sCr
within 7 days

Relative AKI Criterion

rise of sCr ≥ 26.5umol/L
within 2 days

Absolute AKI Criterion

lowest sCr

Figure 2: Definition of absolute AKI and relative AKI in hospital-acquired AKI prediction.

Table 2: Key statistics of our dataset for hospital-acquired AKI prediction

Statistics Our Dataset

# of admissions 20732
# of positive samples 911
# of negative samples 19821

# of lab tests 709
Input Window 7 days

Output Window 2 days

Figure 2. For negative samples, the time of the last recorded lab test is used to determine both the156

Output Window and the Input Window, respectively.157

In summary, our approach utilizes 709 lab tests within the Input Window to predict the likelihood of158

each sample (i.e., admission) developing AKI after the Output Window. We perform the min-max159

standardization on the lab test values and then calculate the average to derive input features. Table 2160

presents key statistics of our dataset for hospital-acquired AKI prediction.161

E.2 Experimental Environment162

We conduct the experimental evaluation on a server with the specifications as follows. (i) CPU:163

Intel(R) Xeon(R) Gold 6248R × 2, with a clock speed of 3.0GHz and 24 cores per chip. (ii) Memory:164

the server is equipped with 768GB of memory. (iii) GPU: there are 8 NVIDIA V100 GPUs with165

NVLINK technology, providing a high-speed data transfer rate of 300GB/s. (iv) Software: The166

models are implemented using PyTorch version 1.12.1.167

vi


	Notation Table
	Negative Sample Shapley Field Construction
	Proof of Data Shapley Value for Negative Samples
	Monte Carlo Permutation Sampling
	Implementation Details

	Manifold Learning with Structure Preservation and Isotropy Constraint
	Implementation Details

	Cohort Discovery Among High Data Shapley Value Negative Samples
	Details for DBSCAN
	Cluster vs. Cohort
	Implementation Details

	Experimental Set-up
	Hospital-acquired AKI Prediction and Data Processing
	Experimental Environment


