A Related Work
In this section, we will give an overview of the related literature in time series forecasting.

Traditional Time Series Models The first generation of well-discussed time series model is the
autoregressive family. ARIMA ( ); ( ) follows the Markov
process and build recursive sequential forecasting. However, a plain autoregressive process has
difficulty in dealing non-stationary sequences. Thus, ARIMA employed a pre-process iteration by
differencing, which transforms the series to stationary. Still, ARIMA and related models have the
linear assumption in the autoregressive process, which limits their usage in complex forecasting tasks.

Deep Neural Network in Forecasting With the bloom of deep neural networks, recurrent neural
networks (RNNs) were designed for tasks involving sequential data. However, canonical RNN
tends to suffer from gradient vanishing/exploding problems with long input because of its recurrent
structure. Among the family of RNNs, LSTM ( ) and GRU

( ) proposed gated structure to control the information flow to deal with the gradient
vanishing/exploration problem. Although recurrent networks enjoy fast inference, they are slow to
train and not parallelizable. Temporal convolutional network (TCN) ( ) is another
family for sequential tasks. However, limited to the reception field of the kernel, the long-term
dependencies are hard to capture. Convolution is a parallelizable operation but expensive in inference.

Transformers With the innovation of Transformers in natural language processing

( ); ( ) and in computer vision tasks ( ); ( ),
they are also discussed, renovated, and applied in time series forecasting ( ), especially
the main attention module. Some works use temporal attention ( ) to capture long-range

dependencies for time series. Others use the backbone of Transformer. Transformers usually employ
an encoder-decoder architecture, with the self-attention and cross-attention mechanisms serving
as the core layers. ( ) invents a logsparse attention module to deal with the memory
bottleneck for Transformer model. ( ) uses locality-sensitive hashing to replace the
attention module for less time complexity. ( ) proposes a probability sparse attention
mechanism to deal with long-term forecasting. ( ) designs a decomposition Transformer
architecture with an Auto-Correlation mechanism as an alternative for the attention module.
( ) designs a low-complexity Pyramidal Attention for the long-term time forecasting tasks.

( ) proposes two attention modules that operate in the frequency domain using Fourier or
wavelet transformation.

Orthogonal Basis and Neural Network Orthogonal basis project arbitrary functions onto a certain
space and thus enable the representation learning in another view. Orthogonal basis family is easy
to be discretized and serves as a plug-in operation in neural networks. Recent studies began to
realize the efficiency and effectiveness of the Orthogonal basis, including the polynomial family
and others (Fourier basis & Multiwavelet basis). Fourier basis is first introduced for acceleration
due to the Fast Fourier algorithm, for example, acceleration of computing convolution

( ) or Auto-correlation function ( ); ( ). Fourier basis also serves
as a performance boosting block: Fourier with Recurrent structure ( ), Fourier
with MLP ( ); ( ) and Fourier in Transformer ( ).

Multiwavelet transform is a more local filter (compared with Fourier) and a frequency decomposer.
Thus, neural networks which employ multiwavelet filter usually exhibit a hierarchical structure and
treat different frequency in different tunnels, e.g., ( ); ( );

( ). Orthogonal Polynomials are naturally good selections of orthogonal basis. Legendre
Memory Unit (LMU) ( ) uses Legendre Polynomials for an orthogonal projection
of input signals for memory strengthening with the backbone of LSTM. The projection process is
mathematically derived from delayed linear transfer function. HiPPO ( ), based on
LMU, proposes a novel mechanism (Scaled Legendre), which involves the function’s full history
(LMU uses rolling windowed history). In the subsequent work of HiPPO, the authors propose S4
model ( ) and give the first practice on time series forecasting tasks. However, LMU
and HiPPO share the same backbone (LSTM), which may limit their performance.

B Algorithm Implementation
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Algorithm 1 Frequency Enhanced Layer

class Freq_enhanced_layer (nn.Module) :

def __init__(self, in_channels, out_channels, modesl, modes2, compression=0):
super (Freq_enhanced_layer, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.modesl = modesl #Number of Fourier modes to multiply, at most floor(N/2) + 1
self.modes2 = modes2
self.compression = compression
self.scale = (1 / (in_channels * out_channels))
self.weightsl = nn.Parameter(self.scale * torch.rand(in_channels, out_channels, self.modesl))
if compression>0: ## Low-rank approximation
self.weightsO = nn.Parameter(self.scale * torch.rand(in_channels, self.compression, dtype=
torch.cfloat))
self .weightsl = nn.Parameter(self.scale * torch.rand(self.compression, self.compression, len
(self.index), dtype=torch.cfloat))
self.weights2 = nn.Parameter(self.scale * torch.rand(self.compression, out_channels, dtype=
torch.cfloat))

def forward(self, x):
B, H,E, N = x.shape
# Compute Fourier coefficients up to factor of e~ (- something constant)
x_ft = torch.fft.rfft(x)
# Multiply relevant Fourier modes
out_ft = torch.zeros(B, H, self.out_channels, x.size(-1)//2 + 1)
if self.compression ==

a =x_ftl[:, :, :, :self.modesl]

out_ft[:, :, :, :self.modesl] = torch.einsum("bjix,iox->bjox", a, self.weightsl)
else:

a=x_ft[:, :, :, :self.modes2]

a = torch.einsum("bjix,ih->bjhx", a, self.weights0)

a = torch.einsum("bjhx,hkx->bjkx", a, self.weightsl)

out_ft[:, :, :, :self.modes2] = torch.einsum("bjkx,ko->bjox", a, self.weights2)
# Return to physical space
x = torch.fft.irfft(out_ft, n=x.size(-1))
return x

Algorithm 2 LPU layer

from scipy import signal
from scipy import special as ss
class LPU(nn.Module):
def __init__(self, N=256, dt=1.0, discretization=’bilinear’):

de:

de!

h

£

# N: the order of the Legendre projection
# dt: step size - can be roughly inverse to the length of the sequence
super (LPU,self).__init__Q)

self .N = N
A,B = transition(N) ### LMU projection matrix
A,B, _, _, _ = signal.cont2discrete((A, B, C, D), dt=dt, method=discretization)

B = B.squeeze(-1)
self.register_buffer(’A’, torch.Tensor(4))
self.register_buffer(’B’, torch.Tensor(B))

forward(self, inputs):

# inputs: (length, ...)

# output: (length, ..., N) where N is the order of the Legendre projection
¢ = torch.zeros(inputs.shape[:-1] + tuple([self.N]))

cs =[]

for f in inputs.permute([-1, 0, 1]):
f = f.unsqueeze(-1)
new = f @ self.B.unsqueeze(0) # [B, D, H, 256]
¢ = F.linear(c, self.A) + new
cs.append(c)
return torch.stack(cs, dim=0)
reconstruct(self, c):
a = (self.eval_matrix @ c.unsqueeze(-1)).squeeze(-1)
return (self.eval_matrix @ c.unsqueeze(-1)).squeeze(-1)

C Dataset and Implementation Details

C.1 Dataset Details

In this subsection, we summarize the details of the datasets used in this paper as follows: 1) ETT

(
Each of them has two versions of sampling resolutions (15min & 1h). ETT dataset contains multiple
time series of electrical loads and one time sequence of oil temperature. 2) Electricity dataset contains

) dataset contains two sub-dataset: ETT1 and ETT2, collected from two separated counties.

https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams 20112014
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Table 8: Details of benchmark datasets.

DATASET \ LENGTH DIMENSION FREQUENCY
ETTMm2 69680 8 15 MIN
EXCHANGE 7588 9 1 DAY
WEATHER 52696 22 10 MIN
ELECTRICITY 26304 322 1H

ILI 966 8 7 DAYS
TRAFFIC 17544 863 1H

the electricity consumption for more than three hundred clients with each column corresponding to
one client. 3) Exchange ( ) dataset contains the current exchange of eight countries.
4) Traffic dataset contains the occupation rate of freeway systems in California, USA. 5) Weather
dataset contains 21 meteorological indicators for a range of one year in Germany. 6) Illness dataset
contains the influenza-like illness patients in the United States. Table 8 summarizes all the features
of the six benchmark datasets. They are all split into the training set, validation set, and test set by the
ratio of 7:1:2 during modeling.

C.2 Implementation Details

Our model is trained using ADAM ( ) optimizer with a learning rate of 1e ™ to
le~3. The batch size is set to 32 (It depends on the GPU memory used in the experiment. In fact,
a batch size up to 256 does not deteriorate the performance but with faster training speed if larger
memory GPU or multiple GPUs is used). The default training process is 15 epochs without any early
stopping. We save the model with the lowest loss on the validation set for the final testing. The mean
square error (MSE) and mean absolute error (MAE) are used as metrics. All experiments are repeated
5 times and the mean of the metrics is reported as the final results. All the deep learning networks are
implemented using PyTorch ( ) and trained on NVIDIA V100 32GB GPUs/NVIDIA
V100 16GB GPUs.

C.3 Experiment Error Bars

We train our model 5 times and calculate the error bars for FILM and SOTA model FEDformer to
compare the robustness, which is summarized in Table 9. It can be seen that the overall performance
of the proposed FiLM is better than that of the SOTA FEDformer model.

Table 9: MSE with error bars (Mean and STD) for FiILM and FEDformer baseline for multivariate long-term
forecasting. All experiments are repeated 5 times.

MSE ‘ ETTm2 Electricity Exchange Traffic
96 | 0.165+0.0051  0.153£0.0014  0.079+0.002  0.416+ 0.010

E 192 | 0.222 £0.0038  0.1654+0.0023  0.159£0.011  0.408% 0.007
iZ | 336 | 0.277 £0.0021  0.186=+ 0.0018  0.2704+ 0.018  0.425+ 0.007

720 | 0.371 £0.0066  0.236+ 0.0022  0.5364 0.026  0.520+ 0.003
o | 96 | 0203 40.0042 0.194 +0.0008 0.148 £0.002  0.217 & 0.008
A | 192 | 0.269 £0.0023  0.201£ 0.0015  0.270+ 0.008  0.604 & 0.004
B 1336 | 0.325+£0.0015 0.215+£0.0018  0.460+0.016  0.621 = 0.006

720 | 0.421 £0.0038  0.246+ 0.0020  1.1954 0.026  0.626 £ 0.003

C.4 Univariate Forecasting Results

The univariate benchmark results are summarized in Table 10.

C.5 ETT Full Benchmark

We present the full-benchmark on four ETT datasets ( ) in Table 11 (multivariate
forecasting) and Table 12 (univariate forecasting). The ETTh1 and ETTh?2 are recorded hourly while

http://pems.dot.ca.gov
https://www.bgc-jena.mpg.de/wetter/
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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Table 10: Univariate long-term forecasting results on six datasets with various input length and prediction
horizon O € {96,192, 336, 720}. A lower MSE indicates better performance. All experiments are repeated 5
times.

Methods | FiLM | FEDformer | Autoformer | S4 | Informer | LogTrans |  Reformer
Metric ‘ MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

| 96 | 0.065 0.189 0.063 0.189 0065 0.189 0.153 0318 008 0225 0.075 0208 0076 0214
< | 192 ] 0,094 0233 0102 0245 0.118 0256 0.183 0350 0.132 0283 0.129 0275 0.132 0290
&~ 336 | 0124 0274 0.130 0279 0.154 0305 0204 0367 0.180 0336 0.154 0302 0.160 0.312
M720 | 0173 0323 0178 0325 0182 0335 0482 0567 0300 0435 0.160 0321 0.168 0.335
2| 9 | 0154 0.247 0253 0370 0341 0438 0351 0452 0484 0538 0.288 0393 0274 0379
§ 192 | 0.166 0258 0.282 0386 0345 0428 0373 0455 0.557 0558 0432 0483 0304 0402
= | 336 | 0188 0.283 0346 0431 0406 0470 0408 0477 0.636 0.613 0430 0483 0370 0.448
-[% 720 | 0.249 0341 0422 0484 0565 0.581 0472 0517 0819 0.682 0491 0.531 0460 0.511
&1 9 | 0110 0259 0.131 0284 0241 0387 0344 0482 0591 0.615 0237 0377 0298 0444
S 192| 0207 0352 0277 0420 0300 0369 0362 0494 1.183 0912 0.738 0.619 0777 0.719
S 1336 0327 0461 0426 0511 0509 0524 0499 0594 1.367 0984 2018 1070 1.832 1.128
§ 720 | 0.811 0708 1.162 0.832 1260 0867 0.552 0.614 1872 1.072 2405 1.175 1203 0.956
2| 9 | 0144 0215 0.170 0263 0246 0346 0.194 0290 0257 0353 0226 0317 0313 0.383
192 0120 0199 0173 0265 0266 0370 0.172 0272 0299 0376 0314 0408 0386 0453
g 133 | 0128 0212 0.178 0266 0263 0371 0.178 0278 0312 0.387 0387 0453 0423 0.468
& 1720 | 0153 0252 0187 0286 0269 0372 0263 038 0366 0436 0491 0437 0378 0433
51 96 | 0.0012 0.026 0.0035 0.046 0.011 0.081 0.0061 0.065 0.0038 0.044 0.0046 0.052 0.012 0.087
S| 192 | 0.0014 0.029 0.0054 0.059 0.0075 0.067 0.0067 0.067 0.0023 0.040 0.0056 0.060 0.0098 0.079
\3 336 | 0.0015 0.030 0.0041 0.050 0.0063 0.062 0.0025 0.0381 0.0041 0.049 0.0060 0.054 0.0050 0.059
= | 720 | 0.0022 0.037 0.015 0.091 0.0085 0.070 0.0074 0.0736 0.0031 0.042 0.0071 0.063 0.0041 0.049

24 | 0.629 0.538 0.693 0.629 0948 0.732 0.866 0.584 5282 2.050 3.607 1.662 3.838 1.720
S| 36 | 0444 0481 0554 0604 0.634 0.650 0.622 0532 4554 1916 2407 1363 2934 1.520
~ | 48 | 0557 0.584 0.699 0.696 0.791 0.752 0813 0.679 4273 1.846 3.106 1575 3.754 1.749

60 | 0.641 0.644 0.828 0.770 0.874 0.797 0931 0.747 5214 2057 3.698 1.733 4162 1.847

ETTmI1 and ETTm?2 are recorded every 15 minutes. The time series in ETTh1 and ETTm1 follow
the same pattern, and the only difference is the sampling rate, similarly for ETTh2 and ETTm2. On
average, our FiLM yields a 14.0% relative MSE reduction for multivariate forecasting, and a 16.8%
reduction for univariate forecasting over the SOTA results from FEDformer.

Table 11: Multivariate long-term forecasting results on ETT full benchmark. The best results are highlighted in
bold. A lower MSE indicates better performance. All experiments are repeated 5 times.

Methods | FiLM | FEDformer | Autoformer | S4 | Informer | LogTrans | Reformer

Metric | MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

—| 96 | 0371 0394 0376 0419 0449 0459 0949 0.777 0865 0.713 0.878 0.740 0.837 0.728
= | 192 | 0.414 0423 0420 0448 0500 0482 0.882 0.745 1.008 0.792 1.037 0.824 0.923 0.766
&~ 336 | 0442 0445 0459 0465 0.521 0496 0965 0.75 1.107 0.809 1.238 0932 1.097 0.835
M720 | 0465 0472 0506 0507 0514 0512 1.074 0814 1181 0865 1.135 0.852 1257 0.889
| 96 | 0284 0.348 0346 0.388 0358 0.397 1551 0.968 3.755 1.525 2.116 1.197 2.626 1317
= | 192 | 0.357 0.400 0429 0439 0456 0452 2336 1229 5.602 1931 4315 1.635 11.12 2979
&~ 336 | 0.377 0417 0482 0480 0482 0486 2.801 1259 4.721 1.835 1.124 1.604 9.323 2.769
M1720 | 0439 0456 0463 0474 0515 0511 2973 1333 3.647 1625 3.188 1.540 3874 1.697
=] 96 ]0.302 0345 0378 0418 0.505 0475 0.640 0.584 0.672 0.571 0.600 0.546 0.538 0.528
E 192 | 0.338 0.368 0.426 0.441 0.553 0496 0.570 0.555 0.795 0.669 0.837 0.700 0.658 0.592
&~ | 336 | 0373 0.388 0445 0459 0.621 0537 0.795 0.691 1212 0.871 1.124 0.832 0.898 0.721
1720 | 0420 0.420 0543 0490 0.671 0561 0738 0.655 1.166 0.823 1.153 0.820 1.102 0.841
| 9 |0.165 0256 0203 0287 0255 0339 0.705 0.690 0.365 0453 0.768 0.642 0.658 0.619
E 192 | 0222 0.296 0.269 0.328 0.281 0.340 0.924 0.692 0.533 0.563 0989 0.757 1.078 0.827
&~ | 336 | 0277 0333 0325 0366 0339 0372 1364 0.877 1363 0.887 1334 0.872 1549 0.972
R 1720 [ 0371 0389 0421 0415 0422 0419 2074 1074 3379 1338 3.048 1328 2631 1242

D Low-rank Approximation for FEL

With the low-rank approximation of learnable matrix in Fourier Enhanced Layer significantly reducing
our parameter size, here we study its effect on model accuracy on two typical datasets as shown in
Table 13.
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Table 12: Univariate long-term forecasting results on ETT full benchmark. The best results are highlighted in
bold. A lower MSE indicates better performance. All experiments are repeated 5 times.

Methods |

FiLM

| FEDformer | Autoformer |

4

Informer |

LogTrans

Reformer

Metric |

MSE

MAE

MSE

MAE

MSE

MAE

MSE

MAE

MSE

MAE

MSE

MAE

96
192
336
720

ETTh1

0.055
0.072
0.083
0.090

0.178
0.207
0.229
0.240

0.079
0.104
0.119
0.127

0.215
0.245
0.270
0.280

0.071
0.114
0.107
0.126

0.206
0.262
0.258
0.283

0.193
0.217
0.202
0.183

0.377
0.395
0.381
0.355

0.283
0.234
0.386
0.475

0.468
0.409
0.546
0.628

0.532
0.568
0.635
0.762

0.569
0.575
0.589
0.666

96
192
336
720

ETTh2

0.127
0.182
0.204
0.241

0.272
0.335
0.367
0.396

0.271
0.330
0.378
0.420

0.373
0.387
0.401
0.439

0.838
1.671
1.582
1.039

96
192
336
720

ETTml

0.029
0.041
0.053
0.071

0.127
0.153
0.175
0.205

0.140

0.277
0.310
0.591
0.586

0.355
0.474
0.583
0.730

96
192
336
720

ETTm?2

0.065
0.094
0.124
0.173

0.189
0.233
0.274
0.323

0.225
0.283
0.336
0.435

0.214
0.290
0.312
0.335

Table 13: Low-rank Approximation (LRA) study for frequency enhanced layer:
version without LRA, 1 means the largest compression using K=1.

E Theoretical Analysis

E.1 Theorem 1

Comp. K 0 16 4 1

Metric | MSE MAE MSE MAE MSE MAE MSE MAE
— 96 0371 0394 0371 0397 0373 0399 0391 0418
g 192 0414 0423 0414 0425 0413 0426 0437 0445
& 336 0442 0445 0452 0451 0445 0444 0460 0458
=1 720 0454 0451 0460 0472 0461 0471 0464 0476
5 96 0.199 0262 0200 0266 0.199 0263 0.198 0.261
s 192 0.228 0.288 0232 0298 0227 0287 0226 0.285
3 336 0267 0323 0266 0320 0253 0314 0264 0316
= 720 0319 0361 0314 0352 0319 0361 0314 0354
Parameter size | 100% | 6.4% | 1.6% | 0.4%

The proof is a simple extension of Proposition 6 in ( ). We omit it for brevity.

E.2 Theorem 2

. K=0 means default

As we have x; = Axy_1 + b — ¢, fort = 2,3, ...0, we recursively use them and the following
result holds:

Ty = Az + b+ €1
=A(Azi—o+b+eo)+b+e1
=A%z, o+ Ab+ b+ Aep_o + €41

6—1 0—1
=A%z o+ Z A'b+ Z Al .
=1 i=1

()

Following Hoeffding inequality, for i > 0 we have

P([()| = p) < exp

B>
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where || - ||, is the Orlicz norm defined as
| X ||y, == inf {¢ > 0: E[exp(X?/c?)] < 2}.

Since we require A being unitary, we will have [|Ae||3 = ||| and it implies [|A’¢; 1|7, ]| =
lei—1l3, = O(a?) fori = 1,2, ..., 6. The desirable result follows by setting y = O(Wbo).

E.3 Theorem 3

As we keep first s columns selected, P(A) — A has all 0 elements in first s columns. We thus ignore
them and consider the approximation quality on A € R¥*("=5) with the sampled columns. Via the
similar analysis in Appendix C of Zhou et al. (2022), with high probability we have || A — P(A)||r <
(1+4¢) ||/~1 — Ay | 7, where Ay, is the “best” rank-k approximation provided by truncating the singular
value decomposition (SVD) of A, and where || - || is the Frobenius norm. As we assume the element

in last n — s columns of A is smaller than a,;,,, one can verify ||/~1 —P(A)|lr < /dx (n— 8)amin
and desirable result follows immediately.

F Parameter Sensitivity
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Figure 7: The reconstruction error (MSE) vs. Legendre Polynomial number (/V) on three datasets with three
different input lengths.

Influence of Legendre Polynomial number N and Frequency mode number M/ The experi-
mental results on three different datasets (ETTml, Electricity, and Exchange) in Figure 7 show the
optimal choice of Legendre Polynomials number (/N) when we aim to minimize the reconstruction
error (in MSE) on the historical data. The MSE error decreases sharply at first and saturates at an
optimal point, where N is in proportion to the input length. For input sequences with lengths of 192,
336, and 720, N = 40, 60, and 100 gives the minimal MSE, respectively.

Figure 8 shows the MSE error of time series forecasting on the Electricity dataset, with different
Legendre Polynomials number (/V), mode number, and input length. We observe that, when enlarging
N, the model performance saturates at an optimal point. For example, in Figure 8 Left (input
length=192), the best performance is reached when N > 64. While in Figure 8 Right (input
length=720), the best performance is reached when NV is larger than 128. Another influential
parameter is the mode number. From Figure 8 we observe that a small mode number will lead to
better performance, as a module with a small mode number works as a denoising filter.
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Figure 8: The MSE error of univariate time series forecasting task on Electricity dataset with different Legendre
Polynomials number (N), mode number and input length. Left: input length = 192. Mid: input length = 336.
Right: input length = 720.

G Noise Injection Experiment

Our model’s robustness in long-term forecasting tasks can be demonstrated using a series of noise
injection experiments as shown in Table 14. As we can see, adding Gaussian noise in the training/test
stage has a limited effect on our model’s performance, since the deterioration is less than 1.5% in
the worst case. The model’s robustness is consistent across various forecasting horizons. Note that
adding the noise in the testing stage other than the training stage will even improve our performance
by 0.4%, which further supports our claim of robustness.

Table 14: Noise injection studies. A 0.3* N (0, 1) Gaussian noise is introduced into our training/testing. We
conduct 4 sets of experiments with/without noise in training and test phases. The experiments are performed on
ETTm1 and Electricity with different output lengths. The metric of variants is presented in relative value '+’
indicates degraded performance, and ’-’ indicates improved performance).

Training | noise | with noise

Testing | withoutnoise |  withnoise | without noise |  with noise
Metric ‘ MSE MAE MSE MAE MSE MAE MSE MAE

9% | 0371 0394 -16% -20% -00% -0.0% -1.6% -2.0%
192 | 0414 0423 -05% -14% +05% -00% -0.5% -1.4%
336 | 0442 0445 -18% -09% -09% +1.3% -32% -1.6%
720 | 0.465 0472 +02% -02% +09% +09% -0.6% -0.4%

ETThl

H Distribution Analysis of Forecasting Output

H.1 Kolmogorov-Smirnov Test

We adopt the Kolmogorov-Smirnov (KS) test to check whether our model’s input and output sequences
come from the same distribution. The KS test is a nonparametric test for checking the equality of
probability distributions. In essence, the test answers the following question “Are these two sets of
samples drawn from the same distribution?”. The Kolmogorov-Smirnov statistic is defined as:

Dn,m = sup |F17’ﬂ(m) - F2,m(x)| )
x

where sup is the supremum function, F ,, and F5 ,,, are the empirical distribution functions of the
two compared samples. For samples that are large enough, the null hypothesis would be rejected at

level « if
1 a n+m
Do I (3) [
L’m>\/2n2 n-m

where n and m are the first and second sample sizes.

H.2 Distribution Analysis

In this section, we evaluate the distribution similarity between models’ input and output sequences
using the KS test. In Table 15, we applied the Kolmogrov-Smirnov test to check if the output
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sequences of various models that trained on ETTm1/ETTm2 are consistent with the input sequence.
On both datasets, by setting the standard P-value as 0.01, various existing baseline models have much
smaller P-values except FEDformer and Autoformer, which indicates their outputs have a high proba-
bility of being sampled from different distributions compared to their input signals. Autoformer and
FEDformer have much larger P-values mainly due to their seasonal-trend decomposition mechanism.
The proposed FiLM also has a much larger P-value compared to most baseline models. And its
null hypothesis can not be rejected in most cases for these two datasets. It implies that the output
sequence generated by FiLM shares a similar pattern as the input signal, and thus justifies our design
motivation of FiLM as discussed in Section 1. Though FiILM gets a smaller P-value than FEDformer,
it is close to the actual output, which indicates that FILM makes a good balance between recovering
and forecasting.

Table 15: P-values of Kolmogrov-Smirnov test of different Transformer models for long-term forecasting output
on ETTm1 and ETTm?2 dataset. Larger value indicates the hypothesis (the input sequence and forecasting output
come from the same distribution) is less likely to be rejected. The largest results are highlighted.

Methods \ Transformer Informer Autoformer FEDformer FiLM True

— | 96 0.0090 0.0055 0.020 0.048 0.016  0.023
[E 192 0.0052 0.0029 0.015 0.028 0.0123  0.013
L[—<u 336 0.0022 0.0019 0.012 0.015 0.0046  0.010

720 0.0023 0.0016 0.008 0.014 0.0024  0.004
~ | 96 0.0012 0.0008 0.079 0.071 0.022  0.087
E 192 0.0011 0.0006 0.047 0.045 0.020  0.060
g 336 0.0005 0.00009 0.027 0.028 0.012  0.042

720 0.0008 0.0002 0.023 0.021 0.0081  0.023

I Learnable Parameter Size

Compared to Transformer-based baseline models, FiLM enjoys a lightweight property with 80%
learnable parameter reduction as shown in Table 16. It has the potential to be used in mobile devices,
or, in some situations where a lightweight model is preferred.

Table 16: Parameter size of baseline models and FILM with different low-rank approximations: the models are
trained and tested on ETT dataset; the subscript number denotes k in low-rank approximation.

Methods ‘Transformer Autoformer FEDformer FiLM FiLM,¢ FiLMys FiLM;
Parameter(M)\ 0.0069 0.0069 0.0098 1.50 0.0293 0.0062  0.00149

J Training Speed and Memory Usage
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Figure 9: (Left) the memory usage of FILM and baseline models. (Right) training speed of FILM and baseline
models. The input length is fixed to 96 and the output length is 768, 1536, 3072, 4608, and 7680.

Memory Usage As shown in Figure 9 (Left), FILM has good memory usage with the prolonging
output length. For a fair comparison, we fix the experimental settings of Xformer, where we fix the
input length as 96 and prolong the output length. From Figure 9 (Left), we can observe that FiLM
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Figure 10: Comparison of training speed and performance of benchmarks. The experiment is performed on
ETTm?2 with output length = 96, 192, 336, and 720. The performance of the models is measured with Score,
where Score = 1/MSE. The radius of the circle measured the STD of the performance. A higher Score
indicates better performance, same for Speed. A smaller circle indicates better robustness. The Speed and Score
are presented on relative value.

has a quasi-constant memory usage. Note that the memory usage of FiLM is only linear to the input
length. Furthermore, FiILM enjoys a much smaller memory usage than others because of the simple
architecture and compressed parameters with low-rank approximation as discussed in Appendix L.

Training Speed Experiments are performed on one NVIDIA V100 32GB GPU. As shown in
Figure 9 (Right), FILM has a faster training speed than others with the prolonging output length.
For a fair comparison, we fix the experimental setting of Xformer, where we fix the input length as
96 and prolong the output length. However, in the real experiment settings, we use a longer input
length (much longer than 96). Thus, the experiment in Figure 9 (Right) is merely a toy case to
show the tendency. In Figure 10, we show the average epoch time vs average performance under
the settings of benchmarks. The experiment is performed on ETTm2 dataset with output lengths
=96, 192, 336, and 720. Because of the extremely low memory usage of FiLM, it can be trained
with a larger batch size (batch size = 256) on only one GPU compared with baselines (batch size =
32). In Figure 10, FILM-256 is the FiLM models trained with batch size = 256, it exhibits significant
advantages on both speed and accuracy. Furthermore, due to the shallow structure and smaller amount
of trainable parameters, FILM is easy to converge and enjoys smaller performance variation and
smaller performance degradation when using a large batch size. It is observed that the models with
Fourier enhanced block (FiLM & FEDformer) have better robustness. It is also worth noting that
the vanilla Transformer has good training speed because of the not-so-long sequence length. Only a
sequence length over one thousand will distinguish the advantage of efficient Transformers.

K Additional Benchmarks

K.1 Multivariate long-term series forecasting with extra baseline models

For the additional benchmarks for multivariate experiments, we add some non-Transformer methods
for comparison.N-BEATS ( ) and N-HiTS ( ) are two recent
proposed powerful non-Transformer methods. As N-HiTS is the latest development from the research
group, which also published N-BEATS, we add N-HiTS to our empirical comparison. Here, we adopt
the results in the N-HiTS paper to prevent inappropriate parameter tuning problems. We also add a
seasonal-naive model in the comparison. FILM outperforms N-HiTS in most cases(33/48). Moreover,
Simple Seasonal-naive ( ) is a solid baseline on exchange datasets better than
N-hits, Fedformer, and Autoformer, but FiLM still surpasses its performance, as shown in Table 17.
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Table 17: multivariate long-term series forecasting results on six datasets with various input length and prediction
length O € {96,192, 336, 720} (For ILI dataset, we set prediction length O € {24, 36,48, 60}). Supplemen-
tary results of non-Transformer baselines (N-Hits and a seasonal-naive model).

Methods | FiLM ‘ N-Hits | FEDformer | Autoformer | Seasonal-naive |
Metric ‘ MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

9 | 0.165 0.256 0.176 0.255 0.203 0.287 0.255 0.339 0.262 0.300
192 1 0.222 0296 0245 0305 0.269 0328 0.281 0.340 0.319 0.337
336 | 0.277 0333 0295 0346 0325 0366 0339 0372 0375 0371
720 | 0.371 0.389 0.401 0.426 0421 0415 0422 0419 0469 0422

96 | 0.154 0.267 0.147 0.249 0.183 0297 0.201 0317 0211 0278
192 | 0.164 0.258 0.167 0.269 0.195 0.308 0.222 0.334 0.214 0.282
336 | 0.188 0.283 0.186 0.290 0.212 0.313 0.231 0.338 0.226 0.294
720 | 0.236 0.332 0.243 0.340 0.231 0.343 0.254 0361 0.265 0.324

96 | 0.086 0.204 0.092 0.211 0.139 0276 0.197 0323 0.086 0.204
192 | 0.189 0.292 0208 0.322 0.256 0369 0.300 0.369 0.172 0.295
336 | 0.356 0.433 0371 0443 0426 0464 0509 0.524 0311 0.401
720 | 0.727 0.669 0.888 0.723 1.090 0.800 1.447 0.941 0.832 0.686

96 | 0416 0.294 0.402 0.282 0562 0.349 0.613 0388 1.219 0.497
192 | 0.408 0.288 0420 0.297 0.562 0.346 0.616 0.382 1.089 0.456
336 | 0.425 0.298 0448 0313 0570 0323 0.622 0.337 1.147 0.473
720 | 0.520 0353 0.539 0.353 0.596 0368 0.660 0.408 1.181 0.486

Traf fic |ExchangeElectricity | ETTm?2

S| 9 |0199 0262 0158 0.195 0217 029 0.266 0.336 0315 0.288
S| 1920228 0288 0.211 0.247 0276 0336 0307 0367 0341 0.305
8336|0267 0323 0274 0300 0339 0380 035 0395 0381 0.331
=720 ] 0319 0361 0351 0353 0403 0428 0578 0578 0440 0370

24 | 1970 0.875 1.862 0.869 2203 0.963 3.483 1.287 6.581 1.699
3| 36 | 1982 0.859 2071 0969 2272 0976 3.103 1.148 7.121 1.882
~ | 48 | 1.868 0.896 2346 1.042 2209 0981 2.669 1.085 6.567 1.797

K.2 Ablation univariate forecasting experiments for FEL layers with all six datasets

As shown in Table 18, although LPU+MLP combining all boosting tricks has slightly better perfor-
mance than FiLM for the ETTm]1 dataset, FiLM remains the most consistent and effective model
among all variants across all six datasets. FEL is a much better backbone structure than MLP, LSTM,
CNN, and vanilla attention modules.

K.3 Boosting experiments of LPU with common deep learning backbones for all six datasets

As shown in Table 19, LPU shows a consistent boosting effect across all selected common deep
learning backbones for most datasets. It can be used as a simple and effective build add-on block for
long-term time series forecasting tasks. Although without data normalization, pure LPU negatively
boosts performance for some cases.

K.4 Ablation univariate forecasting experiments for Low rank approximation with all six
datasets

As shown in Table 20, with the low-rank approximation of learnable matrix in the Fourier Enhanced
Layer significantly reduces our parameter size, and even improves our model’s performance for some
datasets.

K.5 Ablation univariate forecasting experiments for frequency mode selection with all six
datasets

Three different mode selection policies are studied for frequency enhanced layer: 1) lowest mode
selection: we select m lowest frequency modes to retain. 2) random model selection: we select m
frequency modes randomly to retain. 3) lowest with extra high mode selection: we select 0.8 x m
lowest frequency modes and 0.2 x m high-frequency modes randomly to retain. The experimental
results are summarized in Table 21 with m = 64 for both experiments. The lowest mode selection is
the most stable frequency mode selection policy through adding some randomness mode can improve
the results for some datasets.
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Table 18: : (Full Benchmark)Ablation studies of FEL layer. The FEL layer is replaced with 4 different variants:
MLP, LSTM, CNN, and Transformer.The experiments are performed on ETTm1 and Electricity. The metric of
variants is presented in relative value "+’ indicates degraded performance, *-’ indicates improved performance).

Methods‘ FilM ‘ LPU+MLP ‘ LPU+LSTM ‘ LPU+CNN ‘ LPU-attention ‘
Metric ‘ MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

— | 9 | 0.029 0.127 +0.0% +0.0% +12.1% +7.1% +13.5% +9.5% +1.7%  +1.6%
E 192 | 0.041 0.153 -15% -0.6% +12.2% +85% +10.8% +7.8% +2.0%  +3.3%
E 336 | 0.053 0175 -1.7% -1.7% +4.5% +4.0% +10.8% +6.3% +4.5%  +2.9%
720 | 0.071 0205 -09% -1.0% +55% +34% +8.6% +49% +13.8% +7.8%
2| 9 | 0154 0247 +155% +81% +160% +84%  +330% +155% +242% +119%
2 (192 | 0166 0258 +59%  +39% +121% +67%  +224% +117% +264% +131%
§ 336 | 0.188 0.283 +55%  +35% +150% +74% +128% +71% +183%  +95%
m | 720 | 0249 0341 +33% +25% +154% +73% +192%  +95% +312%  +138%
%] 9 | 0110 0247  -13% -12% +51% +17% +4.6% -1.2% -4.6% -5.8%
S 1192 0207 0352 +72% +0.0% +69%  +32%  +29% +12% +22% +11%
é 336 | 0327 0461 +48% +13%  +62%  +20%  +68% +24% +72% +23%
m | 720 | 0.811 0.708 +29% +14% +24% +9.6% +38% +12% +64% +27%
o] 96 | 0144 0215 +69% +47%  +13%  +15% +300% +176% +271%  +161%
E 1192 ] 0120 0199 +17% +7.5% +31%  +24%  +258% +149% +1572% +355%
E 336 | 0.128 0.212 +62% +7.6% +16%  +15% +151% +102% +1514% +368%
720 | 0153  0.252 +38% +28% +11% +79% +250% +126% +1048% +349%
5| 96 |0.0012 0.026 +17% +6.2% +16% +69% +19%  +8.1% +21% +8.9%
g 192 | 0.0014 0.029 -14% -24% +5.0% +1.7% 0.7% -0.7% +43%  +1.4%
g 336 | 0.0015 0.030 +0.0% -0.6% +33% +13% +2.0% +0.0% +33% +1.3%
720 | 0.0022 0.037 +4.6% -03% +4.1% -1.6% 3.6% 0.0% +0.0% -3.8%
9 | 0.629 0.538 +51% +45%  -2.5% 9.5% +20% +29% +112%  +59%
= 192 | 0444 0481 +99% +58%  +25% +24%  +84% +56% +360%  +142%
= 1336 | 0557 0584 +33% +31% +21% +16% +58% +30% +702%  +94%
720 | 0.641 0.644 +84% +54% +23% +18% +42% +22% +74% +34%

Table 21: Mode selection policy study for frequency
enhanced layer. Lowest: select the lowest m frequency
mode; Random: select m random frequency mode; Low
random: select the 0.8 * m lowest frequency mode and
0.2 * m random high frequency mode.

Random Low random

Policy | Lowest

Metric | MSE MAE MSE MAE MSE MAE

96 | 0.065 0.189 0.066 0.189  0.066 0.190
192 | 0.094 0233 0.096 0235 0.096  0.235
336 | 0.124 0274 0.125 0270  0.128 0.275
720 | 0.173 0323  0.173 0322 0173 0323

96 | 0.154 0.247 0.175 0.0.260 0.176  0.262
192 | 0.166 0.258 0.177 0.266  0.168 0.273
336 | 0.188 0.283 0.199 0289  0.192 0.299
720 | 0.249 0341 0269 0364 0270 0.362

96 011 0259 0110 0256  0.106 0.249
192 | 0207 0352 0.196  0.351 0207  0.357
336 | 0327 0461 0.451 0522 0.373 0484
720 | 0.811 0.708 0.835 0.714  0.604  0.628

96 | 0.144 0.215 0.145 0216  0.145 0217

Exchange | Electricity | ETTm?2

% 192 | 012 0199 0.119  0.198 0.118  0.197
£ 33| 0128 0212 0122 0207  0.122 0209

720 | 0.153 0252 0.142 0238  0.155 0.259
5| 96 | 0.0012 0.026 0.0012 0.027 0.0012 0.026
€| 192 | 0.0014 0.029 0.0014  0.029  0.0014 0.029
§ 336 | 0.0015 0.03 0.0015 0.030 0.0015 0.030

720 | 0.0022 0.037 0.0023 0.037 0.0023 0.037

96 | 0.629 0538 0.639 0542  0.626 0.537
= | 192 0444 0481 0448 0.490 0447 0494
= 1336 | 0557 0.584 0560 0590 0.557 0.587

720 | 0.641 0.644 0.641 0.647  0.643  0.650
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Table 19: (Full Benchmark) Boosting effect of LPU layer for common deep learning backbones: MLP, LSTM,
CNN and Attention.‘+* indicates degraded performance.

Methods | FEL \ MLP \ LSTM | lagged-LSTM | CNN Attention
Compare \ LPU Linear LPU Linear LPU Linear LPU Linear LPU Linear LPU Linear
— | 96 0.030 +38% 0.034 +8.0% 0.049 +73% 0.093 -21% 0.116 -50% 0.243 -81%
E 192 | 0.047 +9.5% 0.049 +30% 0.174 +32% 0.331 -48%  0.101 +20% 0.387 -86%
E 336 | 0.063 +58% 0.061 +64%  0.119 +84% 0214 -19% 0.122 +25% 1.652 +12%
720 | 0.081 +1.4% 0.082 +62% 0.184  +32% 0303 -6.5% 0.108 +13%  4.782 -61%
2| 96 0213  +136% 0431 +121% 0291 +56% 0.739  -33% 0310 +43% 0.805 +23%
21 192 | 0268 +32% 0291 +239% 0.353 +17% 0.535 +15% 0380 +12% 0.938 +14%
31336 | 0307 +0.1% 0296 +235% 0436 -6.7% 0517 +23% 0359  +29% 2.043 -54%
M| 720 | 0321  +37% 0.339 +196% 0.636 -11% 0492 +28% 0424  +18% 9.115 +298%
S| 96 0.130  +7.5% 0110 -18% 0224 +6.0% 0.521 -58%  0.244 -18% 0.338  +872%
% 192 | 0205 +39% 0.257 -36% 0.787  -35% 1742 -66%  0.630 +2.1% 0930 +278%
S | 336 | 0467 +492% 0461 -33% 0964  +24%  2.281 -38%  3.231 -85% 1.067 +69%
S 720 | 1.003 +26% 1981 -61% 2.703 -29% 1457  +34% 5531 +9.7% 0.631 +1831%
L] 96 0312  +18% 0376 +277% 0215 +12% 0216 +10% 0.543 -33% 0429  +210%
192 | 0141 49.6% 0.199 +598% 0.177 +19% 0.186 +17% 0451 +9.0% 0476  +176%
S 1336 | 0143 +25% 0.195 +613% 0192 +19% 0.190 +11% 0346  +44% 0.377  +260%
& 1720 ] 0215 +30% 0240 +475% 0234 -1.7% 0250 +15% 0348 +47% 0.773 +171%
5| 96 | 00073 -38% 0.006 -33% 0.006  -23% 0.0070 -17% 0.0022 +167% 0.0065 -11%
:5 192 | 0.0106 -64% 0.007 -14% 0.0074 -11% 0.0063 -19%  0.007 24%  0.0075 -12%
< | 336 | 0.0079 -37% 0.006 +4.9% 0.0056 +12% 0.0055 +12% 0.0056 +0.5%  0.222 -69%
B | 720 | 00063 +04% 0006 +7.6% 00062 +53% 0103 -36% 0006 +42% 0.037 -81%
24 1393  +6.1% 1.220 +36% 2306 +66% 4.189 -92%  2.264 -22% 2249  +217%
~ |36 1.242 22% 1185 +56% 2950 +44% 2516 +42%  1.841 -3.0%  5.026 +45%
~ | 48 1.448 28%  1.079 +79%  3.385 +38% 3.501 +16% < 1.654  +23% 2.838  +115%
60 | 2.089 -18% 0986 +96%  4.031 +18% 4258 +10% 1290 +176% 4978  +250%

Table 20: Low-rank Approximation (LRA) univariate forecasting study for frequency enhanced layer: Comp.

K=0 means default version without LRA, 1 means the largest compression using K=1.

Comp. K | 0 | 16 | 4 | 1

Metric ‘ MSE MAE MSE MAE MSE MAE MSE MAE
N 96 0.065 0.189 0.064 0.185 0.064 0.185 0.064 0.186
i 192 0.094 0.233 0.094 0.231 0.093 0.231 0.093 0.231
&~ 336 0.124  0.274 0.124 0.270 0.124 0.269 0.124 0.271
M 720 0.173 0323 0.173 0322 0.173 0322 0.177 0.328
.“? 96 0.154 0.247 0.211 0324 0.216 0.331 0.277 0.387
2 192 0.166 0.258 0.251 0352 0.246 0.347 0.334 0421
"E 336 0.188 0.283 0.276 0.369 0.302 0.396 0.363 0.440
% 720 0.249 0341 0336 0429 0342 0436 0411 0481
g 96 0.110 0.259 0.119 0.273 0.104 0.247 0.105 0.251
% 192 0.207 0352 0.196 0355 0.195 0349 0.212 0.372
S 336 0.327 0461 0.388 0.497 0373 0491 0407 0.506
LS 720 0.811 0.708 0.908 0.767 1.288 0.941 1.840 1.153
2 96 0.144 0215 0.146 0.223 0.154 0.237 0.267 0.373
Py 192 0.120 0.199 0.121 0.201 0.138 0.231 0.218 0.333
N 336 0.128 0.212  0.120 0.206 0.132 0.227 0.216 0.335
&~ 720 0.153 0.252  0.155 0.257 0.154 0.257 0.246 0.366
5 96 0.0012 0.026 0.0011 0.025 0.001 0.025 0.001 0.025
§ 192 0.0014 0.029 0.0014 0.028 0.001 0.028 0.001 0.028
< 336 0.0015 0.03 0.0015 0.030 0.001 0.029 0.002 0.030
& 720 0.0022 0.037 0.0022 0.037 0.002 0.037 0.002 0.037
96 0.629 0538 0.599 0.556 0.628 0.558 0.630 0.579
: 192 0.444 0481 0487 0.533 0.508 0.561 0.570 0.612
~ 336 0.557 0.584 0.553 0.565 0.703 0.696 0.722 0.706
720 0.641 0.644 0.648 0.641 0900 0.780 1.493 1.032

Parameter size | 100% 6.4% 1.6% | 0.4%
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