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(a) Stage 2 Decoder Variance
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(b) Stage 3 Decoder Variance
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(c) Stage 4 Decoder Variance

Figure 4: The decoder variance’s change over the course of training time.

A BENCHMARK METRICS

Here we introduce the metrics used for the experiments in Section 4.1. Property Statistics include LogP (The Octanol-
Water Partition Coefficient), SA (Synthetic Accessibility Score), QED (Quantitative Estimation of Drug-Likeness)
and MW (Molecular Weight). These metrics determine the practicality of the generated molecules, for example, LogP
measures the solubility of the molecules in water or an organic solvent (Wildman and Crippen, 1999), SA estimates
how easily the molecules can be synthesized based on molecule structures (Ertl and Schuffenhauer, 2009), QED
estimates how likely it can be a viable candidate of drugs (Bickerton et al., 2012). The values listed in the table for
each metric are the Wasserstein distances between the distributions of the property statistics in the test set and the
generate molecule set.

Structural statistics include SNN (Similarity to Nearest Neighbor), Frag (Fragment Similarity), and Scaf (Scaffold
Similarity). These statistics calculate two molecular datasets’ structural similarity based on their extended-connectivity
fingerprints (Rogers and Hahn, 2010), BRICS fragments (Degen et al., 2008) and Bemis–Murcko scaffolds (Bemis
and Murcko, 1996).

The sample quality metrics are a lot more intuitive. Valid calculates the percentage of valid molecule outputs. Unique
calculates the percentage of unique molecules in the first k molecules where k = 1000 for the ChEMBL dataset.
Novelty calculates the percentage of molecules generated that are not present in the training set. FCD is the Fréchet
ChemNet Distance (Preuer et al., 2018).

B CONVERGED DECODER VARIANCE IN DIFFERENT STAGES

For HGNN model, the stage #2 model’s decoder variance converges to 0.067 and the stage #3 decoder variance
converges to 1.0. For the RNN-VAE model, the stage #2 model’s decoder variance converges to 1.

For the MoLeR model, the stage #2 model’s decoder variance converges to 0.00013, and the stage #3 model’s decoder
variance converges to 0.016. We train a stage #4 VAE and it converges to 1.0. We include the plots of the decoder
variance during training at each stage in Figure 4. For both stage #2 and #3, the decoder variance briefly goes up in
the beginning of the training before converging to a much smaller value. In stage #4, the decoder variance reaches 1
very quickly and the value stays unchanged. We include the results generated by a 4-stage VAE in Table 5’s #4 row.

MoLeR Sample Quality Structural Statistics Property Statistics
+ prop Valid ↑ Unique ↑ Novelty ↑ FCD ↓ SNN ↑ Frag ↑ Scaf ↑ LogP ↓ SA ↓ QED ↓ MW ↓

#1 1.0 1.0 0.99 2.1 0.41 0.96 0.48 0.166.78e−3 0.0281.96e−3 0.0472.78e−3 9.60.70
#2 1.0 1.0 0.99 2.2 0.42 0.96 0.53 0.126.13e−3 0.0414.31e−3 0.0369.25e−4 6.80.71
#3 1.0 1.0 0.99 1.8 0.42 0.96 0.49 0.0876.16e−03 0.0312.81e−03 0.0282.31e−03 8.24.0e−01

#4 1.0 1.0 0.99 1.9 0.42 0.96 0.48 0.0667.39e−03 0.0303.27e−03 0.0291.52e−03 10.6.44e−01

Table 5: Properties of the generated molecules from the 4th-stage VAE trained on the ChEMBL dataset using MoLeR
without property matching as the first stage.
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C ADDITIONAL MULTI-STAGE VAE RESULTS

In this section, we include additional results on multi-stage VAE. We train a multi-stage VAE on a polymer dataset
(St. John et al., 2019) with HGNN as the first-stage. The first-stage result is included in the HGNN paper (Jin et al.,
2020a). We present the results from the second and third-stage VAE in relation to the first-stage in Table 6. We also
trained two additional stages for MoLeR model with property matching included in the objective function in Table 7.

The Polymer Dataset(St. John et al., 2019) contains 86,353 polymers and it’s divided into training, test and validation
set that contains 76,353, 5000 and 5000 molecules each. Polymers generally have heavier weight than the molecules
in the ChEMBL dataset and the dataset size is smaller. Uniqueness is selected to be at top k = 500 for the polymer
dataset.

Sample Quality Structural Statistics Property Statistics
HGNN Valid ↑ Unique ↑ Novelty ↑ FCD ↓ SNN ↑ Frag ↑ Scaf ↑ LogP ↓ SA ↓ QED ↓ MW ↓

#1 1.0 1.0 0.57 0.62 0.67 0.98 0.37 1.30.030 0.0893.0e−3 0.0201.2e−3 72.21.42

#2 1.0 1.0 0.51 0.27 0.69 0.99 0.37 0.100.033 0.0313.3e−3 0.00419.5e−4 7.71.1

#3 1.0 1.0 0.52 0.29 0.69 0.99 0.38 0.240.017 0.0244.1e−3 0.00242.9e−4 9.42.3

Table 6: Properties of the generated molecules trained on the polymers dataset.
On the polymer dataset, the second stage VAE improves significantly across all metrics – from 72.2 to 7.7 on MW,
0.020 to 0.0024 on QED, 0.089 to 0.031 on SA and 1.3 to 0.1 on LogP. In the third stage, 2 of the metrics (SA and
QED) improved while the other 2 degraded.

We train a multi-stage VAE on MoLeR with property matching as the first stage. Due to the modification to the
objective function, none of the analysis described in the main paper necessarily apply here, but it is still interesting to
see the results.

MoLeR Sample Quality Structural Statistics Property Statistics
+ prop Valid ↑ Unique ↑ Novelty ↑ FCD ↓ SNN ↑ Frag ↑ Scaf ↑ LogP ↓ SA ↓ QED ↓ MW ↓

#1 1.0 1.0 0.99 2.1 0.43 0.97 0.49 0.111.03e−02 0.132.51e−03 0.0338.65e−04 6.64.80e−01

#2 1.0 1.0 0.99 2.2 0.42 0.97 0.48 0.0801.37−02 0.0906.03−03 0.0301.80−03 6.02.94−01

#3 1.0 1.0 0.99 2.0 0.43 0.97 0.41 0.0961.21−02 0.135.17−03 0.0221.68−03 9.17.34−01

Table 7: Properties of the generated molecules from the muli-stage VAE trained on the ChEMBL dataset using MoLeR
with property matching as the first stage.

In Table 7, we see that the second-stage VAE is able to improve upon the first-stage on all metrics while the third-stage
improves only upon QED while the other 3 properties degraded.

D ADDITIONAL ACTIVITY SCORE DISTRIBUTION FIGURES

In the main paper, we include the activity score distribution of the generated molecules trained on the EGFR dataset
by Chemprop. We include the additional 3 figures that show the distribution of the activity scores generated by models
trained on EGFR (Figure 6) and JAK2 dataset as predicted by Random Forest and JAK2 (Figure 7) dataset as predicted
by Chemprop in Figure 5.

E TRAINING DETAILS ON MULTI-STAGE VAE

Each stage of the multi-stage VAE with HGNN as the first stage has three fully-connected layers of size 512 for both
encoders and decoders in addition to the input and output layer which are of size 20 (latent dimensions). The initial
decoder variance is set at 0.05. Learning rate is set at 0.0001.

Each stage of the multi-stage VAE with MoLeR as the first stage has five fully-connected layers of size 1025 for both
encoders and decoders in addition to the input and output layer which are of size 64 (latent dimensions). The initial
decoder variance is set at 0.007. Learning rate is set at 0.0001. We trained our model for 10000 epochs but fewer
epochs (e.g. 5000) can probably achieve similar results. For fine-tuning, the decoder variance is held as constant
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(a) MoLeR Fine-tuning
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(c) Whole Model Fine-tuning
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(d) Inner-Layer Fine-tuning
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(f) RL Fine-tuning.

Figure 5: The distributions of the generated molecules’ activity scores by the Chemprop model on the JAK2 protein
in six histograms.

during the process. Fine-tuning either inner-layer or extra-layer is done by loading the pre-trained model and add two
extra layers either connecting to the latent layer or the output. The two extra layers are randomly initialized. The
pre-trained part of the model is frozen while only the additional layers are being trained. Fine-tuning the whole model
means to load the pre-trained model and only freeze the decoder variance while training the rest of it without additional
layers. During fine-tuning, we use 0.00001 as the learning rate and train for 50000 epochs.
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(f) RL Fine-tuning.

Figure 6: The distributions of the generated molecules’ activity scores by the Random Forest model on the EGFR
protein in six histograms.
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Figure 7: The distributions of the generated molecules’ activity scores by the Random Forest model on the JAK2
protein in six histograms.
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