
A Related Work

In this section, we will give an overview of the related literature in time series forecasting.

Traditional Time Series Models The first generation of well-discussed time series model is the
autoregressive family. ARIMA Box & Jenkins (1968); Box & Pierce (1970) follows the Markov
process and build recursive sequential forecasting. However, a plain autoregressive process has
difficulty in dealing non-stationary sequences. Thus, ARIMA employed a pre-process iteration by
differencing, which transforms the series to stationary. Still, ARIMA and related models have the
linear assumption in the autoregressive process, which limits their usage in complex forecasting tasks.

Deep Neural Network in Forecasting With the bloom of deep neural networks, recurrent neural
networks (RNNs) were designed for tasks involving sequential data. However, canonical RNN
tends to suffer from gradient vanishing/exploding problems with long input because of its recurrent
structure. Among the family of RNNs, LSTM Hochreiter & Schmidhuber (1997b) and GRU Chung
et al. (2014) proposed gated structure to control the information flow to deal with the gradient
vanishing/exploration problem. Although recurrent networks enjoy fast inference, they are slow to
train and not parallelizable. Temporal convolutional network (TCN) Sen et al. (2019) is another
family for sequential tasks. However, limited to the reception field of the kernel, the long-term
dependencies are hard to capture. Convolution is a parallelizable operation but expensive in inference.

Transformers With the innovation of Transformers in natural language processing Vaswani et al.
(2017); Devlin et al. (2019) and in computer vision tasks Dosovitskiy et al. (2021); Rao et al. (2021),
they are also discussed, renovated, and applied in time series forecasting Wen et al. (2022b), especially
the main attention module. Some works use temporal attention Qin et al. (2017) to capture long-range
dependencies for time series. Others use the backbone of Transformer. Transformers usually employ
an encoder-decoder architecture, with the self-attention and cross-attention mechanisms serving
as the core layers. Li et al. (2019) invents a logsparse attention module to deal with the memory
bottleneck for Transformer model. Kitaev et al. (2020) uses locality-sensitive hashing to replace the
attention module for less time complexity. Zhou et al. (2021) proposes a probability sparse attention
mechanism to deal with long-term forecasting. Wu et al. (2021) designs a decomposition Transformer
architecture with an Auto-Correlation mechanism as an alternative for the attention module. Liu et al.
(2022) designs a low-complexity Pyramidal Attention for the long-term time forecasting tasks. Zhou
et al. (2022) proposes two attention modules that operate in the frequency domain using Fourier or
wavelet transformation.

Orthogonal Basis and Neural Network Orthogonal basis project arbitrary functions onto a certain
space and thus enable the representation learning in another view. Orthogonal basis family is easy
to be discretized and serves as a plug-in operation in neural networks. Recent studies began to
realize the efficiency and effectiveness of the Orthogonal basis, including the polynomial family
and others (Fourier basis & Multiwavelet basis). Fourier basis is first introduced for acceleration
due to the Fast Fourier algorithm, for example, acceleration of computing convolution Gu et al.
(2020) or Auto-correlation function Wen et al. (2021a); Wu et al. (2021). Fourier basis also serves
as a performance boosting block: Fourier with Recurrent structure Zhang et al. (2018), Fourier
with MLP Li et al. (2020); Lee-Thorp et al. (2021) and Fourier in Transformer Zhou et al. (2022).
Multiwavelet transform is a more local filter (compared with Fourier) and a frequency decomposer.
Thus, neural networks which employ multiwavelet filter usually exhibit a hierarchical structure and
treat different frequency in different tunnels, e.g., Wang et al. (2018); Gupta et al. (2021); Zhou
et al. (2022). Orthogonal Polynomials are naturally good selections of orthogonal basis. Legendre
Memory Unit (LMU) Voelker et al. (2019) uses Legendre Polynomials for an orthogonal projection
of input signals for memory strengthening with the backbone of LSTM. The projection process is
mathematically derived from delayed linear transfer function. HiPPO Gu et al. (2020), based on
LMU, proposes a novel mechanism (Scaled Legendre), which involves the function’s full history
(LMU uses rolling windowed history). In the subsequent work of HiPPO, the authors propose S4
model Gu et al. (2021a) and give the first practice on time series forecasting tasks. However, LMU
and HiPPO share the same backbone (LSTM), which may limit their performance.

B Algorithm Implementation
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Algorithm 1 Frequency Enhanced Layer

class Freq_enhanced_layer(nn.Module):

def __init__(self, in_channels, out_channels, modes1, modes2, compression=0):

super(Freq_enhanced_layer, self).__init__()

self.in_channels = in_channels

self.out_channels = out_channels

self.modes1 = modes1 #Number of Fourier modes to multiply, at most floor(N/2) + 1

self.modes2 = modes2

self.compression = compression

self.scale = (1 / (in_channels * out_channels))

self.weights1 = nn.Parameter(self.scale * torch.rand(in_channels, out_channels, self.modes1))

if compression>0: ## Low-rank approximation

self.weights0 = nn.Parameter(self.scale * torch.rand(in_channels, self.compression, dtype=

torch.cfloat))

self.weights1 = nn.Parameter(self.scale * torch.rand(self.compression, self.compression, len

(self.index), dtype=torch.cfloat))

self.weights2 = nn.Parameter(self.scale * torch.rand(self.compression, out_channels, dtype=

torch.cfloat))

def forward(self, x):

B, H,E, N = x.shape

# Compute Fourier coefficients up to factor of e^(- something constant)

x_ft = torch.fft.rfft(x)

# Multiply relevant Fourier modes

out_ft = torch.zeros(B, H, self.out_channels, x.size(-1)//2 + 1)

if self.compression == 0:

a = x_ft[:, :, :, :self.modes1]

out_ft[:, :, :, :self.modes1] = torch.einsum("bjix,iox->bjox", a, self.weights1)

else:

a = x_ft[:, :, :, :self.modes2]

a = torch.einsum("bjix,ih->bjhx", a, self.weights0)

a = torch.einsum("bjhx,hkx->bjkx", a, self.weights1)

out_ft[:, :, :, :self.modes2] = torch.einsum("bjkx,ko->bjox", a, self.weights2)

# Return to physical space

x = torch.fft.irfft(out_ft, n=x.size(-1))

return x

Algorithm 2 LPU layer

from scipy import signal

from scipy import special as ss

class LPU(nn.Module):

def __init__(self, N=256, dt=1.0, discretization=’bilinear’):

# N: the order of the Legendre projection

# dt: step size - can be roughly inverse to the length of the sequence

super(LPU,self).__init__()

self.N = N

A,B = transition(N) ### LMU projection matrix

A,B, _, _, _ = signal.cont2discrete((A, B, C, D), dt=dt, method=discretization)

B = B.squeeze(-1)

self.register_buffer(’A’, torch.Tensor(A))

self.register_buffer(’B’, torch.Tensor(B))

def forward(self, inputs):

# inputs: (length, ...)

# output: (length, ..., N) where N is the order of the Legendre projection

c = torch.zeros(inputs.shape[:-1] + tuple([self.N]))

cs = []

for f in inputs.permute([-1, 0, 1]):

f = f.unsqueeze(-1)

new = f @ self.B.unsqueeze(0) # [B, D, H, 256]

c = F.linear(c, self.A) + new

cs.append(c)

return torch.stack(cs, dim=0)

def reconstruct(self, c):

a = (self.eval_matrix @ c.unsqueeze(-1)).squeeze(-1)

return (self.eval_matrix @ c.unsqueeze(-1)).squeeze(-1)

C Dataset and Implementation Details

C.1 Dataset Details

In this subsection, we summarize the details of the datasets used in this paper as follows: 1) ETT Zhou
et al. (2021) dataset contains two sub-dataset: ETT1 and ETT2, collected from two separated counties.
Each of them has two versions of sampling resolutions (15min & 1h). ETT dataset contains multiple
time series of electrical loads and one time sequence of oil temperature. 2) Electricity dataset contains

https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams 20112014
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Table 8: Details of benchmark datasets.

DATASET LENGTH DIMENSION FREQUENCY

ETTM2 69680 8 15 MIN
EXCHANGE 7588 9 1 DAY
WEATHER 52696 22 10 MIN
ELECTRICITY 26304 322 1H
ILI 966 8 7 DAYS
TRAFFIC 17544 863 1H

the electricity consumption for more than three hundred clients with each column corresponding to
one client. 3) Exchange Lai et al. (2018) dataset contains the current exchange of eight countries.
4) Traffic dataset contains the occupation rate of freeway systems in California, USA. 5) Weather
dataset contains 21 meteorological indicators for a range of one year in Germany. 6) Illness dataset
contains the influenza-like illness patients in the United States. Table 8 summarizes all the features
of the six benchmark datasets. They are all split into the training set, validation set, and test set by the
ratio of 7:1:2 during modeling.

C.2 Implementation Details

Our model is trained using ADAM Kingma & Ba (2017) optimizer with a learning rate of 1e�4 to
1e�3. The batch size is set to 32 (It depends on the GPU memory used in the experiment. In fact,
a batch size up to 256 does not deteriorate the performance but with faster training speed if larger
memory GPU or multiple GPUs is used). The default training process is 15 epochs without any early
stopping. We save the model with the lowest loss on the validation set for the final testing. The mean
square error (MSE) and mean absolute error (MAE) are used as metrics. All experiments are repeated
5 times and the mean of the metrics is reported as the final results. All the deep learning networks are
implemented using PyTorch Paszke et al. (2019) and trained on NVIDIA V100 32GB GPUs/NVIDIA
V100 16GB GPUs.

C.3 Experiment Error Bars

We train our model 5 times and calculate the error bars for FiLM and SOTA model FEDformer to
compare the robustness, which is summarized in Table 9. It can be seen that the overall performance
of the proposed FiLM is better than that of the SOTA FEDformer model.

Table 9: MSE with error bars (Mean and STD) for FiLM and FEDformer baseline for multivariate long-term
forecasting. All experiments are repeated 5 times.

MSE ETTm2 Electricity Exchange Traffic

Fi
LM

96 0.165 ± 0.0051 0.153± 0.0014 0.079± 0.002 0.416± 0.010
192 0.222 ± 0.0038 0.165± 0.0023 0.159± 0.011 0.408± 0.007
336 0.277 ± 0.0021 0.186± 0.0018 0.270± 0.018 0.425± 0.007
720 0.371 ± 0.0066 0.236± 0.0022 0.536± 0.026 0.520± 0.003

FE
D

-f

96 0.203 ± 0.0042 0.194 ± 0.0008 0.148 ± 0.002 0.217 ± 0.008
192 0.269 ± 0.0023 0.201± 0.0015 0.270± 0.008 0.604 ± 0.004
336 0.325 ± 0.0015 0.215± 0.0018 0.460± 0.016 0.621 ± 0.006
720 0.421 ± 0.0038 0.246± 0.0020 1.195± 0.026 0.626 ± 0.003

C.4 Univariate Forecasting Results

The univariate benchmark results are summarized in Table 10.

C.5 ETT Full Benchmark

We present the full-benchmark on four ETT datasets Zhou et al. (2021) in Table 11 (multivariate
forecasting) and Table 12 (univariate forecasting). The ETTh1 and ETTh2 are recorded hourly while

http://pems.dot.ca.gov
https://www.bgc-jena.mpg.de/wetter/
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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Table 10: Univariate long-term forecasting results on six datasets with various input length and prediction
horizon O 2 {96, 192, 336, 720}. A lower MSE indicates better performance. All experiments are repeated 5
times.

Methods FiLM FEDformer Autoformer S4 Informer LogTrans Reformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
m
2 96 0.065 0.189 0.063 0.189 0.065 0.189 0.153 0.318 0.088 0.225 0.075 0.208 0.076 0.214

192 0.094 0.233 0.102 0.245 0.118 0.256 0.183 0.350 0.132 0.283 0.129 0.275 0.132 0.290
336 0.124 0.274 0.130 0.279 0.154 0.305 0.204 0.367 0.180 0.336 0.154 0.302 0.160 0.312
720 0.173 0.323 0.178 0.325 0.182 0.335 0.482 0.567 0.300 0.435 0.160 0.321 0.168 0.335

E
le
ct
ri
ci
ty 96 0.154 0.247 0.253 0.370 0.341 0.438 0.351 0.452 0.484 0.538 0.288 0.393 0.274 0.379

192 0.166 0.258 0.282 0.386 0.345 0.428 0.373 0.455 0.557 0.558 0.432 0.483 0.304 0.402
336 0.188 0.283 0.346 0.431 0.406 0.470 0.408 0.477 0.636 0.613 0.430 0.483 0.370 0.448
720 0.249 0.341 0.422 0.484 0.565 0.581 0.472 0.517 0.819 0.682 0.491 0.531 0.460 0.511

E
x
ch

an
ge 96 0.110 0.259 0.131 0.284 0.241 0.387 0.344 0.482 0.591 0.615 0.237 0.377 0.298 0.444

192 0.207 0.352 0.277 0.420 0.300 0.369 0.362 0.494 1.183 0.912 0.738 0.619 0.777 0.719
336 0.327 0.461 0.426 0.511 0.509 0.524 0.499 0.594 1.367 0.984 2.018 1.070 1.832 1.128
720 0.811 0.708 1.162 0.832 1.260 0.867 0.552 0.614 1.872 1.072 2.405 1.175 1.203 0.956

T
ra

f
f
ic 96 0.144 0.215 0.170 0.263 0.246 0.346 0.194 0.290 0.257 0.353 0.226 0.317 0.313 0.383

192 0.120 0.199 0.173 0.265 0.266 0.370 0.172 0.272 0.299 0.376 0.314 0.408 0.386 0.453
336 0.128 0.212 0.178 0.266 0.263 0.371 0.178 0.278 0.312 0.387 0.387 0.453 0.423 0.468
720 0.153 0.252 0.187 0.286 0.269 0.372 0.263 0.386 0.366 0.436 0.491 0.437 0.378 0.433

W
ea
th
er 96 0.0012 0.026 0.0035 0.046 0.011 0.081 0.0061 0.065 0.0038 0.044 0.0046 0.052 0.012 0.087

192 0.0014 0.029 0.0054 0.059 0.0075 0.067 0.0067 0.067 0.0023 0.040 0.0056 0.060 0.0098 0.079
336 0.0015 0.030 0.0041 0.050 0.0063 0.062 0.0025 0.0381 0.0041 0.049 0.0060 0.054 0.0050 0.059
720 0.0022 0.037 0.015 0.091 0.0085 0.070 0.0074 0.0736 0.0031 0.042 0.0071 0.063 0.0041 0.049

IL
I

24 0.629 0.538 0.693 0.629 0.948 0.732 0.866 0.584 5.282 2.050 3.607 1.662 3.838 1.720
36 0.444 0.481 0.554 0.604 0.634 0.650 0.622 0.532 4.554 1.916 2.407 1.363 2.934 1.520
48 0.557 0.584 0.699 0.696 0.791 0.752 0.813 0.679 4.273 1.846 3.106 1.575 3.754 1.749
60 0.641 0.644 0.828 0.770 0.874 0.797 0.931 0.747 5.214 2.057 3.698 1.733 4.162 1.847

ETTm1 and ETTm2 are recorded every 15 minutes. The time series in ETTh1 and ETTm1 follow
the same pattern, and the only difference is the sampling rate, similarly for ETTh2 and ETTm2. On
average, our FiLM yields a 14.0% relative MSE reduction for multivariate forecasting, and a 16.8%
reduction for univariate forecasting over the SOTA results from FEDformer.

Table 11: Multivariate long-term forecasting results on ETT full benchmark. The best results are highlighted in
bold. A lower MSE indicates better performance. All experiments are repeated 5 times.

Methods FiLM FEDformer Autoformer S4 Informer LogTrans Reformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
h
1 96 0.371 0.394 0.376 0.419 0.449 0.459 0.949 0.777 0.865 0.713 0.878 0.740 0.837 0.728

192 0.414 0.423 0.420 0.448 0.500 0.482 0.882 0.745 1.008 0.792 1.037 0.824 0.923 0.766
336 0.442 0.445 0.459 0.465 0.521 0.496 0.965 0.75 1.107 0.809 1.238 0.932 1.097 0.835
720 0.465 0.472 0.506 0.507 0.514 0.512 1.074 0.814 1.181 0.865 1.135 0.852 1.257 0.889

E
T
T
h
2 96 0.284 0.348 0.346 0.388 0.358 0.397 1.551 0.968 3.755 1.525 2.116 1.197 2.626 1.317

192 0.357 0.400 0.429 0.439 0.456 0.452 2.336 1.229 5.602 1.931 4.315 1.635 11.12 2.979
336 0.377 0.417 0.482 0.480 0.482 0.486 2.801 1.259 4.721 1.835 1.124 1.604 9.323 2.769
720 0.439 0.456 0.463 0.474 0.515 0.511 2.973 1.333 3.647 1.625 3.188 1.540 3.874 1.697

E
T
T
m
1 96 0.302 0.345 0.378 0.418 0.505 0.475 0.640 0.584 0.672 0.571 0.600 0.546 0.538 0.528

192 0.338 0.368 0.426 0.441 0.553 0.496 0.570 0.555 0.795 0.669 0.837 0.700 0.658 0.592
336 0.373 0.388 0.445 0.459 0.621 0.537 0.795 0.691 1.212 0.871 1.124 0.832 0.898 0.721
720 0.420 0.420 0.543 0.490 0.671 0.561 0.738 0.655 1.166 0.823 1.153 0.820 1.102 0.841

E
T
T
m
2 96 0.165 0.256 0.203 0.287 0.255 0.339 0.705 0.690 0.365 0.453 0.768 0.642 0.658 0.619

192 0.222 0.296 0.269 0.328 0.281 0.340 0.924 0.692 0.533 0.563 0.989 0.757 1.078 0.827
336 0.277 0.333 0.325 0.366 0.339 0.372 1.364 0.877 1.363 0.887 1.334 0.872 1.549 0.972
720 0.371 0.389 0.421 0.415 0.422 0.419 2.074 1.074 3.379 1.338 3.048 1.328 2.631 1.242

D Low-rank Approximation for FEL

With the low-rank approximation of learnable matrix in Fourier Enhanced Layer significantly reducing
our parameter size, here we study its effect on model accuracy on two typical datasets as shown in
Table 13.
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Table 12: Univariate long-term forecasting results on ETT full benchmark. The best results are highlighted in
bold. A lower MSE indicates better performance. All experiments are repeated 5 times.

Methods FiLM FEDformer Autoformer S4 Informer LogTrans Reformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
E
T
T
h
1 96 0.055 0.178 0.079 0.215 0.071 0.206 0.316 0.490 0.193 0.377 0.283 0.468 0.532 0.569

192 0.072 0.207 0.104 0.245 0.114 0.262 0.345 0.516 0.217 0.395 0.234 0.409 0.568 0.575
336 0.083 0.229 0.119 0.270 0.107 0.258 0.825 0.846 0.202 0.381 0.386 0.546 0.635 0.589
720 0.090 0.240 0.127 0.280 0.126 0.283 0.190 0.355 0.183 0.355 0.475 0.628 0.762 0.666

E
T
T
h
2 96 0.127 0.272 0.128 0.271 0.153 0.306 0.381 0.501 0.213 0.373 0.217 0.379 1.411 0.838

192 0.182 0.335 0.185 0.330 0.204 0.351 0.332 0.458 0.227 0.387 0.281 0.429 5.658 1.671
336 0.204 0.367 0.231 0.378 0.246 0.389 0.655 0.670 0.242 0.401 0.293 0.437 4.777 1.582
720 0.241 0.396 0.278 0.420 0.268 0.409 0.630 0.662 0.291 0.439 0.218 0.387 2.042 1.039

E
T
T
m
1 96 0.029 0.127 0.033 0.140 0.056 0.183 0.651 0.733 0.109 0.277 0.049 0.171 0.296 0.355

192 0.041 0.153 0.058 0.186 0.081 0.216 0.190 0.372 0.151 0.310 0.157 0.317 0.429 0.474
336 0.053 0.175 0.071 0.209 0.076 0.218 0.428 0.581 0.427 0.591 0.289 0.459 0.585 0.583
720 0.071 0.205 0.102 0.250 0.110 0.267 0.254 0.433 0.438 0.586 0.430 0.579 0.782 0.730

E
T
T
m
2 96 0.065 0.189 0.063 0.189 0.065 0.189 0.153 0.318 0.088 0.225 0.075 0.208 0.076 0.214

192 0.094 0.233 0.102 0.245 0.118 0.256 0.183 0.350 0.132 0.283 0.129 0.275 0.132 0.290
336 0.124 0.274 0.130 0.279 0.154 0.305 0.204 0.367 0.180 0.336 0.154 0.302 0.160 0.312
720 0.173 0.323 0.178 0.325 0.182 0.335 0.482 0.567 0.300 0.435 0.160 0.321 0.168 0.335

Table 13: Low-rank Approximation (LRA) study for frequency enhanced layer: Comp. K=0 means default
version without LRA, 1 means the largest compression using K=1.

Comp. K 0 16 4 1

Metric MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
h
1 96 0.371 0.394 0.371 0.397 0.373 0.399 0.391 0.418

192 0.414 0.423 0.414 0.425 0.413 0.426 0.437 0.445
336 0.442 0.445 0.452 0.451 0.445 0.444 0.460 0.458
720 0.454 0.451 0.460 0.472 0.461 0.471 0.464 0.476

W
ea
th
er 96 0.199 0.262 0.200 0.266 0.199 0.263 0.198 0.261

192 0.228 0.288 0.232 0.298 0.227 0.287 0.226 0.285
336 0.267 0.323 0.266 0.320 0.253 0.314 0.264 0.316
720 0.319 0.361 0.314 0.352 0.319 0.361 0.314 0.354

Parameter size 100% 6.4% 1.6% 0.4%

E Theoretical Analysis

E.1 Theorem 1

The proof is a simple extension of Proposition 6 in Gu et al. (2020). We omit it for brevity.

E.2 Theorem 2

As we have xt = Axt�1 + b � ✏t�1 for t = 2, 3, ...✓, we recursively use them and the following
result holds:

xt = Axt�1 + b+ ✏t�1

= A(Axt�2 + b+ ✏t�2) + b+ ✏t�1

= A2xt�2 +Ab+ b+A✏t�2 + ✏t�1

· · ·

= A✓xt�✓ +
✓�1X

i=1

Aib+
✓�1X

i=1

Ai✏t�i

| {z }
(⇤)

.

Following Hoeffding inequality, for µ > 0 we have

(|(⇤)| � µ)  exp

 
�

2µ2

P✓�1
i=1 kAi✏t�1k

2
 2

!
, (4)
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where k · k 2 is the Orlicz norm defined as

kXk 2 := inf
�
c � 0 : [exp(X2/c2)]  2

 
.

Since we require A being unitary, we will have kA✏k22 = k✏k22 and it implies kAi✏t�1k
2
 2
k =

k✏t�1k
2
 2

= O(�2) for i = 1, 2, ..., ✓. The desirable result follows by setting µ = O(
p
✓�).

E.3 Theorem 3

As we keep first s columns selected, P (A)�A has all 0 elements in first s columns. We thus ignore
them and consider the approximation quality on Ã 2 Rd⇥(n�s) with the sampled columns. Via the
similar analysis in Appendix C of Zhou et al. (2022), with high probability we have kÃ�P (A)kF 

(1 + ✏)kÃ� ÃkkF , where Ãk is the “best” rank-k approximation provided by truncating the singular
value decomposition (SVD) of Ã, and where k · kF is the Frobenius norm. As we assume the element
in last n� s columns of A is smaller than amin, one can verify kÃ�P (A)kF 

p
d⇥ (n� s)amin

and desirable result follows immediately.

F Parameter Sensitivity

Figure 7: The reconstruction error (MSE) vs. Legendre Polynomial number (N ) on three datasets with three
different input lengths.

Influence of Legendre Polynomial number N and Frequency mode number M The experi-
mental results on three different datasets (ETTm1, Electricity, and Exchange) in Figure 7 show the
optimal choice of Legendre Polynomials number (N ) when we aim to minimize the reconstruction
error (in MSE) on the historical data. The MSE error decreases sharply at first and saturates at an
optimal point, where N is in proportion to the input length. For input sequences with lengths of 192,
336, and 720, N ⇡ 40, 60, and 100 gives the minimal MSE, respectively.

Figure 8 shows the MSE error of time series forecasting on the Electricity dataset, with different
Legendre Polynomials number (N ), mode number, and input length. We observe that, when enlarging
N , the model performance saturates at an optimal point. For example, in Figure 8 Left (input
length=192), the best performance is reached when N > 64. While in Figure 8 Right (input
length=720), the best performance is reached when N is larger than 128. Another influential
parameter is the mode number. From Figure 8 we observe that a small mode number will lead to
better performance, as a module with a small mode number works as a denoising filter.
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Figure 8: The MSE error of univariate time series forecasting task on Electricity dataset with different Legendre
Polynomials number (N ), mode number and input length. Left: input length = 192. Mid: input length = 336.
Right: input length = 720.

G Noise Injection Experiment

Our model’s robustness in long-term forecasting tasks can be demonstrated using a series of noise
injection experiments as shown in Table 14. As we can see, adding Gaussian noise in the training/test
stage has a limited effect on our model’s performance, since the deterioration is less than 1.5% in
the worst case. The model’s robustness is consistent across various forecasting horizons. Note that
adding the noise in the testing stage other than the training stage will even improve our performance
by 0.4%, which further supports our claim of robustness.

Table 14: Noise injection studies. A 0.3*N (0, 1) Gaussian noise is introduced into our training/testing. We
conduct 4 sets of experiments with/without noise in training and test phases. The experiments are performed on
ETTm1 and Electricity with different output lengths. The metric of variants is presented in relative value (’+’
indicates degraded performance, and ’-’ indicates improved performance).

Training noise with noise

Testing without noise with noise without noise with noise

Metric MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
h
1 96 0.371 0.394 -1.6% -2.0% -0.0% -0.0% -1.6% -2.0%

192 0.414 0.423 -0.5% -1.4% +0.5% -0.0% -0.5% -1.4%
336 0.442 0.445 -1.8% -0.9% -0.9% +1.3% -3.2% -1.6%
720 0.465 0.472 +0.2% -0.2% +0.9% +0.9% -0.6% -0.4%

H Distribution Analysis of Forecasting Output

H.1 Kolmogorov-Smirnov Test

We adopt the Kolmogorov-Smirnov (KS) test to check whether our model’s input and output sequences
come from the same distribution. The KS test is a nonparametric test for checking the equality of
probability distributions. In essence, the test answers the following question “Are these two sets of
samples drawn from the same distribution?”. The Kolmogorov-Smirnov statistic is defined as:

Dn,m = sup
x

|F1,n(x)� F2,m(x)| ,

where sup is the supremum function, F1,n and F2,m are the empirical distribution functions of the
two compared samples. For samples that are large enough, the null hypothesis would be rejected at
level ↵ if

Dn,m >

r
�
1

2
ln
⇣↵
2

⌘
·

r
n+m

n ·m
,

where n and m are the first and second sample sizes.

H.2 Distribution Analysis

In this section, we evaluate the distribution similarity between models’ input and output sequences
using the KS test. In Table 15, we applied the Kolmogrov-Smirnov test to check if the output
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sequences of various models that trained on ETTm1/ETTm2 are consistent with the input sequence.
On both datasets, by setting the standard P-value as 0.01, various existing baseline models have much
smaller P-values except FEDformer and Autoformer, which indicates their outputs have a high proba-
bility of being sampled from different distributions compared to their input signals. Autoformer and
FEDformer have much larger P-values mainly due to their seasonal-trend decomposition mechanism.
The proposed FiLM also has a much larger P-value compared to most baseline models. And its
null hypothesis can not be rejected in most cases for these two datasets. It implies that the output
sequence generated by FiLM shares a similar pattern as the input signal, and thus justifies our design
motivation of FiLM as discussed in Section 1. Though FiLM gets a smaller P-value than FEDformer,
it is close to the actual output, which indicates that FiLM makes a good balance between recovering
and forecasting.

Table 15: P-values of Kolmogrov-Smirnov test of different Transformer models for long-term forecasting output
on ETTm1 and ETTm2 dataset. Larger value indicates the hypothesis (the input sequence and forecasting output
come from the same distribution) is less likely to be rejected. The largest results are highlighted.

Methods Transformer Informer Autoformer FEDformer FiLM True

ET
Tm

1 96 0.0090 0.0055 0.020 0.048 0.016 0.023
192 0.0052 0.0029 0.015 0.028 0.0123 0.013
336 0.0022 0.0019 0.012 0.015 0.0046 0.010
720 0.0023 0.0016 0.008 0.014 0.0024 0.004

ET
Tm

2 96 0.0012 0.0008 0.079 0.071 0.022 0.087
192 0.0011 0.0006 0.047 0.045 0.020 0.060
336 0.0005 0.00009 0.027 0.028 0.012 0.042
720 0.0008 0.0002 0.023 0.021 0.0081 0.023

I Learnable Parameter Size

Compared to Transformer-based baseline models, FiLM enjoys a lightweight property with 80%
learnable parameter reduction as shown in Table 16. It has the potential to be used in mobile devices,
or, in some situations where a lightweight model is preferred.

Table 16: Parameter size of baseline models and FiLM with different low-rank approximations: the models are
trained and tested on ETT dataset; the subscript number denotes k in low-rank approximation.

Methods Transformer Autoformer FEDformer FiLM FiLM16 FiLM4 FiLM1

Parameter(M) 0.0069 0.0069 0.0098 1.50 0.0293 0.0062 0.00149

J Training Speed and Memory Usage

Figure 9: (Left) the memory usage of FiLM and baseline models. (Right) training speed of FiLM and baseline
models. The input length is fixed to 96 and the output length is 768, 1536, 3072, 4608, and 7680.

Memory Usage As shown in Figure 9 (Left), FiLM has good memory usage with the prolonging
output length. For a fair comparison, we fix the experimental settings of Xformer, where we fix the
input length as 96 and prolong the output length. From Figure 9 (Left), we can observe that FiLM
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Figure 10: Comparison of training speed and performance of benchmarks. The experiment is performed on
ETTm2 with output length = 96, 192, 336, and 720. The performance of the models is measured with Score,
where Score = 1/MSE. The radius of the circle measured the STD of the performance. A higher Score
indicates better performance, same for Speed. A smaller circle indicates better robustness. The Speed and Score
are presented on relative value.

has a quasi-constant memory usage. Note that the memory usage of FiLM is only linear to the input
length. Furthermore, FiLM enjoys a much smaller memory usage than others because of the simple
architecture and compressed parameters with low-rank approximation as discussed in Appendix I.

Training Speed Experiments are performed on one NVIDIA V100 32GB GPU. As shown in
Figure 9 (Right), FiLM has a faster training speed than others with the prolonging output length.
For a fair comparison, we fix the experimental setting of Xformer, where we fix the input length as
96 and prolong the output length. However, in the real experiment settings, we use a longer input
length (much longer than 96). Thus, the experiment in Figure 9 (Right) is merely a toy case to
show the tendency. In Figure 10, we show the average epoch time vs average performance under
the settings of benchmarks. The experiment is performed on ETTm2 dataset with output lengths
= 96, 192, 336, and 720. Because of the extremely low memory usage of FiLM, it can be trained
with a larger batch size (batch size = 256) on only one GPU compared with baselines (batch size =
32). In Figure 10, FiLM-256 is the FiLM models trained with batch size = 256, it exhibits significant
advantages on both speed and accuracy. Furthermore, due to the shallow structure and smaller amount
of trainable parameters, FiLM is easy to converge and enjoys smaller performance variation and
smaller performance degradation when using a large batch size. It is observed that the models with
Fourier enhanced block (FiLM & FEDformer) have better robustness. It is also worth noting that
the vanilla Transformer has good training speed because of the not-so-long sequence length. Only a
sequence length over one thousand will distinguish the advantage of efficient Transformers.

K Additional Benchmarks

K.1 Multivariate long-term series forecasting with extra baseline models

For the additional benchmarks for multivariate experiments, we add some non-Transformer methods
for comparison.N-BEATSOreshkin et al. (2019) and N-HiTSChallu et al. (2022) are two recent
proposed powerful non-Transformer methods. As N-HiTS is the latest development from the research
group, which also published N-BEATS, we add N-HiTS to our empirical comparison. Here, we adopt
the results in the N-HiTS paper to prevent inappropriate parameter tuning problems. We also add a
seasonal-naive model in the comparison. FiLM outperforms N-HiTS in most cases(33/48). Moreover,
Simple Seasonal-naiveMakridakis et al. (1982) is a solid baseline on exchange datasets better than
N-hits, Fedformer, and Autoformer, but FiLM still surpasses its performance, as shown in Table 17.
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Table 17: multivariate long-term series forecasting results on six datasets with various input length and prediction
length O 2 {96, 192, 336, 720} (For ILI dataset, we set prediction length O 2 {24, 36, 48, 60}). Supplemen-
tary results of non-Transformer baselines (N-Hits and a seasonal-naive model).

Methods FiLM N-Hits FEDformer Autoformer Seasonal-naive

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
m
2 96 0.165 0.256 0.176 0.255 0.203 0.287 0.255 0.339 0.262 0.300

192 0.222 0.296 0.245 0.305 0.269 0.328 0.281 0.340 0.319 0.337
336 0.277 0.333 0.295 0.346 0.325 0.366 0.339 0.372 0.375 0.371
720 0.371 0.389 0.401 0.426 0.421 0.415 0.422 0.419 0.469 0.422

E
le
ct
ri
ci
ty 96 0.154 0.267 0.147 0.249 0.183 0.297 0.201 0.317 0.211 0.278

192 0.164 0.258 0.167 0.269 0.195 0.308 0.222 0.334 0.214 0.282
336 0.188 0.283 0.186 0.290 0.212 0.313 0.231 0.338 0.226 0.294
720 0.236 0.332 0.243 0.340 0.231 0.343 0.254 0.361 0.265 0.324

E
x
ch

an
ge 96 0.086 0.204 0.092 0.211 0.139 0.276 0.197 0.323 0.086 0.204

192 0.189 0.292 0.208 0.322 0.256 0.369 0.300 0.369 0.172 0.295
336 0.356 0.433 0.371 0.443 0.426 0.464 0.509 0.524 0.311 0.401
720 0.727 0.669 0.888 0.723 1.090 0.800 1.447 0.941 0.832 0.686

T
ra

f
f
ic 96 0.416 0.294 0.402 0.282 0.562 0.349 0.613 0.388 1.219 0.497

192 0.408 0.288 0.420 0.297 0.562 0.346 0.616 0.382 1.089 0.456
336 0.425 0.298 0.448 0.313 0.570 0.323 0.622 0.337 1.147 0.473
720 0.520 0.353 0.539 0.353 0.596 0.368 0.660 0.408 1.181 0.486

W
ea
th
er 96 0.199 0.262 0.158 0.195 0.217 0.296 0.266 0.336 0.315 0.288

192 0.228 0.288 0.211 0.247 0.276 0.336 0.307 0.367 0.341 0.305
336 0.267 0.323 0.274 0.300 0.339 0.380 0.359 0.395 0.381 0.331
720 0.319 0.361 0.351 0.353 0.403 0.428 0.578 0.578 0.440 0.370

IL
I

24 1.970 0.875 1.862 0.869 2.203 0.963 3.483 1.287 6.581 1.699
36 1.982 0.859 2.071 0.969 2.272 0.976 3.103 1.148 7.121 1.882
48 1.868 0.896 2.346 1.042 2.209 0.981 2.669 1.085 6.567 1.797
60 2.057 0.929 2.560 1.073 2.545 1.061 2.770 1.125 5.885 1.675

K.2 Ablation univariate forecasting experiments for FEL layers with all six datasets

As shown in Table 18, although LPU+MLP combining all boosting tricks has slightly better perfor-
mance than FiLM for the ETTm1 dataset, FiLM remains the most consistent and effective model
among all variants across all six datasets. FEL is a much better backbone structure than MLP, LSTM,
CNN, and vanilla attention modules.

K.3 Boosting experiments of LPU with common deep learning backbones for all six datasets

As shown in Table 19, LPU shows a consistent boosting effect across all selected common deep
learning backbones for most datasets. It can be used as a simple and effective build add-on block for
long-term time series forecasting tasks. Although without data normalization, pure LPU negatively
boosts performance for some cases.

K.4 Ablation univariate forecasting experiments for Low rank approximation with all six
datasets

As shown in Table 20, with the low-rank approximation of learnable matrix in the Fourier Enhanced
Layer significantly reduces our parameter size, and even improves our model’s performance for some
datasets.

K.5 Ablation univariate forecasting experiments for frequency mode selection with all six
datasets

Three different mode selection policies are studied for frequency enhanced layer: 1) lowest mode
selection: we select m lowest frequency modes to retain. 2) random model selection: we select m
frequency modes randomly to retain. 3) lowest with extra high mode selection: we select 0.8⇥m
lowest frequency modes and 0.2⇥m high-frequency modes randomly to retain. The experimental
results are summarized in Table 21 with m = 64 for both experiments. The lowest mode selection is
the most stable frequency mode selection policy through adding some randomness mode can improve
the results for some datasets.
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Table 18: : (Full Benchmark)Ablation studies of FEL layer. The FEL layer is replaced with 4 different variants:
MLP, LSTM, CNN, and Transformer.The experiments are performed on ETTm1 and Electricity. The metric of
variants is presented in relative value (’+’ indicates degraded performance, ’-’ indicates improved performance).

Methods FilM LPU+MLP LPU+LSTM LPU+CNN LPU+attention

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
ET

Tm
1 96 0.029 0.127 +0.0% +0.0% +12.1% +7.1% +13.5% +9.5% +1.7% +1.6%

192 0.041 0.153 -1.5% -0.6% +12.2% +8.5% +10.8% +7.8% +2.0% +3.3%
336 0.053 0.175 -1.7% -1.7% +4.5% +4.0% +10.8% +6.3% +4.5% +2.9%
720 0.071 0.205 -0.9% -1.0% +5.5% +3.4% +8.6% +4.9% +13.8% +7.8%

El
ec

tri
ci

ty 96 0.154 0.247 +155% +81% +160% +84% +330% +155% +242% +119%
192 0.166 0.258 +59% +39% +121% +67% +224% +117% +264% +131%
336 0.188 0.283 +55% +35% +150% +74% +128% +71% +183% +95%
720 0.249 0.341 +33% +25% +154% +73% +192% +95% +312% +138%

Ex
ch

an
ge 96 0.110 0.247 -13% -12% +51% +17% +4.6% -1.2% -4.6% -5.8%

192 0.207 0.352 +7.2% +0.0% +69% +32% +29% +12% +22% +11%
336 0.327 0.461 +48% +13% +62% +20% +68% +24% +72% +23%
720 0.811 0.708 +29% +14% +24% +9.6% +38% +12% +64% +27%

Tr
af

fic

96 0.144 0.215 +69% +47% +13% +15% +300% +176% +271% +161%
192 0.120 0.199 +17% +7.5% +31% +24% +258% +149% +1572% +355%
336 0.128 0.212 +6.2% +7.6% +16% +15% +151% +102% +1514% +368%
720 0.153 0.252 +38% +28% +11% +7.9% +250% +126% +1048% +349%

W
ea

th
er 96 0.0012 0.026 +17% +6.2% +16% +6.9% +19% +8.1% +21% +8.9%

192 0.0014 0.029 -1.4% -2.4% +5.0% +1.7% 0.7% -0.7% +4.3% +1.4%
336 0.0015 0.030 +0.0% -0.6% +3.3% +1.3% +2.0% +0.0% +3.3% +1.3%
720 0.0022 0.037 +4.6% -0.3% +4.1% -1.6% 3.6% 0.0% +0.0% -3.8%

IL
I

96 0.629 0.538 +51% +45% -2.5% 9.5% +20% +29% +112% +59%
192 0.444 0.481 +99% +58% +25% +24% +84% +56% +360% +142%
336 0.557 0.584 +33% +31% +21% +16% +58% +30% +702% +94%
720 0.641 0.644 +8.4% +5.4% +23% +18% +42% +22% +74% +34%

Table 21: Mode selection policy study for frequency
enhanced layer. Lowest: select the lowest m frequency
mode; Random: select m random frequency mode; Low
random: select the 0.8 ⇤m lowest frequency mode and
0.2 ⇤m random high frequency mode.

Policy Lowest Random Low random

Metric MSE MAE MSE MAE MSE MAE

ET
Tm

2 96 0.065 0.189 0.066 0.189 0.066 0.190
192 0.094 0.233 0.096 0.235 0.096 0.235
336 0.124 0.274 0.125 0.270 0.128 0.275
720 0.173 0.323 0.173 0.322 0.173 0.323

El
ec

tri
ci

ty 96 0.154 0.247 0.175 0.0.260 0.176 0.262
192 0.166 0.258 0.177 0.266 0.168 0.273
336 0.188 0.283 0.199 0.289 0.192 0.299
720 0.249 0.341 0.269 0.364 0.270 0.362

Ex
ch

an
ge 96 0.11 0.259 0.110 0.256 0.106 0.249

192 0.207 0.352 0.196 0.351 0.207 0.357
336 0.327 0.461 0.451 0.522 0.373 0.484
720 0.811 0.708 0.835 0.714 0.604 0.628

Tr
af

fic

96 0.144 0.215 0.145 0.216 0.145 0.217
192 0.12 0.199 0.119 0.198 0.118 0.197
336 0.128 0.212 0.122 0.207 0.122 0.209
720 0.153 0.252 0.142 0.238 0.155 0.259

W
ea

th
er 96 0.0012 0.026 0.0012 0.027 0.0012 0.026

192 0.0014 0.029 0.0014 0.029 0.0014 0.029
336 0.0015 0.03 0.0015 0.030 0.0015 0.030
720 0.0022 0.037 0.0023 0.037 0.0023 0.037

IL
I

96 0.629 0.538 0.639 0.542 0.626 0.537
192 0.444 0.481 0.448 0.490 0.447 0.494
336 0.557 0.584 0.560 0.590 0.557 0.587
720 0.641 0.644 0.641 0.647 0.643 0.650

25



Table 19: (Full Benchmark) Boosting effect of LPU layer for common deep learning backbones: MLP, LSTM,
CNN and Attention.‘+‘ indicates degraded performance.

Methods FEL MLP LSTM lagged-LSTM CNN Attention

Compare LPU Linear LPU Linear LPU Linear LPU Linear LPU Linear LPU Linear

ET
Tm

1 96 0.030 +38% 0.034 +8.0% 0.049 +73% 0.093 -21% 0.116 -50% 0.243 -81%
192 0.047 +9.5% 0.049 +30% 0.174 +32% 0.331 -48% 0.101 +20% 0.387 -86%
336 0.063 +5.8% 0.061 +64% 0.119 +84% 0.214 -19% 0.122 +25% 1.652 +12%
720 0.081 +1.4% 0.082 +62% 0.184 +32% 0.303 -6.5% 0.108 +13% 4.782 -61%

El
ec

tri
ci

ty 96 0.213 +136% 0.431 +121% 0.291 +56% 0.739 -33% 0.310 +43% 0.805 +23%
192 0.268 +32% 0.291 +239% 0.353 +17% 0.535 +15% 0.380 +12% 0.938 +14%
336 0.307 +0.1% 0.296 +235% 0.436 -6.7% 0.517 +23% 0.359 +29% 2.043 -54%
720 0.321 +37% 0.339 +196% 0.636 -11% 0.492 +28% 0.424 +18% 9.115 +298%

E
x
ch

an
ge 96 0.130 +7.5% 0.110 -18% 0.224 +6.0% 0.521 -58% 0.244 -18% 0.338 +872%

192 0.205 +39% 0.257 -36% 0.787 -35% 1.742 -66% 0.630 +2.1% 0.930 +278%
336 0.467 +9.2% 0.461 -33% 0.964 +24% 2.281 -38% 3.231 -85% 1.067 +69%
720 1.003 +26% 1.981 -61% 2.703 -29% 1.457 +34% 5.531 +9.7% 0.631 +1831%

T
ra

f
f
ic 96 0.312 +18% 0.376 +277% 0.215 +1.2% 0.216 +10% 0.543 -33% 0.429 +210%

192 0.141 +9.6% 0.199 +598% 0.177 +19% 0.186 +17% 0.451 +9.0% 0.476 +176%
336 0.143 +2.5% 0.195 +613% 0.192 +19% 0.190 +11% 0.346 +44% 0.377 +260%
720 0.215 +30% 0.240 +475% 0.234 -1.7% 0.250 +15% 0.348 +47% 0.773 +171%

W
ea
th
er 96 0.0073 -38% 0.006 -33% 0.006 -23% 0.0070 -17% 0.0022 +167% 0.0065 -11%

192 0.0106 -64% 0.007 -14% 0.0074 -11% 0.0063 -19% 0.007 -24% 0.0075 -12%
336 0.0079 -37% 0.006 +4.9% 0.0056 +12% 0.0055 +12% 0.0056 +0.5% 0.222 -69%
720 0.0063 +0.4% 0.006 +7.6% 0.0062 +5.3% 0.103 -36% 0.006 +4.2% 0.037 -81%

IL
I

24 1.393 +6.1% 1.220 +36% 2.306 +66% 4.189 -9.2% 2.264 -22% 2.249 +217%
36 1.242 -22% 1.185 +56% 2.950 +44% 2.516 +42% 1.841 -3.0% 5.026 +45%
48 1.448 -28% 1.079 +79% 3.385 +38% 3.501 +16% 1.654 +23% 2.838 +115%
60 2.089 -18% 0.986 +96% 4.031 +18% 4.258 +10% 1.290 +176% 4.978 +250%

Table 20: Low-rank Approximation (LRA) univariate forecasting study for frequency enhanced layer: Comp.
K=0 means default version without LRA, 1 means the largest compression using K=1.

Comp. K 0 16 4 1

Metric MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
m
2 96 0.065 0.189 0.064 0.185 0.064 0.185 0.064 0.186

192 0.094 0.233 0.094 0.231 0.093 0.231 0.093 0.231
336 0.124 0.274 0.124 0.270 0.124 0.269 0.124 0.271
720 0.173 0.323 0.173 0.322 0.173 0.322 0.177 0.328

E
le
ct
ri
ci
ty 96 0.154 0.247 0.211 0.324 0.216 0.331 0.277 0.387

192 0.166 0.258 0.251 0.352 0.246 0.347 0.334 0.421
336 0.188 0.283 0.276 0.369 0.302 0.396 0.363 0.440
720 0.249 0.341 0.336 0.429 0.342 0.436 0.411 0.481

E
x
ch

an
ge 96 0.110 0.259 0.119 0.273 0.104 0.247 0.105 0.251

192 0.207 0.352 0.196 0.355 0.195 0.349 0.212 0.372
336 0.327 0.461 0.388 0.497 0.373 0.491 0.407 0.506
720 0.811 0.708 0.908 0.767 1.288 0.941 1.840 1.153

T
ra

f
f
ic 96 0.144 0.215 0.146 0.223 0.154 0.237 0.267 0.373
192 0.120 0.199 0.121 0.201 0.138 0.231 0.218 0.333
336 0.128 0.212 0.120 0.206 0.132 0.227 0.216 0.335
720 0.153 0.252 0.155 0.257 0.154 0.257 0.246 0.366

W
ea
th
er 96 0.0012 0.026 0.0011 0.025 0.001 0.025 0.001 0.025

192 0.0014 0.029 0.0014 0.028 0.001 0.028 0.001 0.028
336 0.0015 0.03 0.0015 0.030 0.001 0.029 0.002 0.030
720 0.0022 0.037 0.0022 0.037 0.002 0.037 0.002 0.037

IL
I

96 0.629 0.538 0.599 0.556 0.628 0.558 0.630 0.579
192 0.444 0.481 0.487 0.533 0.508 0.561 0.570 0.612
336 0.557 0.584 0.553 0.565 0.703 0.696 0.722 0.706
720 0.641 0.644 0.648 0.641 0.900 0.780 1.493 1.032

Parameter size 100% 6.4% 1.6% 0.4%
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