Supplementary materials: Crystals with Trans-
formers on Graphs, for predictions of crystal
material properties

1 ARCHITECTURE OF CRYSTOGRAPH

Figures in this section are same as Fugure 4 in the main text. Limited by space in the main text, we
keep the figures in the main text compact and leave the large version here in Figure S1 - S2.
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Figure S1: Structure of an eTGC layer.
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(b) MHNA in eTGC

Figure S2: Structure of (a) a GwT layer, (b) multi-head neighbor attention in eTGC layers, (c) FFN

in eTGC layers and GwT layers.
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2 MASKED ATOM PRETRAINING

In the pretraining phase for atom representations, we introduced a masked atom prediction task. In
this task, a specified percentage of atoms within each graph are masked. Specifically, 15% of the
atoms in each graph are subjected to masking operations. Among these, 80% are substituted with a
designated mask token, while 10% are replaced with randomly selected tokens, and the remaining
10% are left unchanged. In instances where the number of nodes in a graph is insufficient to maintain
the masking rate below 15%, the crystal structure is expanded in all three dimensions. With graphs
constructed as aforementioned, we trained a CGCNN model on these constructed graphs to predict
the types of masked atoms. The loss curve is in Figure S3.
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Figure S3: The loss curve in atom masked pretraining. The learning rate decrease by 10 at epoch
20.

Following the pretraining of atom embeddings, we concatenated the machine-learnt embeddings
with the manually curated CGCNN atom embeddings.

3 LAYERS OF FFNN
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Figure S4: Various depth of FFNN, trained on 1og_gvrh dataset.

We can see in Figure S4, deeper FFNN impedes the overall performance. The ideal depth of FFNN
is 1 or 2 layer.



4 LEARNING RATE
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Figure S5: Same model trained in various learning rate.

Shown in Figure S5, the optimal learning rate is 1e-4, which is generalized to other experiments in
this work.

5 WEIGHT DECAY
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Figure S6: Models trained with various weigh decay penalty.

The weight decay can be regarded as a derivative of L2 regularization. Our model is excessive in
parameter, however, the performance does not change much when the weight decay penalty varies,
as shown in Figure S6.
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