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A ADDITIONAL TECHNICAL DETAILS

A.1 ADDITIONAL DETAILS ON ENCODING RULES

To encode a literal, lk = A op c, we perform one-hot encoding on feature A and operator op, which
are concatenated with the normalized version of c (i.e., all the values of A should be rescaled to
[0, 1]) as the encoding for lk. We then concatenate the encoding of all lk to compose the encoding
of L1:K .

A.2 GENERALIZING TO DISJUNCTIVE RULES

The above process of building a conjunctive rule can be viewed as generating the most probable
conjunctive rules among all the possible combinations of A, op and c. This can be generalized
to building a rule with multiple disjunctions, by generating the H most probable conjunctive rules
instead, where H represents the number of disjunctions specified by users. Specifically, for the
model Θ1, we simply select the H most probable features from its model output while for the model
Θ2, we leverage beam search to choose the H most probable (A, c) pairs.

A.3 GENERALIZING TO CATEGORICAL OUTCOME VARIABLES

To generalize DISCRET to handle categorical outcome variables, by following (Feder et al., 2021),
the treatment effect is defined by the difference between the probability distributions of all categor-
ical variables. Also to estimate outcomes within a subgroup of similar samples, we simply compute
the frequency of each outcome as the estimation.

A.4 ESTIMATING ITE IN THE SETTINGS WITH CONTINUOUS DOSE VARIABLES

In the presence of dose variables along with treatment variables, we estimate ATE over the subgroup
of similar samples with the following formula:
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In the above formula, topk(Rx(D)) is constructed by first selecting the samples with the same
treatment as the sample x and then only retaining the k samples with the most similar dose values
to x.

A.5 FURTHER DETAILS ON DEEP Q LEARNING

To facilitate Q learning, we estimate the Q value with the output logits of the models given a state
(x, L1:k−1) and an action lk, which is denoted by Q(lk, (x, L1:k−1)). Note that lk is generated
collaboratively by using two models, Θ1 and Θ2, we therefore need to collect two sub-Q values
from these two models, and then aggregate (say average) them as the overall Q value, which follows
prior multi-agent Q learning literature (Wang et al., 2021). In the end, by following the classical
DQL framework, we optimize the following objective function adapted from the Bellman equation
(Dixit, 1990):

LΘ = E[Q(lk, (x, L1:k−1))− (γ ·max
lk+1

Q(lk+1, (x, L1:k)) + rk)]
2, (7)

which is estimated over a sampled mini-batch of cached experience taking the form of <
(x, L1:k−1), lk, rk, (x, L1:k) > during the experience replay process. The pseudo-code for the train-
ing phase is sketched in Algorithm 2 in Appendix A.6. The training algorithm for rule learning is
outlined in Algorithm 2.

A.6 THE OVERVIEW OF THE TRAINING ALGORITHM

B ADDITIONAL RELATED WORK

Model interpretability Model interpretability remains a significant concern for many high-stake
areas, such as health care and finance. There are two lines of work to address the model inter-
pretability issues, one is for interpreting black-box models in a post-hoc manner while the other one
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Algorithm 2 The overview of Deep Q Learning (DQL) algorithm for rule learning in DISCRET
Input: target model update: t, gamma: γ, batch size: b, target model parameters: Θtarget, policy model pa-
rameters: Θpolicy , experience replay cache: cache =< (x, L1:k−1), lk, rk, (x, L1:k) > where x is a covariate,
L1:k−1 is the set of literals at step k − 1, lk is the literal synthesized at step k, rk is the reward at step k, and
L1:k is L1:k−1 ∪ lk
Output: None

1: Initialize wpred and wtarget of length b
2: Construct batch by sampling b entries from cache
3: for i, < (xi, Li

1:k−1), l
i
k, r

i
k, (x

i, Li
1:k) > in Enumerate(batch) do

4: Use Θpolicy
0 and a deterministic function to encode both xi and Li

1:k−1, respectively, to get Ei
k−1;

5: Forward pass Ei
k−1 through Θpolicy

1 and select the index of the feature from lik to obtain Qi
f ;

6: Append a one-hot encoding of the feature from lik to Ei
k−1 to get Ei

partial;
7: forward pass Ei

partial through Θpolicy
2 and select the index of the constant from lik to get Qi

c;
8: Obtain Qi

k−1 by averaging Qi
f and Qi

c;
9: Obtain Qi

k by forward passing xi and Li
1:k through Θtarget and averaging the maximum Q values from

Θtarget
1 and Θtarget

2 ;
10: wpred

i ← Qi
k−1; wtarget

i ← γQi
k ∗+rik;

11: end for
12: Backpropogate and update Θpolicy using loss MSE(wpred,wtarget)
13: if len(cache)%t == 0 then
14: Θtarget ← Θpolicy

15: end if

is for building a self-interpretable model. Post-hoc explainers could explain models with feature
importance (e.g., Lime (Ribeiro et al., 2016) and Shapley values (Shrikumar et al., 2017)) or logic
rules (e.g., Lore (Guidotti et al., 2018), Anchor (Ribeiro et al., 2018) and model distillation methods
(Frosst & Hinton, 2017)). However, post-hoc explanations are always blamed for their potential
lack of faithfulness (Rudin, 2019; Bhalla et al., 2023). To mitigate this issue, there are recent and
ongoing efforts in the literature to develop self-interpretable models, meaning that such models per-
form predictions in a human-understandable manner. For example, ENRL (Shi et al., 2022) to learn
tree-like decision rules and leverage those rules for predictions, ProtoVAE (Gautam et al., 2022)
learns prototypes and predicts the label of one test sample by employing its similarity to prototypes.
Other alternatives include learning feature importance and using that to determine the model output
(e.g., Neural Additive Model (Agarwal et al., 2021)).

C DETAILED DESCRIPTIONS OF DATASETS

IHDP is a semi-synthetic dataset composed of the observations from 747 infants from the Infant
Health and Development Program, which is used for the effect of home visits (treatment variable)
by specialists on infants’ cognitive scores (outcome) in the future.

IHDP-C : is built on top of IHDP dataset, except that the treatment variable becomes a continuous
variable and we follow (Nie et al., 2020) to generate synthetic treatment and outcome values.

News : is composed of 3000 randomly sampled news items from the NY Times corpus (Newman,
2008) and their Bag-of-Word features are used for treatment effect estimation and we follow prior
studies (Bica et al., 2020) to generate synthetic treatment and outcome values.

TCGA : Its covariates are obtained from a real data set, the Cancer Genomic Atlas (Bica et al.,
2020) and we follow the data generation process of (Zhang et al., 2022) to generate synthetic treat-
ments, dosage values and outcomes.

EEEC : consists of 33738 English sentences. Each sentence in this dataset is produced by follow-
ing a template such as “<Person> made me feel <emotional state word>” where <Person> and
<emotional state word> are placeholders to be filled. To study the effect of race or gender on the
mood state, placeholders such as <Person> are replaced with race-related or gender-related nouns
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Outcome error
DISCRET 1.662±0.136

DISCRET without propensity score 1.701±0.161

DISCRET without propensity score or auto-finetuning 1.742±0.151

Table 2: Ablation studies on the reward function in DISCRET

(say an African-American name for <Person>) while the placeholder <emotional state word> is
filled with one of the four mood states: Anger, Sadness, Fear and Joy. The replacement of those
placeholders with specific nouns is guided by a pre-specified causal graph (Feder et al., 2021).

Uganda is composed of around 1.3K satellite images collected from around 300 different sites
from Uganda. In addition to the image data, some tabular features are also collected such as age
and ethnicity. But it turns out that such tabular features fail to cover important information such as
the neighborhood-level features and geographical context (Jerzak et al., 2022), which, however, are
very critical factors for determining whether anti-poverty intervention for a specific area is needed.

Note that the generation of synthetic treatments and outcomes on IHDP-C, News and TCGA dataset
relies on some hyper-parameters to specify the number of treatments or the range of dosage. We
used the default hyper-parameters provided by (Zhang et al., 2022).

D ABLATION STUDIES

We further perform some ablation studies to explore how different components in DISCRET such
as the database and featurziation process (for NLP and image data), affect the ITE estimation per-
formance. In what follows, we analyze the effect of the size of the database, different featurization
steps, and different components of the reward function.

Ablating the reward functions for DISCRET. Recall that in Section 3.3, the reward function
used for the training phase could be enhanced by adding propensity scores as one regularization and
automatically tuning the hyper-parameters, α and β. We removed these two components from the
reward function one after the other to investigate their effect on the ITE estimation performance. We
perform this experiment on Uganda dataset and report the results in Table 2. As this table suggests,
throwing away those two components from the reward function incurs higher outcome errors, thus
justifying the necessity of including them for more accurate ITE estimation.

Ablating the database size Since DISCRET estimates ITE through rule evaluations over a
database. The size of this database can thus influence the estimation accuracy. We therefore vary
the size of the database, i.e., the number of training samples, for IHDP dataset, and compare DIS-
CRET against TransTEE with varied database size. The results are included in Figure 5, which
shows that DISCRET is almost always on par with TransTEE on the ITE estimation errors. This
thus indicates that with the influence of the database size (i.e, the training set size for TransTEE)
on the relative performance between DISCRET and Neural Network models is insignificant. It is
also worth noting that when the database size is reduced below certain level, e.g., smaller than 200
in Figure 5, DISCRET can even outperform TransTEE. This thus implies that DISCRET could be
more data-efficient than the state-of-the-art Neural Network models for ITE estimations, which is
left for future work.

E FEATURE EXTRACTIONS ON IMAGE DATA

To extract concepts from images of Uganda dataset, we segment each image as multiple superpixels
(Achanta et al., 2012), embed those superpixels with pretrained clip models (Radford et al., 2021),
and then perform K-means on these embeddings. Each of the resulting cluster centroids is regarded
as one concept and we count the occurrence of each concept as one feature for an image. Specifically,
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Figure 5: Ablation study on the effect of database size on the performance of DISCRET

we extract 20 concepts from the images of Uganda dataset, which are visually presented in Figure
6.

Figure 6: Extracted concepts from Uganda dataset

Various patterns of image patches are captured by Figure 6. For example, patch 12 is almost all
black, which represents the areas with water, say, river areas or lake areas. Also, as mentioned
in Section 4.4, patch 11 with reddish pink pixels represents “soil moisture content”, which is an
important factor for determining whether to take interventions in the anti-poverty program conducted
in Uganda.

F ADDITIONAL DETAILS ON PERFORMANCE METRICS

F.1 ADDITIONAL NOTES FOR EEEC DATASET

Note that for EEEC dataset, ϵATE is used for performance evaluation but the ground-truth ITE is
not observed, which is approximated by the difference of the predicted outcomes between factual
samples and its ground-truth counterfactual alternative (Feder et al., 2021).

F.2 AMSE FOR CONTINUOUS TREATMENT VARIABLE OR DOSE VARIABLE

To evaluate the performance of settings with continuous treatment variables or continuous dose
variables, we follow (Zhang et al., 2022) to leverage AMSE as the evaluation metrics, which is
formalized as follows:

AMSE =

{
1
N

∑N
i=1

∫
t
[ŷ(xi, t)− y(xi, t)]π(t)dt continuous treatment variable

1
NT

∑N
i=1

∑T
t=1

∫
s
[ŷ(xi, t)− y(xi, t)]π(t)dt continuous dose variable,

in which we compute the difference between the estimated outcome ŷ and the observed outcome y
conditioned on every treatment t, and average this over the entire treatment space and all samples for
evaluations. Due to the large space of exploring all possible continuous treatments t or continuous
dose values s, we collect sampled treatment or sampled dose rather than enumerate all s and t for
the evaluations of AMSE.
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F.3 FAITHFULNESS METRICS FOR EVALUATING EXPLANATIONS

We evaluate the faithfulness of explanations with two metrics, i.e., consistency and sufficiency from
(Dasgupta et al., 2022). For a single sample x with local explanation ex, the consistency is defined
as the probability of getting the same model predictions for the set of samples producing the same
explanations (denoted by Cx) as x while the sufficiency is defined in the same way, except that it
depends on the set of samples satisfying ex (denoted by Sx) rather than generating explanation ex.
These two metrics could be formalized with the following formulas:

Consistency(x) = Prx′∈µCx(ŷ(x) == ŷ(x′))

Sufficiency(x) = Prx′∈µSx(ŷ(x) == ŷ(x′))

in which µ represents the probability distribution of Cx and Sx. To evaluate explanations with
these two metrics, (Dasgupta et al., 2022) proposed an unbiased estimator for Consistency(x) and
Sufficiency(x), i.e.,:

̂Consistency(x) =
1

N

N∑
i=1

I(Cx > 1) ·
Cx,ŷ(x) − 1

Cx − 1

̂Sufficiency(x) =
1

N

N∑
i=1

I(Sx > 1) ·
Sx,ŷ(x) − 1

Sx − 1

in which Cx,ŷ(x) represents the set of samples sharing the same explanation and the same model
predictions as the sample x while Sx,ŷ(x) represents the set of samples that satisfy the explana-
tion produced by x and share the same explanation as x. As the above formula suggests, both the
consistency and sufficiency scores vary between 0 and 1.

But note that for typical ITE settings, the model output is continuous rather than discrete numbers.
Therefore, we discretize the range of model output into evenly distributed buckets, and the model
outputs that fall into the same buckets are regarded as having the same model predictions. As
(Dasgupta et al., 2022) mentions, the sufficiency metric is a reasonable metric for evaluating rule-
based explanations since it requires retrieving other samples with explanations. So we only report
sufficiency metrics for methods that can produce rule-based explanations in Table 7.

G ADDITIONAL EXPERIMENTAL RESULTS

IHDP TCGA IHDP-C News

In-sample Out-of-sample In-sample Out-of-sample AMSE AMSE
LR 3.366±2.189 2.497±1.814 31.737±0.001 57.541±0.001 36.640±16.455 NaN
DT 0.345±0.273 0.530±0.399 0.200±0.012 0.202±0.012 22.136±1.741 0.428±0.051
RF 0.739±0.284 0.737±0.383 0.263±0.057 0.264±0.058 21.348±1.222 0.452±0.048

NAM 0.225±0.221 0.519±0.512 4.201±0.232 4.211±0.152 24.706±0.756 0.653±0.026
ENRL 4.160±1.060 4.439±1.587 10.938±2.019 10.942±2.019 24.720±0.985 0.638±0.019

Dragonnet 0.177±0.139 0.219±0.143 - - - -
TARNet 0.186±0.130 0.408±0.418 1.421 ± 0.078 1.421±0.078 12.967±1.781 0.079±0.021
Ganite 1.127±0.481 1.144±0.352 - - - -
DRNet 0.188±0.132 0.407±0.422 1.374±0.086 1.374±0.085 11.071±0.994 0.080 ±0.025
VCNet 4.205±0.569 4.434±0.851 0.292±0.074 0.292 ± 0.074 - -

TransTEE 0.128±0.103 0.203±0.130 0.055±0.014 0.056 ± 0.013 0.488±0.288 0.074 ±0.037
DISCRET 0.274±0.253 0.344±0.303 0.076±0.019 0.077±0.020 0.801±0.165 0.385±0.083

Table 3: ITE estimation errors in Tabular setting. We bold the smallest ITE estimation errors for
each dataset and underline the smallest ITE estimation errors among the self-interpretable methods.
DISCRET outperforms existing self-interpretable methods on 5 out of the 6 benchmarks.

H ADDITIONAL EXPERIMENTAL ANALYSIS

Likewise, as shown in Figure 4, DISCRET generates one rule for one example image from Uganda
dataset, which is defined on two concepts, i.e., one type of patches mainly containing reddish pink
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IHDP TCGA IHDP-C News EEEC
(Gender)

EEEC
(Race) Uganda

Model distillation 0.243±0.126 0.562±0.026 0.127±0.008 0.816±0.032 0.004±0.001 0.013±0.002 0.198±0.008
Lore 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.001

Anchor 0.084±0.083 0.001±0.000 0.293±0.022 0.000±0.000 0.000±0.000 0.000±0.000 0.066±0.015
Lime 0.182±0.129 0.000±0.000 0.001±0.001 0.000±0.000 0.000±0.000 0.000±0.001 0.000±0.000

Shapley 0.009±0.017 0.005±0.002 0.046±0.027 0.031±0.035 0.034±0.003 0.027± 0.000 0.412±0.195
NAM 0.343±0.065 0.120±0.002 0.045±0.006 0.493±0.110 - - 0.082±0.018
ENRL 0.134±0.002 0.231±0.043 0.053±0.002 0.002±0.000 0.102±0.032

DISCRET 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00 1.00±0.00

Table 4: Evaluations of the explanation consistency

EEEC (Gender) EEEC (Race)

ATEGT 0.086±0.004 0.014±0.002
LR 0.000±0.000 0.000±0.000
DT 0.000±0.000 0.000±0.000
RF 0.544±0.559 0.539±0.557

NAM 0.139±0.027 0.166±0.025
Dragonnet 0.0263±0.0062 0.0253±0.0015
TARNet 0.0067±0.0009 0.005±0.002
Ganite 2.237±0.000 2.006±0.000
DRNet 0.0088±0.0002 0.006±0.002
VCNet 0.0085±0.0030 0.003±0.0005

TransTEE 0.013±0.005 0.0174±0.0006
DISCRET 0.011±0.002 0.0136±0.001

Table 5: Treatment effect estimation performance on
NLP settings

Uganda

LR 1.796±0.021
DT 1,796±0.021
RF 1.820±0.013

NAM 1.710±0.098
ProtoVAE 1.688±0.165

ENRL 1.800±0.143
Dragonnet 1.709±0.127
TARNet 1.743±0.135
Ganite 1.766±0.024
DRNet 1.748±0.127
VCNet 1.890±0.110

TransTEE 1.707±0.158
DISCRET 1.662±0.136

Table 6: Outcome errors on Image
settings

pixels that represent “soil moisture content” and the other type of patches mainly comprised of brown
pixels indicating little soil. This rule thus represents the images from one type of location where
there is plenty of soil moisture content that is suitable for agricultural development. Therefore, after
the government grants are distributed in such areas, a more significant treatment effect is observed,
i.e., 0.65. This is an indicator of significantly increasing working hours on the skilled jobs by the
laborers in those areas. This is consistent to the conclusions from (Jerzak et al., 2023b;a) which
states that government grant support is more useful for areas with more soil moisture content.
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IHDP TCGA IHDP-C News EEEC
(Gender)

EEEC
(Race) Uganda

Model distillation 0.243±0.126 0.529±0.001 0.029±0.003 0.712±0.032 0.004±0.001 0.013±0.002 0.198±0.008
Lore 0.320±0.084 0.034±0.013 0.030±0.009 0.142±0.012 0.002±0.001 0.002±0.001 0.265±0.008

Anchor 0.084±0.083 0.125±0.002 0.332±0.016 0.391±0.040 0.002±0.001 0.011±0.006 0.221±0.007
ENRL 0.452±0.012 0.512±0.005 0.032±0.018 0.053±0.020 0.004±0.002

DISCRET 0.562±0.056 0.9999±0.000 0.588±0.019 0.697±0.017 0.926±0.067 0.996±0.001 0.104±0.011

Table 7: The sufficiency score evaluation. Larger score indicates better sufficiency
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