
A Expansive Latent Space Trees - Details and Implementation

Code repository available at https://github.com/KRobG/expansive_latent_space_trees.

A.1 State Encoder for Context Environments

For environments with a task-specific context, we train the encoder ϕ : S×C → Z with the loss
Lϕ,context in Eq. 5 by computing the empirical expectations over context encodings c ∈ C with

f(st+k, st, c) = e−∥z̃t+k|c−zt+k|c∥2

2 .

Lϕ(c) = −E
S

[
log

f(st+k, st, c)∑
sj∈S f(sj , st, c)

]
+

Kh · E
Z

[ k−1∑
i=0

(zt+1+i − hf (z̃t+i, at+i, c))
2
]

Lϕ,context =E
C

[
Lϕ(c)

]
(5)

A.1.1 Network Architectures

We used the same network architectures and latent space sizes of 16 in all experiments. The encoder
parameters are shown in Table 2. The density model ψ, single forward models hf and policy π use
four layers each consisting of 64 neurons and LeakyRelu activation functions in the hidden layers. For
context conditioned environments, we additionally feed the context into the encoder by concatenating
the input images.

Table 2: Hyperparameters of encoder ϕ

Parameter Value

Filter [16,16,16,32,64,64]
Kernels [3,4,4,4,4,4]
Strides [1,2,1,2,2,2]
Activation LeakyRelu
Dense layers [256,128]
Latent dimension 16

In all experiments, hfwd, ψ and ϕ are represented using feed-forward neural networks with 64 neurons
per layer, LeakyRelu activation functions and three hidden layers for unparameterized and 4 hidden
layers for parameterized environments.

A.1.2 Planning Module

The hyperparameters of our planning module are listed in Table 3. We use niter=500 in Hammer,
7500 in Button, Reach and 10000 in BlockS and Drawer. For all other tasks, we use 5000 planner
iterations. The MPC controller replans after nreplan=50 steps in Button, Drawer and BlockS. Due
to the accuracy required to correctly grasp the object in the Hammer environment, we replan after
nreplan=3 for this task. For all remaining environments, we set nreplan=25. During exploration, nodes
are chosen uniformly with probability puniform = 0.2. With probability psparse=0.78, the nodes are
sampled weighted by the inverse number of neighboring nodes in the tree. With probability pgoal, we
pick the node that lies closest to the goal (Euclidean distance). In order to keep the tree sparse, we
discard newly generated latent states that are closer than rdiscard (Euclidean distance) to an existing
node in the current tree.

A.1.3 Training Details

For all tasks, we train ϕ for 5 · 104 iterations using batch sizes of 64 for unconditioned tasks. For
training context-conditioned environments, using the loss in Eq. 5, we sample 64 transition tuples for
8 context vectors from the data. We train each dynamics model hf and policy π for 5 · 105 iterations

16

https://github.com/KRobG/expansive_latent_space_trees


Table 3: Hyperparameters of planning module

Parameter Value Description

niter ∈ {500, 5000, 7500} Num. of sampled states (including rejections)
nreplan ∈ {3, 25, 50} Num. of steps until replanning
puniform 0.2 Probability of sampling expansion node uniformly
psparse 0.78 Probability of sampling expansion node sparsely
pgoal 0.02 Probability of sampling node closest to goal
rneigh 1.5 x avg. neigh. dist in Z Radius to pre-select neighbors for rewiring
rdiscard 0.5 x avg. neigh. dist in Z Radius to discard sampled states
τt ∈ {1, 2, 3, 5} Reject transition if density below τt-th percentile

of all transition densities in data.
τe ∈ {95, 98, 99} Reject state/transition if predictive variance of

transition is above τe-th percentile of all predictive
variances of latent transitions in data.

each using batch sizes of 64. NCE training of the denstity model ψ was done for 1.5 · 105 iterations
using 64 negative samples drawn from the Gaussian noise distribution pn for each 64 inlier samples.
For context-conditioned tasks, we instead use 32 inlier samples for 4 random contexts. The dynamics
ensembles are composed of three networks trained independently with different seeds.

Training was performed on a GPU cluster. The total amount of compute for training all models (3
seeds) including baselines is estimated around 588 hours (wall clock and single GPU).

B Datasets and Environments

The environments BlockS, BlockAsym, BlockParam, PlanarArm and Reach were implemented in
PyBullet [6]. The Button, Drawer and Hammer tasks were adapted from the environments in [43]
which are based on the Metaworld benchmark [60] (simulated in Mujoco). We implemented Cable
and CableParam in AGX Dynamics [1], a proprietary physics engine which provides specialized
classes for the implementation of deformable objects. The sizes of the training datasets are described
in Table 4 and Table 5.

Table 4: Dataset sizes for unparameterized environments

Parameter BlockS/ BlockAsym Panda/Button/Drawer/Hammer Cable

Number of trajectories 1000 1000 2000
Trajectory length 25 50 25

Table 5: Dataset sizes for parameterized environments

Parameter BlockParam/ PlanarArm CableParam

Number of contexts 300 450
Trajectories per context 20 40
Trajectory length 25 20

BlockS In this environment, the velocity of a block object is controlled in order to match a
certain goal configuration within the S-shaped planar workspace. During evaluation, start and goal
configurations are generated such that they are separated by one wall (BlockS-medium) or two walls
(BlockS-hard).

BlockAsym Similar to BlockS, yet, an unidirectional steam is introduced on the left side of the
corridor. For testing start and goal states were sampled on the opposite sites of the stream such that
the agent cannot pass the stream and therefore must navigate around the large obstacle in the center
of the workspace.

17



BlockParam Another version of the block environments which is parameterized by the position
of the wall in the center of the workspace. For evaluation, we sample start and goal states on the
opposite sides of the wall.

PlanarArm The joints of a 2 DOF planar robot arm are actuated to steer it into a certain configura-
tion. We generated test scenarios by sampling start and goal configurations with a minimal angular
distance of π/2 between the rotational angles of the base joint.

Reach The endeffector position of a 6-joint robot arm is controlled in order to achieve a certain
goal configuration of the robot. For testing, we consider start and goal states which lie on opposite
sides with respect to a T-shaped obstacle located in the middle of the workspace.

Button, Drawer and Hammer We reused the sparse metaworld environments from [43]. Yet, only
for the Button task, we increased the inital distance between endeffector and button to complicate the
problem in terms of required planning horizon.

Cable and CableParam The loose end of a deformable cable object is navigated around four
(two in parameterized case) cylindrical obstacles to reach a certain goal configuration of the cable
segments. During evaluation, start and goal segment configurations were generated by sampling two
distinct states from a set of predefined configurations and executing 10-steps of random actions. To
ensure sufficiently difficult planning scenarios in CableParam, we only consider situations in which
the initial and goal positions of the cable ends are separated by a distance of at least 75mm. The x-y
positions of the obstacles in CableParam are randomized.

In all experiments, we consider an episode successful if the goal configuration was reached within
nmax environment steps. Table 6 presents the used values of nmax for all environments.

Table 6: Maximum number of steps for testing

Environment Max Steps

BlockS (medium) 100
BlockS (hard) 100
BlockAsym 100
BlockParam 50
PlanarRobot 75
PandaReach 150
Button (Metaworld) 75
Drawer (Metaworld) 75
Hammer (Metaworld) 75
Cable 50
CableParam 50

C Baselines

C.1 CPC-CEM

This baseline applies planning via CEM [3] using the same CPC embedding and dynamics ensemble
Hf used for ELAST. We compute trajectory cost by summing the per state Euclidean distances with
respect to the goal latent encodings. In the Hammer environment, we replan after three environment
interactions and for all other tasks after 25 time steps. The used CEM hyperparameters are presented
in Table 7.

C.2 CPC-Collocation

Inspired by the work in [43], we implemented a collocation-based trajectory optimization strategy in
the latent space. Again, this baseline reuses the CPC embedding and dynamics ensemble Hf from
ELAST. Collocation optimizes a fixed-length sequences of states and actions considering multiple
objectives such as dynamics feasibility, action feasibility, path cost and satisfaction of boundary

18



Table 7: Parameters of CEM Planner

Parameter Value

Horizon (H) 50
Candidates (K) 1000
Iterations (I) 10
Elite size 100

values. For optimization, we use gradient-based optimization via the Adam optimizer for 2000
iterations given a trajectory resolution of 50. In general, the results of this method were highly
sensitive to the correct choice of weights of the different terms in the optimization objective which
we found to be difficult to tune in our settings.

C.3 CPC-GCBC

This baseline represents a goal-conditioned behavioral cloning policy trained on top of the CPC latent
embedding. The policy is represented by a feed-forward neural network consisting of four hidden
layers with 64 neurons each and LeakyRelu activation functions. For training, we sample goal states
from the set of future states within the same trajectory.

C.4 PlaNet

We implemented PlaNet [14] based on the implementation from https://github.com/zchuning/
latco/. We used the same network architecture provided in [14] but adapted PlaNet to the offline
setting without allowing further environment interaction. For learning the reward function, we label
batches of transitions during training given privileged access to the underlying goal condition of
the environment. Planning was done with CEM with the hyperparameters provided in Table 7. We
execute PlaNet and replan a new trajectory every three steps of interactions for the Hammer task and
otherwise after 25 steps.

C.5 LatCo

LatCo [43] uses collocation-based trajectory optimization on top of the PlaNet latent and dynamics
model [14]. We reused the code from https://github.com/zchuning/latco/ which we adapted
to the goal-conditioned offline setting. Note that the original implementation uses a Levenberg-
Marquardt optimizer which was at the time not available in the repository. Instead, we used gradient-
based optimization via the Adam optimizer. We excluded this method from the numerical comparison
in Table 1 since we were unable to produce robust trajectories with this method. As a reason, we
suspect the difficulty in manually tuning the weighting of cost in the optimization objective as well as
the sensitivity to the initialization.

C.6 Hallucinative Topological Memory

We implement HTM [35] based on the implementation provided in https://github.com/
thanard/hallucinative-topological-memory and used the same architectures for all net-
works and planner hyperparameters as the authors. Replanning is performed after 10 environment
steps. During testing, we observed that the VAE generally produced visually appealing images. Yet,
we found that the resulting maps contained invalid shortcut connections which frequently led to
infeasible paths.

Figure 10: Example of invalid image sequence (left to right) planned with HTM. Sequence contains shortcut
connection between the last two frames.

19

https://github.com/zchuning/latco/
https://github.com/zchuning/latco/
https://github.com/zchuning/latco/
https://github.com/thanard/hallucinative-topological-memory
https://github.com/thanard/hallucinative-topological-memory


C.7 Visual Goal-conditioned Behavioral Cloning

This baseline implements a goal-conditioned behavioral cloning policy trained directly from raw
image observations. The policy modelled using a convolutional neural network with the same
architecture as the ELAST encoder (see Table 2). Similar to CPC-GCBC, we sample goals from
future states of the same trajectories during training.

D Further Experimental Results and Ablations

D.1 The impact of the contrastive embedding

To verify the necessity of using the CPC embedding (Sec. 4.1), we tested an ablated version of
ELAST on a representation learned with a β−VAE [26] (latent dim. 16). For this comparison, we
use the same architecture for all networks and only replace the type of loss in the encoder objective.
Fig. 11 shows the Isomap embeddings of the latent state spaces for the BlockS environment obtained
by CPC (b), β−VAE (c). We also tested a β−VAE model with enforced dynamics (d) for which we
jointly optimized a forward dynamics model during encoder training. The visualization indicates that
the CPC embedding better distinguishes between temporally close and distant states. Compared to
ELAST with CPC, we observed a decrease of 90% in success on the BlockS-medium when using a
β−VAE. Training the dynamics model and the encoder together helped introducing structure into
the β−VAE latent space. Nevertheless, using this version instead of CPC resulted in a decrease of
24% for the BlockS-medium and 53% for the BlockS-hard task. The results suggest that the CPC
objective is better suited for our planning method, where it is critical that neighboring nodes are
correctly identified during tree expansion and optimization.

(a) XY-positions (b) CPC (c) β−VAE (d) β−VAE (dynamics
enforced)

Figure 11: Isomap embeddings of learned latent spaces using CPC and β−VAE for the BlockS task.

(a) CPC (b) β−VAE (dynamics enforced)

Figure 12: Isomap embeddings (3 seeds each) of latent spaces using CPC and β−VAE (with enforced dynamics)
for the BlockS task.

D.2 The importance of rejecting improbable transitions during planning

We determine the importance of rejecting unlikely transitions during tree expansion and rewiring by
evaluating a modified version of ELAST without such rejection for the environments BlockS-hard,

20



BlockAsym, Button, Cable and CableParam. The numerical results of this evaluation in terms of
average success rates are presented in Fig. 13. A significant drop in performance was observed for
all tasks, which is particularly noticeable for the BlockS-hard and Cable problems. These results
confirm that the transition-density model ψ is a necessary component and effectively recovers the
connectivity of the latent states.

BlockS-hard BlockAsym Button Cable CableParam
0

20

40

60

80

100

Su
cc

es
s 

ra
te

 (%
)

96
100

88

95

79

51

73 74

25

74

Transition rejection enabled
yes
no

Figure 13: Average success rates for BlockS-hard, BlockAsym, Button, Cable and CableParam tasks for ELAST
with and without transition rejection during planning.

D.3 The effect of the dynamics ensemble

Our method computes latent paths by connecting and rewiring nodes that are obtained through state
expansion. Consequently, the quality of the planned solutions depends heavily on the ability of the
dynamics model to generate valid states and transitions. In Sec. 4.3, we introduced an ensemble
model Hf to further improve the accuracy of the approximated latent dynamics. In order to quantify
the benefit of using Hf , we evaluated ELAST with a single dynamics model for the environments
BlockS-hard, BlockAsym, Button, Cable and CableParam. The corresponding numerical results
are shown in Fig. 14. As expected, the average success rates decreased in all cases except in the
BlockAsym task.

BlockS-hard BlockAsym Button Cable CableParam
0

20

40

60

80

100

Su
cc

es
s 

ra
te

 (%
)

96
100

88

95

79

61

100

78
83

62

Dynamics ensemble
yes (size 3)
no (size 1)

Figure 14: Average success rates for BlockS-hard, BlockAsym, Button, Cable and CableParam tasks for ELAST
with and without using the dynamics ensemble during planning.

D.4 The impact of rewiring the search tree

Our planner reconnects nodes in the search tree in order to improve the overall traveling distances
along the tree. To confirm the effectiveness of this rewiring mechanism, we repeated the experimental
evaluation with ELAST without rewiring enabled for the environments BlockS-hard, BlockAsym,
Button, Cable and CableParam. Fig. 15 shows that the number of environment interactions that
were required to finish the tasks significantly increased without rewiring. Note that this also led to
a drop in success rates (see Fig. 16) due to exceeding the maximum allowed number of steps per
environment (6).

21



BlockS-hard BlockAsym Button Cable CableParam
0

20

40

60

80

100

En
vi

ro
nm

en
t s

te
ps

36
39 38

22 23

93

61

72

38
34

Tree rewiring enabled
yes
no

Figure 15: Number of environment steps (successful trajectories only) for BlockS-hard, BlockAsym, Button,
Cable and CableParam tasks for ELAST with and without tree rewiring.

BlockS-hard BlockAsym Button Cable CableParam
0

20

40

60

80

100

Su
cc

es
s 

ra
te

 (%
)

96
100

88

95

79

40

100

54

45

64

Tree rewiring enabled
yes
no

Figure 16: Average success rates for BlockS-hard, BlockAsym, Button, Cable and CableParam tasks for ELAST
with and without tree rewiring.

D.5 How does sampling nodes in sparse regions influence the exploration behavior?

The planning hyperparameters psparse, puniform and pgoal were described in App. A.1.2. To demonstrate
that the introduction of the sparse sampling bias psparse quickens the exploration of distant areas of
the latent space, we computed the success rates of ELAST without this type of sampling enabled. Fig.
17 shows the corresponding numerical results for the environments BlockS-hard, BlockAsym, Button,
Cable and CableParam. As shown, We observed a strong decrease in performance on all tasks in
particular for the BlockS-hard and BlockAsym tasks.

BlockS-hard BlockAsym Button Cable CableParam
0

20

40

60

80

100

Su
cc

es
s 

ra
te

 (%
)

96
100

88

95

79

2 0

69

40
43

puniform = 0.2 | pgoal = 0.02
psparse = 0.78
psparse = 0.0

Figure 17: Average success rates for BlockS-hard, BlockAsym, Button, Cable and CableParam tasks with ELAST
when sampling nodes in sparse areas is enabled (psparse=0.78) compared to when it is disabled (psparse=0.0).

Fig. 18 visualizes the explored states in the latent space of the BlockAsym environment after planning
with ELAST for different values of psparse. Without encouraging sampling in sparse areas (psparse=0.0,

22



Fig. 18a), the search tree does not explore deep enough to connect to the goal on the other side of
the corridor. Yet, for larger values of psparse, the planner achieves better coverage of the latent space
resulting in valid paths.

(a) psparse=0.0 (b) psparse=0.49

(c) psparse=0.88 (d) psparse=0.98

Figure 18: Impact of sampling bias psparse for the BlockAsym environment. Figures show final paths (orange)
and search tree (blue) for niter = 5000, pgoal = 0.02 and puniform = 1.0−pgoal−psparse (visualized using Isomap).

D.6 Computation time of planning module

To assess the practicality of our planner, we measure the average computation time (wall clock) for a
new planning query. Note that a comparison with other baselines should be done with caution due
to differences in design and hyperparameters. For example, ELAST provides global solution paths
that allow for lower replanning frequency (nreplan=50) compared to trajectory optimization with, e.g.,
CEM (nreplan=15). We test both algorithms on a system with an Intel Core i7-8750H CPU and a
GeForce GTX 1050 Ti GPU. Due to the iterative processing of ELAST in its current implementation,
we evaluate it with the CPU only. However, it should be noted that it could benefit significantly
from GPU computation by parallelizing tree expansion at several different nodes simultaneously. We
report the runtimes of ELAST in its current implementation and leave the optimization of the code to
future investigations.

Fig. 19 shows the average runtimes of ELAST and CEM (GPU implementation) for the BlockS
and Drawer environments. To provide a meaningful comparison, we evaluated both methods with
different planning hyperparameters and interpret the relationship between runtime and success rate.
As shown, ELAST achieves better success rates even for versions of CEM with higher average
computation time per query. Interestingly, we see that the performance of CEM decreases for a
large number of samples, which we attribute to the fact that the risk of the planner exploiting invalid
transitions increases.

23



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Runtime (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

niters=1000

niters=2500

niters=5000

niters=7500

niters=10000

(5,25,100)

(10,50,1000) (10,100,2500)

(20,100,2500)
(30,100,2500)

BlockS
ELAST
CEM

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Runtime (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

niters=1000

niters=2500

niters=5000
niters=7500

niters=10000

(5,25,100)

(10,50,1000)
(10,100,2500)

(20,100,2500)
(30,100,2500)

Drawer
ELAST
CEM

Figure 19: Runtime and success rate of ELAST and CEM for the BlockS and Drawer tasks and for different
planning hyperparamters niter, respectively (I,H,K). Results present average over three seeds and 100 test cases-

D.7 Towards more complex environment parameterizations

Many interesting control settings in robotics are characterized by a large number of environment
variations. In our experiments, we use learned encodings of image observations to generate contextual
information about the location of obstacles. Using raw image observations instead of exact poses and
geometries is advantageous because we bypass the problem of state estimation. In section 5.2, we
evaluated our method on environments with a relatively low-dimensional underlying parameterization
characterized by the location of few obstacles. To test whether our method can plan robust latent
paths for more complex environmental variations, we implemented a version of BlockParam for
obstacle maps containing a larger number of obstacles (k=8), each with varying position, orientation,
and shape of rectangular obstacles. Fig. 20 shows several instances explored for this environment.
We generated a dataset of 1000 contexts with 20 trajectories of length 25 per context using a random
policy. We trained ELAST on this dataset and evaluated it on 100 test cases where the block start and
target positions were randomly selected, but using only scenarios with a minimum initial distance of
3 (boxed workspace of size 4x4).

24



Figure 20: Examples of the modified BlockParam environment with more complex obstacle maps.

We use a standard autoencoder (convolutional) neural network with a latent dimension of 16 to
compress the raw image context observations, and use the resulting encodings as context vectors
within our planner. Overall, we observed an average success rate of 85± 5% (3 seeds), demonstrating
that ELAST is capable of handling more complex environment parameterizations such as random
obstacle maps. To visually support our results, we present the Isomap embeddings and examples of
planned latent paths in Fig. 21.

Figure 21: Examples of Isomap embeddings and planned paths for the BlockParam environment with more
complex obstacle maps. Top row: start image, center row=goal image, bottom row: latent path.

25



D.8 Comparison of latent exploration between ELAST and CEM

(a) niter = 100 (b) niter = 200

(c) niter = 1000 (d) niter = 2500

(e) niter = 5000 (f) niter = 7500

Figure 22: Illustration of explored areas of the latent space (projected into 2D Isomap embeddings) with ELAST
for the BlockS task. Search tree (blue) and path (orange) for different niter.

26



(a) (5, 10, 100) (b) (5, 10, 500)

(c) (5, 20, 500) (d) (10, 10, 100)

(e) (10, 20, 500) (f) (10, 50, 1000)

Figure 23: Illustration of explored areas of the latent space (projected into 2D Isomap embeddings) with CEM
for the BlockS task. Visited area (blue) and current population (orange) for different (I,H,K) with iterations I ,
horizon H and K trajectories per iteration.

27



D.9 Illustrations of successful latent paths (projecting into 2D with Isomap)

(a) BlockParam I

(b) BlockParam II

(c) PlanarRobot I

(d) PlanarRobot II

(e) CableParam I

(f) CableParam II

Figure 24: Successful paths planned with ELAST (parameterized environments). Left to right: start, goal,
solution path in Isomap embedding.

28



(a) BlockS

(b) BlockAsym

(c) Reach

(d) Cable

(e) Button

(f) Drawer

(g) Hammer

Figure 25: Successful paths (unparameterized environments) planned with ELAST. Left to right: start, goal,
solution path in Isomap embedding.

29



Figure 26: Examples of planned latent paths for the Cable environment using ELAST. Left to right: start image,
goal image, path projected into 2D Isomap embedding.

30



D.10 Illustrations of failure cases

We observed that unsuccessful trajectories with ELAST are often caused by improper solution paths
containing either invalid transitions outside the latent manifold or large jumps between subsequent
nodes. Such invalid transitions can be caused by remaining approximation errors of the latent
dynamics and transition density models. Fig. 27 illustrates some examples of unsuccessful latent
paths planned with ELAST and projected into the Isomap embedding.

(a) BlockS

(b) BlockParam

(c) CableParam

Figure 27: Unsuccessful paths planned with ELAST. Left to right: start, goal, path in Isomap embedding.

For the Hammer environment, we found that unsuccessful trajectories are often caused by the
planner’s inability to generate a global solution path (see Fig. 28). One explanation for this is that
ELAST currently uses random action sampling, while the grasping subtask requires selection from
a small set of actions that lead to regions of the search space where the object is grasped. Future
work could incorporate action sampling heuristics to direct the exploration towards latent states that
are likely to be important for solving the task. In addition, we found that one of the main causes of
failure in the Hammer environment was the agent’s inability to reliably grasp the object (see Fig. 29).
In the future, the current 1-step policy could be replaced by a more sophisticated control policy, e.g.,
trained with RL, to achieve greater robustness to the effects of compound errors and improve the
performance on manipulation tasks that require a certain degree of dexterity.

(a) Hammer

Figure 28: Unsuccessful path planned with ELAST. Left to right: start, goal, path in Isomap embedding.

31



Figure 29: Example of unsuccessful grasp in the Hammer environment.

32


