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A PROOFS

We begin with a simple lemma detailing the Fourier space end-to-end predictor for a G-CNN.
Lemma A.1 (G-CNN in Fourier space). A G-CNN given by 〈x?w1 ? · · ·?wL−1,wL〉 is equivalent
to 〈x,wL ?w−L−1 ? · · · ?w−1 〉, or in Fourier space to 1

|G| 〈x̂, ŵL · · · ŵ1〉M . Moreover,

Proof.

N(x) = 〈x ?w1 ? · · · ?wL−1,wL〉

=
1

|G| 〈FM (x ?w1 ? · · · ?wL−1),FMwL〉M

=
1

|G| tr[FM (x ?w1 ? · · · ?wL−1)ŵ†L]

=
1

|G| tr[FM (x ?w1 ? · · · ?wL−2)ŵ†L−1ŵ
†
L]

=
1

|G| tr[x̂ŵ
†
1 · · · ŵ†L−1ŵ†L]

=
1

|G| 〈x̂, ŵL · · · ŵ1〉M

(A.1)

To see the stated equality in real space, observe that ŵ−1 = ŵ1
† by definition. Thus,

FM (wL ?w
−
L−1 ? · · · ?w−1 ) = ŵL · · · ŵ1

A.1 ABELIAN

The proof of Proposition 5.2 is included below.

First, recall the primary theorem of Yun et al. (2020):
Theorem A.2 (paraphrased from Yun et al. (2020)). If there exists λ > 0 such that the initial
directions v̄1, . . . , v̄L of the network parameters satisfy |[F v̄`]j |2−|[F v̄L]j |2 ≥ λ for all ` ∈ [L−1]
and j ∈ [m], i.e. of the Fourier transform magnitudes of the initial directions look sufficiently
different pointwise (which is likely for e.g. a random initialization), then β(Θ(t)) converges in
a direction that aligns with STρ∞ where ρ∞ ∈ Cm denotes a stationary point of the following
optimization program:

min
ρ∈Cm

‖ρ‖2/L s.t. yix
T
i FT vρ ≥ 1,∀i ∈ [n] (A.2)

Since S = F is invertible, then in fact β(Θ(t)) converges in a direction that aligns with a stationary
point z∞ of the following optimization program:

min
z∈Cm

‖Fz‖2/L s.t. yix
T
i z ≥ 1,∀i ∈ [n] (A.3)

We proceed by showing that abelian G-CNNs can be written as a vector of parameters contracted
(according to tensor operations) with an orthogonally decomposable data tensor, which is the pri-
mary condition for Theorem A.2 to hold.

For convenience, we restate Proposition A.3 before detailing the proof.
Proposition A.3 (paraphrased from Yun et al. (2020)). Let M(x) be a function that maps data
x ∈ Rd to a data tensor M(x) ∈ Rk1×k2×···×kL . The data input into an L-layer tensorized neural
network can be written in the form of an orthogonally decomposable data tensor if there exists
a full column rank matrix S ∈ Cm×d and semi-unitary matrices U1, . . . ,UL ∈ Ck`×m where
d ≤ m ≤ min` k` such that M(x) can be written as:

M(x) =

m∑

j=1

[Sx]j ([U1]·,j ⊗ [U2]·,j ⊗ · · · ⊗ [UL]·,j) (A.4)
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and such that the network output is the tensor multiplication between M(x) and each layer’s param-
eters:

NN(x; Θ) = M(x) · (W1, . . . ,WL)

=

d∑

i1=1

· · ·
d∑

iL=1

M(x)i1...iL(W1)i1 · · · · · (WL)iL

For Proposition A.3. By direct manipulation:

f(x; Θ) = M(x) · (v1, . . . ,vL)

=

d∑

i1=1

· · ·
d∑

iL=1

M(x)i1...iL(v1)i1 · · · · · (vL)iL

=

d∑

i1=1

· · ·
d∑

iL=1

(
d∑

j=1

[Sx]j ([U1]·,j ⊗ [U2]·,j ⊗ · · · ⊗ [UL]·,j)

)

i1...iL

(v1)i1 · · · · · (vL)iL

=

d∑

i1=1

· · ·
d∑

iL=1

(
d∑

j=1

[Sx]j ([U1]i1,j [U2]i2,j · · · [UL]iL,j)

)
(v1)i1 · · · · · (vL)iL

=

d∑

j=1

[Sx]j
(
[UT

1 v1]i1 [UT
2 v2]i2 · · · [UT

L vL]iL
)

= d
L−1

2

d∑

j=1

[Fx]j
(
[Fv1]i1 [Fv2]i2 · · · [FvL]iL

)

= d
L−1

2

d∑

j=1

[Fx]j
(
[Fv1]i1 [Fv2]i2 · · · [FvL]iL

)

= d
L−1

2

d∑

j=1

[Fx]j ([Fv1]i1 [Fv2]i2 · · · [FvL]iL)

= 〈Fx,Fv1 � · · · � FvL〉
= 〈Fx�Fv1,Fv2 � · · · � FvL〉
= 〈F(x ? v1)�Fv2,Fv3 � · · · � FvL〉
= 〈F(x ? v1 ? v2)�Fv3,Fv4 � · · · � FvL〉
= 〈F(x ? v1 ? v2 ? · · · ? vL−1),FvL〉
= 〈x ? v1 ? · · · ? vL−1,vL〉

Here, we have used that the filters are real-valued.

Note that Theorem 5.3 then merely requires that ||F−Tz|| = ||Fz|| = ||Fz||, for real-valued z.

A.1.1 FUNDAMENTAL THEOREM OF FINITE ABELIAN GROUPS

While the proof in the previous section is complete and correct, intuition (and/or alternate analysis)
for abelian groups is aided by the important fact that all finite abelian groups are a direct product of
cyclic groups.
Theorem A.4 (Fundamental theorem of finite abelian groups (Dummit & Foote, 2004)). Any finite
abelian group is a direct product of a finite number of cyclic groups whose orders are prime powers
uniquely determined by the group.

Given a decomposition of an abelian group G into k cyclic groups Cd1 × · · · × Cdk , one can easily
construct the group Fourier transform as a Kronecker product of discrete Fourier transform matrices
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which are the group Fourier transforms of the respective cyclic groups.

G = Cd1 × · · · × Cdk =⇒ F =

k⊗

i=1

Fdi , (A.5)

where
⊗

denotes the Kronecker product over matrices and Fd is the standard (unitary) discrete
Fourier transform matrix of dimension d defined as

Fd =
1√
d




ω0·0
d ω0·1

d · · · ω
0·(d−1)
d

ω1·0
d ω1·1

d · · · ω
1·(d−1)
d

...
...

. . .
...

ω
(d−1)·0
d ω

(d−1)·1
d · · · ω

(d−1)·(d−1)
d



, ωd = e

−2πi
d . (A.6)

From this result, it is clear that the desired properties of the Fourier transform and convolution hold.

A.2 NON-ABELIAN

Theorem A.5. Consider a classification task with ground-truth linear predictor β, trained via a
linear G-CNN architecture NN(x) = 〈x ?w1 ? · · · ?wL−1,wL〉 (see Section 5 for architecture de-
tails) with L ≥ 2 layers under the exponential loss. Then for almost any datasets {xi, yi} separable
by β, any bounded sequence of step sizes ηt, and almost all initializations, suppose that:

• The loss L(W ) converges to 0

• The gradients with respect to the end-to-end linear predictor, ∇βL(P(W t)), converge in
direction as t→∞

• The iterates W t themselves converge in direction as t → ∞ to a separator P(W t) with
positive margin

When L = 2, we need an additional technical assumption, Assumption A.7. Then, the resultant
linear predictor β̂∞ is a positive scaling of a first order stationary point of the optimization problem:

min
β
‖β̂‖(S)2/L s.t. ∀n, yn 〈βn,xn〉M ≥ 1 (A.7)

In this section, we prove the non-abelian case, Theorem A.5. The proof of our result proceeds
according to the following outline:

1. By applying a general result of Gunasekar et al. (2018b), Theorem A.6, we characterize
the implicit regularization in the full space of parameters,W (in contrast to the end-to-end
linear predictor β), as the stationary point of an optimization problem Equation A.9 inW .

2. Separately, we define a distinct optimization problem, Equation A.7 in β. The goal is to
demonstrate that stationary points of Equation A.9 are a subset of the stationary points of
Equation A.7.

3. The necessary KKT conditions for Equation A.9 characterize its stationary points. Us-
ing this characterization, we show that the sufficient KKT optimality conditions for Equa-
tion A.7 are in fact also satisfied for the corresponding end-to-end predictor. Thus, we
show that for any stationary point W † of Equation A.9, the linear predictor P(W †) is a
stationary point of Equation A.7.

First, recall that Gunasekar et al. (2018b) prove the following general result about the implicit regu-
larization of any homogeneous polynomial parametrization:

Theorem A.6 (Homogeneous polynomial parametrization, Theorem 4 of Gunasekar et al. (2018b)).
Let W be the concatenation of all (real-valued) parameters Wi. For any homogeneous polyno-
mial map P : RP → R|G| from parameters Wi ∈ RP to linear predictors, almost all datasets
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{xn, yn}Nn=1 separable by the ground truth predictor β := {P(W ) : W ∈ RP }, almost all initial-
izationsW 0, and any bounded sequence of step sizes {ηt}t, consider the gradient descent updates:

W t+1 = W t − ηt∇WL(W t) = W t − ηt∇WP(W t)∇βL(P(W t)) (A.8)

Suppose furthermore that the exponential loss converges to zero, that the gradients ∇βL(βt) con-
verge in direction, and that the iterates W t themselves converge in direction to yield a separator
with positive margin. Then, the limit direction of the parameters W

∞
= limt→∞

W (t)

‖W (t)‖2
is a

positive scaling of a first order stationary point of the following optimization problem:

min
W∈RP

‖W ‖22 s.t. ∀n, yn〈xn,P(W )〉 ≥ 1. (A.9)

To keep track of constant factors, let W∞ = τW
∞

denote the first order stationary point itself.
Furthermore, letW∞

i denote the individual layers (or parameter blocks) comprisingW∞, and sim-
ilarly let W

∞
i denote the individual layers comprising W

∞
. We then have via the KKT conditions

that:

∃{αn : αn ≥ 0}Nn=1 s.t. αn = 0 if yn〈xn,P(W∞)〉 > 1

W∞
i = ∇Wi

P(W∞)

[∑

n

αnynxn

]
= ∇Wi

〈
P(W∞),

∑

n

αnynxn

〉 (A.10)

While this is an interesting result alone, the goal of implicit regularization is to characterize the
final linear predictor (which is some function P of the complete parametrization W ). To that end,
consider the following optimization problem in β:

min
β
‖β̂‖(S)2/L s.t. ∀n, yn 〈βn, xn〉 ≥ 1 (A.11)

We will leverage the necessary KKT conditions from Equation A.10 to show that first-order station-
ary points of Equation A.9 are (up to a scaling) also first-order stationary points of Equation A.7,
using the sufficient KKT conditions for Equation A.7.

Using standard KKT sufficiency conditions, the first-order stationary points of Equation A.7 are
those vectors β such that there exist α̃1, . . . , α̃n satisfying:

1. Feasibility: ∀n, yn 〈β,xn〉 ≥ 1 and α̃i ≥ 0 ∀i
2. Complementary slackness: ∀i, α̃i = 0 if yn 〈β,xn〉 > 1

3. Membership in subdifferential:
∑
n α̃nynx̂n ∈ ∂o‖β̂‖

(S)
2/L

In the third condition above, ∂o is the local sub-differential of Clarke (1975): ∂of(β) =
conv{limi→∞∇f(β + hi) : hi → 0}8.

We will need the following assumption in the special case L = 2:
Assumption A.7 (L = 2 bounded subgradient). Let ẑ =

∑
n α̃nynx̂n result from the KKT condi-

tions of the optimization problem in W , Equation A.10, as described previously. Then, we assume
that ‖ẑ‖(S)∞ ≤ 1.

Let β∞ = P(W∞) and let α̃i = 1
γαi for all i, where γ is equal to

(
||β̂∞|| 2

L

)
for L > 2 and

to 1 otherwise. (Note that by homogeneity of P , P(W∞) = P(τW
∞

) = τLP(W
∞

).) We will
check these conditions one by one for β∞ and α̃i, with the first two following immediately from
Theorem A.6 and the last one requiring the most manipulation.

Feasibility Trivially, α̃i ≥ 0 ∀i by definition of α in Equation A.10. Similarly, yn〈xn, β∞〉 =
yn〈xn,P(W∞)〉 ≥ 1.

8hi is a sequence of vectors in some linear space, and we take hi → 0 as an entry-wise statement. This is
because the vectors are finite-dimensional, so all norms are equivalent.
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Complementary slackness If yn 〈β∞,xn〉 > 1 = yn 〈P(W∞),xn〉 > 1, then α̃n ∝ αn = 0.

Membership in subdifferential We first characterize the set ∂o‖β̂‖(S)2/L for a generic matrix β,

and then show that ẑ ,
∑
n α̃nynx̂n ∈ ∂o‖β̂∞‖

(S)
2/L. When L = 2 and thus p = 1, the Schatten

norm ‖β̂∞‖1 is indeed a norm and its subgradient is known; see e.g. Watson (1992). We restate this
result below:
Lemma A.8 (Subdifferential of p-Schatten norm, p = 1). Suppose L = 2, such that 2

L = p = 1.
LetA be an n× n complex-valued matrix. Then we have

∂o‖A‖(S)1 =
{
G : ‖A‖(S)1 = tr[G†A], ‖G‖(S)∞ ≤ 1]

}
(A.12)

Lemma A.9 (Subdifferential of p-Schatten norm, p < 1). Suppose L > 2 and let 2
L = p, such

that 0 < p < 1. Let A be an n × n complex-valued matrix with singular value decomposition
A = UDV †. Let ΠU project onto the column space of A, i.e. ΠU (M) = UU †M . Let ΠV
project onto the row space ofA, i.e. ΠV (M) = MV V †. Then we have

∂o‖A‖(S)p =

{
G : A†G =

1

‖A‖(S)p

√
A†A

p
andGA† =

1

‖A‖(S)p

√
AA†

p

}
(A.13)

Proof. SupposeA is rank r and has singular value decompositionA =
∑r
i=1 diuiv

†
i , where di > 0

for all i. Consider unit vectors W1, . . . ,Wn−r which are a basis for the orthogonal subspace to
Span(u1, . . . ,ur), and unit vectors s1, . . . , sn−r which are a basis for the orthogonal subspace to
Span(v1, . . . ,vr). Treating the space of n × n complex matrices as a n2-dimensional linear space,
we see that {uiv†i }ri=1 form a basis for an r-dimensional subspace. Let ΠA denote the projector
onto this space, ΠA =

∑r
i=1 uiv

†
i . Note that ΠAA = A. For any set of n− r sequences {εi,m}∞m=1

such that limm→∞ εm,i = 0 for all i = 1, . . . , n − r, consider the particular sequence of matrices
{Hm}∞m=1 defined by

Hm =

n−r∑

i=1

εm,iWis
†
i

By definition, limm→∞ ||Hm||Fro = 0, where ‖Hm‖Fro , ‖Hm‖(S)2 .Also, ifM is a full rank ma-
trix with singular value decomposition ADB†, ||M ||(S)p is differentiable at M and ∇||M ||(S)p =

1

||M ||(S)
p

ADp−1B†. For convenience of notation, let U be the matrix with ith column ui, W the

matrix with ith columnWi, and similarly for V and S with respect to vectors vi and si respectively.
Also, letD be the diagonal matrix with di on the ith diagonal.

Combining this fact with the construction ofHm, we have that

∇||A+Hm||(S)p = ∇
∣∣∣∣∣

∣∣∣∣∣
r∑

i=1

diuiv
†
i +

n−r∑

i=1

εm,iWis
†
i

∣∣∣∣∣

∣∣∣∣∣

(S)

p

(A.14)

= ∇
∣∣∣∣∣

∣∣∣∣∣ [U W ]




D 0 . . . 0
0 εm,1 . . . 0
...

. . .
...

0 0 . . . εm,n−r



[
V †

S†

] ∣∣∣∣∣

∣∣∣∣∣

(S)

p

(A.15)

=
1

(
∑r
i=1 d

p
i +

∑n−r
i=1 ε

p
m,i)

1
p

(
UDp−1V † +W



εp−1m,1 . . . 0

...
. . .

0 . . . εp−1m,n−r


S†

)

(A.16)

In the limit as m goes to infinity,
∑n−r
i=1 ε

p
m,i approaches 0. However, p − 1 < 0 implies that

limm→∞ εp−1m,i = ±∞. By taking convex combinations, one can create any matrix with left and
right singular vectorsW and S†. Formally, we have:
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∂o‖A‖(S)p = conv{ lim
m→∞

∇‖A+Hm‖p : Hm → 0} (A.17)

=
1

||A||(S)p

UDp−1V † +
1

||A||(S)p

conv

{
lim
m→∞

W



εp−1m,1 . . . 0

...
. . .

0 . . . εp−1m,n−r


S† : εm,i →m 0

}

(A.18)

=
1

||A||(S)p

UDp−1V † + {WΣS† : Σ is real and diagonal} (A.19)

Note that for any rank-one matrix M = ab†, if a is not orthogonal to each column of U , then
UU †M 6= 0. Similarly, if b is not orthogonal to each column of V , then MV V † 6= 0. Thus
for an arbitrary matrix M , by decomposing it into a sum of rank-one matrices via its SVD, we see
that ΠUM = ΠVM = 0 implies that both the row and column spaces of M are orthogonal to
those of A, respectively. Thus, we can project via ΠU and ΠV to disregard the second term of
Equation A.19, and obtain the following expression for the subgradient:

∂o‖A‖(S)p =

{
G : ΠUG = ΠVG =

(
||A||(S)p

)−p
UDp−1V †

}
(A.20)

Consider first the equality

ΠUG =
(
||A||(S)p

)−p
UDp−1V † (A.21)

We can left-multiply by A† without changing the set of matrices G satisfying this relation. To see

this, one can check that if A†ΠUG =
(
||A||(S)p

)−p
A†UDp−1V †, left-multiplying on both sides

by UD−1V † recovers Equation A.21.

Similarly, consider the second equality:

ΠVG =
(
||A||(S)p

)−p
UDp−1V † (A.22)

We can right-multiply byA† without changing the set of matricesG satisfying this relation. To see
this, one can check that if

(ΠVG)A† =
(
||A||(S)p

)−p
UDp−1V †A†

Then right-multiplying on both sides by UD−1V † recovers Equation A.22. Finally, observe that
A†ΠUG = V DU †UU †G = A†G and (ΠVG)A† = GV V †V DU † = GVDU † = GA†.
Furthermore, A† 1

||A||(S)
p

UDp−1V † = V DpV † = 1

||A||(S)
p

√
A†A

p
and 1

||A||(S)
p

UDp−1V †A† =

1

||A||(S)
p

√
AA†

p
. This completes the proof of the lemma.

Lemmas A.8 and A.9 characterize the subdifferential of the Schatten norm. Now, we show that∑
n α̃nynx̂n satisfies Equation A.13.

Lemma A.10. Recall that our G-CNN is given by NN(x) = 〈x ? w1 ? · · · ? wL−1,wL〉, with
the vector of parameters W = [w1 . . .wL] and end-to-end linear predictor given by P(W ) =
w1 ? · · ·?wL. Consider an arbitrary such vector of real-valued parameters. Also, we have assumed
that the filters in real-space are real-valued, i.e. wi ∈ R|G|. Then the following relation holds:

FM∇w`〈P(W ), ei〉 = ŵ†`+1 · · · ŵ
†
Lêiŵ

†
1 · · · ŵ†`−1 (A.23)

where ei is the ith standard basis vector.
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Proof. Since 〈P(W ), ei〉 is real, we have 〈P(W ), ei〉 = 〈ei,P(W )〉. Plugging this in,

FM∇w`P(W )[ei] = FM∇w`〈P(W ), ei〉
= FM∇w`〈ei,P(W )〉

= FM∇w`
1

|G| 〈FMei,FMP(W )〉M

= FM∇w`
1

|G| 〈êi, ŵL · · · ŵ1〉M

= FM∇w`
1

|G| tr[êi(ŵL · · · ŵ1)†]

= FM∇w`
1

|G| tr[ŵ
†
`+1 · · · ŵ

†
Lêiŵ

†
1 · · · ŵ†` ]

= FM∇w`
1

|G| 〈ŵ
†
`+1 · · · ŵ

†
Lêiŵ

†
1 · · · ŵ†`−1, ŵ`〉M

= FM∇w`
〈
F−1M (ŵ†`+1 · · · ŵ

†
Lêiŵ

†
1 · · · ŵ†`−1),w`

〉

= ŵ†`+1 · · · ŵ
†
Lêiŵ

†
1 · · · ŵ†`−1

(A.24)

Letting z =
∑
n α̃nynxn andW = W∞, Lemma A.10 implies that

FM∇w∞` 〈P(W∞), z〉 = ŵ∞`+1
† · · · ŵ∞L †ẑŵ∞1 † · · · ŵ∞`−1† (A.25)

By combining Equation A.10 with Lemma A.10, we have
1

γ
ŵ∞` =

1

γ
∇w∞`

〈
P(W∞),

∑

n

αnynxn

〉
(A.26)

= ∇w∞`
〈
P(W∞),

∑

n

α̃nynxn

〉
(A.27)

= ŵ∞†`+1 · · · ŵ∞
†

L ẑŵ∞†1 · · · ŵ∞†`−1 (A.28)

As a result:
ŵ∞` = γŵ∞†`+1 · · · ŵ

∞†
L ẑŵ∞†1 · · · ŵ∞†`−1

ŵ∞` ŵ
∞†
` = γŵ∞†`+1 · · · ŵ

∞†
L ẑŵ∞†1 · · · ŵ∞†`

(A.29)

Applying this relation with ` = L, we have that

ŵ∞L ŵ
∞†
L = γẑŵ∞†1 · · · ŵ∞†L (A.30)

= γẑβ̂∞† (A.31)

Taking adjoints of both sides implies that ẑβ̂∞† is Hermitian, which will be useful later.

Let β̂∞ = FMP(W∞), from which we can derive the following recursion:

β̂∞β̂∞
†

= ŵ∞L · · · ŵ∞1 ŵ∞†1 · · · ŵ∞†L
= γ1ŵ∞L · · · ŵ∞2 ŵ∞†2 · · · ŵ∞†L ẑŵ∞†1 · · · ŵ∞†L by Equation A.29

= γ2ŵ∞L · · · ŵ∞3 ŵ∞†3 · · · ŵ∞†L ẑŵ∞†1 ŵ∞†2 · · · ŵ∞†L ẑŵ∞†1 · · · ŵ∞†L again, by Equation A.29

= γ2ŵ∞L · · · ŵ∞3 ŵ∞†3 · · · ŵ∞†L ẑβ̂∞
†
ẑβ̂∞

†
by definition of β∞

= γ2ŵ∞L · · · ŵ∞3 ŵ∞†3 · · · ŵ∞†L (ẑβ̂∞
†
)2 by repeated application of Equation A.29

= γL(ẑβ̂∞
†
)L

(A.32)

18



Under review as a conference paper at ICLR 2022

Similarly to Equation A.29, we have:

ŵ∞`
†ŵ∞` = γŵ∞`

†ŵ∞`+1
† . . . ŵ∞L

†ẑŵ∞1
† . . . ŵ∞`−1

† (A.33)

By considering ` = 1, we have ŵ∞1
†ŵ∞1 = β̂∞

†
ẑ, which shows that β̂∞

†
ẑ is Hermitian as well.

Using Equation A.33, we can similarly reason about β̂∞
†
β̂∞:

β̂∞
†
β̂∞ = ŵ∞1

† . . . ŵ∞L
†ŵ∞L . . . ŵ∞1

= γŵ∞1
† . . . ŵ∞L−1

†(ŵ∞L
†ẑŵ∞1

† . . . ŵ∞L−1
†)ŵ∞L−1 . . . ŵ

∞
1

= γ(β̂∞
†
ẑ)ŵ∞1

† . . . ŵ∞L−1
†ŵ∞L−1 . . . ŵ

∞
1

= γ(β̂∞
†
ẑ)ŵ∞1

† . . . ŵ∞L−1
†ŵ∞L

†ẑŵ∞1
† . . . ŵ∞L−2

†ŵ∞L−2 . . . ŵ
∞
1

= γ2(β̂∞
†
ẑ)2ŵ∞1

† . . . ŵ∞L−2
†ŵ∞L−2 . . . ŵ

∞
1

= γL(β̂∞
†
ẑ)L

(A.34)

For L > 2, we have shown in Lemma A.9 that

∂o‖β̂∞‖(S)p =

{
G : β̂∞

†
G =

1

||β̂∞||(S)p

√
β̂∞
†
β̂∞

p

andGβ̂∞
†

=
1

||β̂∞||(S)p

√
β̂∞β̂∞

†
p
}

(A.35)

Let’s check that setting G = ẑ satisfies this relation. Since p = 2
L , p2 = 1

L and, by Equation A.32

and that ẑβ̂∞
†

is Hermitian:

(β̂∞β̂∞
†
)p/2 = γẑβ̂∞

†
(A.36)

Similarly, by Equation A.34 and that β̂∞
†
ẑ is Hermitian:

(β̂∞β̂∞
†
)
p
2 = γβ̂∞

†
ẑ (A.37)

By choice of γ, γ = ‖β̂∞‖(S)2
L

. Thus, ẑ ∈ ∂o‖β̂∞‖(S)p as desired for L > 2.

For L = 2, p = 1 and by Lemma A.8 we had the following expression for the subgradient:

∂o‖A‖(S)1 =
{
G : ‖A‖(S)1 = tr[G†A], ‖G‖(S)∞ ≤ 1]

}
(A.38)

For this special case of L = 2, we have the required assumption:

As a technical condition, we had to assume in Assumption A.7 that ‖ẑ‖(S)∞ ≤ 1. (We believe
that with a refined analysis in future work, this assumption can be shown to be true given only our

existing assumptions.) By the previous reasoning for L = 2, we had that β̂∞
†
β̂∞ = γ2(β̂∞

†
ẑ)2.

Since β̂∞
†
β̂∞ = UD2U † is positive semi-definite and symmetric, and since β̂∞

†
ẑ is Hermitian,

we can take the square root of both sides and obtain that UDU † = γβ̂∞
†
ẑ = γẑ†β̂∞. Thus,

tr[ẑ†β̂∞] = tr[DU †U ] = tr[D] = ‖β̂∞‖(S)1 , which is what was needed (since γ = 1 for the
L = 2 case).
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A.2.1 INFINITE GROUPS WITH BAND-LIMITED INPUTS

Here we consider the case of more general, infinite-dimensional compact Lie groups. Such groups
admit a Fourier transform which is an operator between infinite-dimensional spaces, rather than
a finite matrix as before, but which has the same key properties: a convolution theorem, and
preservation of inner products. To be concrete, the Fourier transform is now defined as f̂(ρ) =∫
g∈G ρ(g)f(g)µ(g), where µ(g) denotes the Haar measure for the group.

Since it is impossible to store a general function x : G→ R, one must make simplifying assumptions
on the input x. A common assumption is that x is band-limited in Fourier space, i.e. x̂ is supported
only on a small (and finite) subset of Fourier coefficients contained within the irreps ρ ∈ S. For
many such groups, there is a natural hierarchy of irreps (analogous to low frequencies and high
frequencies in classical Fourier analysis), and so practical architectures typically assume only those
corresponding to low frequencies are non-zero.

For ease of analysis, we will assume that the input functions and all convolutional filters are real-
valued in Fourier space. The architecture of our G-CNN is the same as in the finite-dimensional
group setting except that we will apply functions entirely in the finite-dimensional Fourier space
over the irreps in S. Given a function x̂ supported only on S in Fourier space, we run gradient
descent over only the Fourier coefficients on S of filters ŵi, and assume they are zero elsewhere.
Before we proceed, we define FM in the natural way after restricting the irreps to the band-limiting
space S:

f̂ = FMf =
⊕

ρ∈S
f̂(ρ)⊕dρ ∈ GL


∑

ρ∈S
d2ρ, C


 . (A.39)

In this band-limited space, for each filter, there are
∑
ρ∈S d

2
ρ trainable parameters corresponding to

the entries of the irreps in S. Note that these entries are also orthogonal to each other with respect
to the inner product 〈·, ·〉M and thus form a vector space of dimension

∑
ρ∈S d

2
ρ.

Recall that we previously applied Theorem A.6 to the homogeneous polynomial parametrization
from (w1, . . . ,wL)→ 〈x ∗w1 ∗ · · · ∗wL−1,wL〉. Since we will operate in Fourier space, instead
consider the homogeneous polynomial parametrization Ŵ ∈ Rp containing the parameters stored
in the matrices {ŵ1, . . . , ŵL}. In other words, there are p = L(

∑
ρ∈S d

2
ρ) parameters stored in the

matrices contained in the set Ŵ .

Ŵ t+1 = Ŵ t − ηt∇ŴL(Ŵ t) = Ŵ t − ηt∇ŴP(Ŵ t)∇β̂L(P(Ŵ t)) (A.40)

Note that here, iterates are only allowed to vary over the finite subset S of Fourier coefficients and are
assumed to be equal to 0 elsewhere. If we assume further that the exponential loss converges to zero,
that the gradients ∇β̂L(β̂t) converge in direction, and that the iterates Ŵ t themselves converge in

direction to yield a separator with positive margin, then the limit direction of the parameters Ŵ∞ =

limt→∞
Ŵ t

‖Ŵ t‖2
is a positive scaling of a first order stationary point of the following optimization

problem:
min
Ŵ∈RP

‖Ŵ ‖22 s.t. ∀n, yn〈x̂n,P(Ŵ )〉M ≥ 1. (A.41)

Again letting Ŵ∞ = τŴ∞ denote the first order stationary point itself, Ŵ∞
i the individual layers

(or parameter blocks) comprising Ŵ∞, and Ŵ∞
i the individual layers comprising Ŵ∞, we again

have via the KKT conditions that:

∃{αn : αn ≥ 0}Nn=1 s.t. αn = 0 if yn〈x̂n,P(Ŵ∞)〉M > 1

Ŵi

∞
= ∇

Ŵi
P(Ŵ∞)

[∑

n

αnynx̂n

]
= ∇

Ŵi

〈
P(Ŵ∞),

∑

n

αnynx̂n

〉
M

(A.42)

Equivalently, writing the above in terms of the matrices ŵ∞` , and defining ẑ =
∑
n αnynx̂n, we

have an equivalence to Lemma A.10.
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∇w`P(Ŵ∞)[ẑ] = ∇ŵ∞` 〈P(Ŵ∞), ẑ〉M
= ∇ŵ∞` 〈ẑ,P(Ŵ∞)〉M
= ∇ŵ∞` 〈ẑ, ŵ

∞
L · · · ŵ∞1 〉M

= ∇ŵ∞` tr[ẑ(ŵ∞L · · · ŵ∞
†

1 )]

= ∇ŵ∞` tr[ŵ∞
†

`+1 · · · ŵ∞
†

L ẑŵ∞
†

1 · · · ŵ∞
†

` ]

= ∇ŵ∞` 〈ŵ
∞†
`+1 · · · ŵ∞

†

L ẑŵ∞
†

1 · · · ŵ∞
†

`−1, ŵ
∞
` 〉M

= ŵ∞
†

`+1 · · · ŵ∞†L ẑŵ∞
†

1 · · · ŵ∞
†

`−1

(A.43)

Using the KKT conditions above and this fact, all of the manipulations demonstrating that a positive
scaling of

∑
n αnynx̂n is a first-order stationary point of the optimization problem below carry over

exactly as they do in the previous part. This yields the following formal result:

Theorem A.11. Consider a classification task with ground-truth linear predictor β̂, trained via a
real-valued, Fourier-space, band-limited linear G-CNN architecture NN(x̂) = 〈x̂, ŵL . . . ŵ1〉 with
L ≥ 2 layers under the exponential loss. Then for almost any datasets {xi, yi} separable by β, any
bounded sequence of step sizes ηt, and almost all initializations, suppose that:

• The loss converges to 0

• The gradients with respect to the end-to-end linear predictor β̂ converge in direction

• The iterates ŵi themselves converge in direction to a separator with positive margin

When L = 2, we need an additional technical assumption, Assumption A.7. Then, the resultant
linear predictor β̂∞ is a positive scaling of a first order stationary point of the optimization problem:

min
β̂

∥∥∥β̂
∥∥∥
(S)

2/L
s.t. ∀n, yn

〈
x̂n, β̂

〉
M
≥ 1. (A.44)

B GROUP FOURIER TRANSFORMS

To aid the reader in understanding the notation and structure behind the group Fourier transform,
the following exposition is given for reference and convenience. Here, we introduce important
concepts from representation theory and from there, provide explicit constructions the group Fourier
transform.

A representation of a group G is a vector space V together with a G-linear map ρ : G −→ GL(V ).
Of particular interest is the regular representation which we construct as follows. Let G be a group
of order n and choose V = Cn. Consider an element u ∈ C[G], so u = a1g1 + · · · + angn where
ai ∈ C and gn ∈ G, and the associated vector u ∈ Cn such that u = [a1 · · · an].

The action of left-multiplication of u for any h ∈ G yields hu = a1(hg1) + · · · + an(hgn), which
is equivalent to a permutation of the coefficients, so there is a unique matrix H ∈ GL(Cn) such that
Hu is equivalent to the associated vector for hu. The G-linear map Lh : h 7→ H is the (left) regular
representation.

The direct sum of two G-representations (ρ1, V1) and (ρ2, V2) can be constructed by

(ρ1 ⊕ ρ2)(g) =

[
ρ1(g)

ρ2(g)

]
(B.1)

The dimension dρ of a representation (ρ, V ) is defined to be dim(V ). A finite-dimensional repre-
sentation is irreducible if it cannot be written as the direct sum of two nontrivial representations.
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Denote Ĝ to be the set of isomorphism classes of irreducible subrepresentations of Lu, and let dρi
denote the dimension of ρi ∈ Ĝ. As it turns out, there is an isomorphism

Lu ∼=
⊕

ρ∈Ĝ

ρ⊕dρ

Where ρ ranges over one representative from each of the isomorphism classes of Ĝ, repeated ac-
cording to its multiplicity. In general, this decomposition is not uniquely determined as it depends
on the choice of representatives. Throughout this paper, we choose representatives such that each ρ
is unitary, meaning that every ρ(g) is a unitary matrix.

Every function f : G −→ C can be considered as equivalent to an element uf ∈ C[G] by setting
uf = f(g1)g1 + · · · + f(gn)gn. And as we have already seen, every u ∈ C[G] can naturally
be considered a subrepresentation of Lu. Then the Fourier transform of f at a representation ρ,
denoted f̂(ρ) ∈ GL(dρ,C) where f̂(ρ) =

∑
u∈G f(u)ρ(u), can be considered as a projection

of Lu(uf ) onto the orthogonal subspace described by ρ. Throughout the paper we use slightly
different notations and characterizations of the Fourier transform depending on the context, but all
share this projection as the fundamental operation.

Recalling Equation B.1, there is a representation isomorphic to Lu, which we will suggestively
call FM , that block-diagonalizes the image of Lu into orthogonal subspaces of unitary irreducible
representations (each ρ ∈ Ĝ repeated with multiplicity dρ):

FM (u) =



ρ1(u)

. . .
ρj(g)


 ∈ GL(Cn) (B.2)

For the last piece of the puzzle, extend the domain of FM to all functions f : G −→ C (by
considering f as an element of C[G]). Then we obtain

FMf =



f̂(ρ1)

. . .
f̂(ρj)


 ∈ GL(Cn) (B.3)

Which we call the matrix Fourier transform of f .

We also make use of the Fourier basis matrix F , which depends only on the group G and not the
function f . To construct it, we first need the operation Flatten which vertically stacks the columns
of a matrix. Then define the transform

φ(f) =




Flatten
(
f̂(ρ1)

)

...
Flatten

(
f̂(ρj)

)


 (B.4)

Letting ei : G −→ C be the indicator function ei(gj) = 1i=j we can describe the unitary Fourier
basis matrix F for a group G as a row-scaling of

F ∝ [φ(e1) φ(e2) · · · φ(en)] (B.5)

In other words, given a column vectorization f of a function f such that fi = f(gi), then F is the
matrix such that the ‘unflattening’ of Ff is equal to FMf up to the row-scaling constants. Thus
we can treat the group Fourier transform either as an abstract isomorphism or as a concrete matrix-
vector multiplication, depending on the application.

The matrix F can be explicitly constructed as described in Definition 4.1. Denoting e[ρ,i,j] as the
column-major vectorized basis for element ρij in the group Fourier transform, then we can form the
matrix

F =
∑

u∈G

∑

ρ∈Ĝ

√
dρ√
|G|

dρ∑

i,j=1

ρ(u)ije[ρ,i,j]e
T
u . (B.6)
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For visualization, consider the dihedral group D6 = {1, r, r2, a, ar, ar2}, which has three irre-
ducible representations ρ1, ρ2, ρ3 (up to isomorphism) of dimensions 1, 1, and 2 respectively, and
let f : D6 −→ C. Using colors instead of values at first to avoid numerical clutter:

f̂(ρ1) = [ ] f̂(ρ2) = [ ] f̂(ρ3) =

[ ]

Since LD6
∼= ρ1 ⊕ ρ2 ⊕ ρ23, we can get something like

FMf =






∈ GL(Cn)

Whereas for the unitary Fourier basis matrix we have the form

1 r r2 a ar ar2

F ∝

ρ1

ρ2

[ρ3]11

[ρ3]21

[ρ3]12

[ρ3]22







Note that we do not yet include the row-scaling constants. Now explicitly, choosing ρ1 the trivial
irrep, ρ2 the sign irrep, and ρ3 the representation sending

ρ3(a) =

[
0 1
1 0

]
ρ3(r) =

[
ω 0
0 ω2

]
(B.7)

Where ω = e2πi/3, then the matrix F is exactly

1 r r2 a ar ar2

F =
1√
6

ρ1

ρ2

[ρ3]11

[ρ3]21

[ρ3]12

[ρ3]22




1 1 1 1 1 1
1 1 1 −1 −1 −1√
2
√

2ω
√

2ω2 0 0 0
0 0 0

√
2

√
2ω

√
2ω2

0 0 0
√

2ω2
√

2ω
√

2√
2
√

2ω2
√

2ω 0 0 0




(B.8)

Note that the above is only one possible way of writing F since the 2-dimensional irreducible rep-
resentation of D6 is unique only up to conjugation by a unitary matrix.

C UNCERTAINTY PRINCIPLES FOR GROUPS

In mathematics, uncertainty principles categorize trade-offs of the “amount of information” stored
in a function between canonically conjugate regimes, e.g., position (real regime) and momentum
(Fourier regime) of a physical particle. More generically, uncertainty principles show that a function
and its Fourier transform cannot both be very localized or concentrated. In the context of group the-
ory, uncertainty principles specifically show that sparse support in either the real or Fourier regime
of a group necessarily implies dense support in the conjugate regime (Wigderson & Wigderson,
2021). Such results are directly relevant when interpreting implicit regularization of linear G-CNNs
which bias gradient descent towards sparse solution in the Fourier basis of the group. In this section,
we formally state and summarize these group theoretic uncertainty principles to provide intuition
into the properties of functions which linear group convolutional networks are likely to learn.
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Abelian groups For abelian groups, the fundamental uncertainty principle details a trade-off be-
tween the norms of a function in its real and Fourier bases.
Theorem C.1 (Generalization of Donoho-Stark Theorem (Wigderson & Wigderson, 2021)). Given
a finite abelian group G, let Ĝ be the set of irreducible representations of G and f : G → C be a
function mapping group elements to complex numbers. Let f be the vectorized function and F be
the unitary group Fourier transform (see Definition 4.1), then

‖f‖1
‖f‖∞

‖Ff‖1
‖Ff‖∞

≥ |G| (C.1)

Remark. Since the size of the support of a vector is bounded by |supp(v)| ≥ ‖v‖1
‖v‖∞ , this directly

implies that |supp(f)| |supp(Ff)| ≥ |G| recovering the Donoho-Stark theorem (Donoho & Stark,
1989; Matusiak et al., 2004).

Non-abelian groups Since non-abelian groups have matrix valued irreducible representations,
uncertainty theorems must account for norms and notions of support in the context of matrices.
Here, we will provide two different uncertainty theorems for the non-abelian setting – one via the
rank of irreducible representations and another via the Schatten norm of irreducible representations.
Uncertainty relations for non-abelian groups make use of the matrix group Fourier transform detailed
in Definition 4.1.
Theorem C.2 (Meshulam uncertainty theorem (Meshulam, 1992)). Given a finite non-abelian
group G, let Ĝ be the set of irreducible representations of G and f : G→ C be a function mapping
group elements to complex numbers. Let f be the vectorized function and FM be the matrix group
Fourier transform (see Definition 4.1), then

| supp(f)| rank(FMf) = | supp(f)|


∑

ρ∈Ĝ

dρ rank
(
f̂(ρ)

)

 ≥ |G| (C.2)

The above theorem shows that the rank of the matrix Fourier transformed function is the proper
notion of support in the uncertainty theorem for a non-abelian group. A stronger uncertainty princi-
ple which is a more direct corollary to Theorem C.1 can be obtained via the Schatten norms of the
irreducible representations as shown below.
Theorem C.3 (Kuperberg uncertainty theorem (Wigderson & Wigderson, 2021)). Given a finite
non-abelian group G, let Ĝ be the set of irreducible representations of G and f : G → C be a
function mapping group elements to complex numbers. Let f be the vectorized function and FM be
the matrix group Fourier transform (see Definition 4.1), then

‖f‖1
‖f‖∞

‖FMf‖(S)1

‖FMf‖(S)∞
=
‖f‖1
‖f‖∞

∑
ρ∈Ĝ dρ‖f̂(ρ)‖(S)1

maxρ∈Ĝ ‖f̂(ρ)‖(S)∞
≥ |G|. (C.3)

D VISUALIZING THE IMPLICIT BIAS

Implicit biases induced by the G-CNN architectures studied here can be readily observed by analyz-
ing coefficients of the linearized transformation in the Real or Fourier regimes. Here, we visualize
the linearized outputs a 3-layer linear G-CNN over the Dihedral groupD60 which has 4 scalar irreps
and 14 irreps of dimension 2 (hence 2× 2 matrices). Figure 6 shows these linearized coefficients of
the G-CNN, CNN, and FC at intialization and training.

As evident in Figure 6, the learned coefficients of the G-CNN are sparse in the Fourier regime
of the group. This sparsity pattern appears over blocks of irreps of length four, corresponding
to coefficients of the 2 × 2 irreps of D60. Furthermore, the values of the coefficients within a
block are roughly constant, highlighting the bias towards low rank irreps. The relative denseness
of coefficients of the trained G-CNN in the real regime is inherent due to the uncertainty principles
of group functions. Unlike the G-CNN, the fully connected network (FC) appears to have no bias
towards sparseness in its coefficients in either the real or Fourier regime. On a related note, the
cyclic group of CNNs share some of the same irreps as those of the G-CNN studied here. This may
be one explanation for the partial sparsity patterns observed in the coefficients of the CNN in the
Fourier regime.
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G-CNN (at initialization):
G-CNN (trained):

CNN (at initialization):
CNN (trained):

FC (at initialization):
FC (trained):

0.0 0.2 0.4 0.6 0.8
magnitude (relative to maximum entry)

Real regime coefficients Fourier regime coefficients

Figure 6: Linearized functions of the G-CNN (over the dihedral groupD60) are sparse in the Fourier
regime of the group. Furthermore, the sparsity pattern shows up in blocks of 4 which are the blocks
containing coefficients of individual irreps of the dihedral group D60. Linearized functions in the
real regime of the G-CNN, in contrast, are rather dense, highlighting the uncertainty principles
inherent in the implicit bias of G-CNNs. Sparsity in the group Fourier regime is not evident in
CNNs or fully connected (FC) networks.

E COMPUTATIONAL DETAILS

As described in Section 6, for all models we use three-layer networks over RG and binary classi-
fication tasks trained via standard gradient descent with exponential loss. We often train networks
on isotropic Gaussian data points which are random vectors whose entries are drawn i.i.d. from a
standard Normal. For the linear networks on simulated data (with a fully connected output layer)
we use the groups D8, and (C10 × C10 × C2), and (C5 × C5) o Q8. For the linear and nonlinear
networks on MNIST, we use (C28 × C28) × D8. For the networks with ReLU activations and a
linear layer (instead of pooling) we use the groups D8 and D60. For the experiments on MNIST
with non-linear networks, we have used the e2cnn package Weiler & Cesa (2019). The weights are
initialized with the standard uniform initialization. We choose an appropriate learning rate for each
task depending on the dimension and magnitude of the values - all learning rate choices are specified
in the attached code. Since each problem is overparameterized the loss will almost surely converge
to zero, so we choose enough training epochs to achieve satisfactory convergence—this ended up
being around 500 epochs for most tasks. For each plot, we report 95% confidence intervals over
10 to 50 runs, depending on the classification task. The computational resources used are modest -
commodity hardware should suffice to fully reproduce our results. For further details, please see the
attached code in the supplementary materials.

E.1 ADDITIONAL EXPERIMENTS

We include here the real and Fourier space plots for an experiment on C10 × C10 × C2 (Figure 7),
an abelian group with three generators which captures more complicated group operations than
cyclic shifts or standard planar convolutions. Inputs are vectors with elements drawn i.i.d. from the
standard normal distribution.

E.2 OMITTED REAL-SPACE PLOTS

E.3 LOSS PLOTS
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Figure 7: Norms of the linearizations of three different linear architectures for the abelian group
G = C10 × C10 × C2 trained on a binary classification task with six isotropic Gaussian data points.
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Figure 8: Real-space norm for D8 with ReLU networks and 2 Gaussian training points. See Fig-
ure 5a for comparable plot of norms in Fourier space.
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Figure 9: Real-space norm forD60 with ReLU networks, 10 Gaussian training points. See Figure 5b
for comparable plot of norms in Fourier space.
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Figure 10: Loss trajectory for the setting of D8 (see Figure 1). Networks are trained on 2 Gaussian
i.i.d. data points.
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Figure 11: Loss trajectory for the setting of C10 × C10 × C2 (see Figure 7). Networks are trained
on 6 Gaussian i.i.d. data points.
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Figure 12: Loss trajectory for the setting of (C5 × C5) o Q8 (see Figure 3). Networks are trained
on 10 Gaussian i.i.d. data points.
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Figure 13: Loss trajectory for the setting of (C28 × C28)×D8 (see Figure 4). Networks are trained
on the digits 1 and 5 from MNIST.
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Figure 14: Loss trajectory for the setting of D8 (see Figure 5a). Networks are nonlinear with ReLU
activations and trained on 2 Gaussian i.i.d. data points.
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Figure 15: Loss trajectory for the setting ofD60 (see Figure 5b). Networks are nonlinear with ReLU
activations and trained on 10 distinct frequencies as data points.
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