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A. PROOFS OF THE DEFINITIONS

Definition 2 Vanilla GCNs. Let x̄(i)i∈V be the estimation of the input observation x(i)i∈V. A
low-pass filter:

X̄ = ÃrwX, (1)

is the first-order approximation of the optimal solution of the following optimization:

min
X̄

∑
i∈V
‖x̄(i)− x(i)‖2

D̃
+

∑
i,j∈V

aij‖x̄(i)− x̄(j)‖22. (2)

Proof. Let l denote the objective function. We have

l = tr[(X̄ −X)T D̃(X̄ −X)] + tr(X̄TLX̄).

Then,
∂l

∂X̄
= 2D̃(X̄ −X) + 2LX̄.

If we let ∂l
∂X̄

= 0:

(D̃ + L)X̄ = D̃X

(I + L̃rw)X̄ = X.

As the norm of eigenvalues of Ãrw = I − L̃rw is bounded by 1, I + L̃rw has eigenvalues in range
[1, 3], which proves that I + L̃rw is a positive definite matrix. Therefore,

X̄ = (I + L̃rw)−1X. (3)

Unfortunately, solving the closed-form solution of Equation 3 is computationally expensive. Never-
theless, we can derive a simpler form, X̄ ≈ (I − L̃rw)X = ÃrwX , via first-order Taylor approxi-
mation which establishes the Definition.

Definition 3 Residual Connection. A graph convolution filter with residual connection:

X̄ = ÃrwX + εX, (4)

where ε > 0 controls the strength of residual connection, is the first-order approximation of the
optimal solution of the following optimization:

min
X̄

∑
i∈V

(‖x̄(i)− x(i)‖2
D̃
− ε‖x̄(i)‖2

D̃
) +

∑
i,j∈V

aij‖x̄(i)− x̄(j)‖22. (5)

Proof. Let l denote the objective function. We have

l = tr[(X̄ −X)T D̃(X̄ −X)]− εtr(X̄T D̃X̄) + tr(X̄TLX̄).

Then,
∂l

∂X̄
= 2D̃(X̄ −X) + 2(L− εD̃)X̄.
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If we let ∂l
∂X̄

= 0:

[(1− ε)D̃ + L]X̄ = D̃X

X̄ = [(1− ε)I + L̃rw]−1X

X̄ = [I + (L̃rw − εI)]−1X.

Therefore, the first-order approximation of the optimal solution is

X̄ ≈ [I − (L̃rw − εI)]X

= ÃrwX + εX.

Definition 3’ Concatenation. A graph convolution filter concatenating with the input signal:

X̄ = ÃrwX + εXΘΘT , (6)

is the first-order approximation of the optimal solution of the following optimization:

min
X̄

∑
i∈V

(‖x̄(i)− x(i)‖2
D̃
− ε‖x̄(i)Θ‖2

D̃
) +

∑
i,j∈V

aij‖x̄(i)− x̄(j)‖22, (7)

where ε > 0 controls the strength of concatenation and Θ is the learning coefficients for the con-
catenated signal.

Proof. Let l denote the objective function. We have

l = tr[(X̄ −X)T D̃(X̄ −X)]− εtr((X̄Θ)T D̃(X̄Θ)) + tr(X̄TLX̄).

Then,
∂l

∂X̄
= 2D̃(X̄ −X) + 2LX̄ − 2εD̃X̄ΘΘT .

If we let ∂l
∂X̄

= 0:

(D̃ + L)X̄ − εD̃X̄ΘΘT = D̃X

(I + L̃rw)X̄ − εX̄ΘΘT = X.

With the help of the Kronecker product operator ⊗ and first-order Taylor expansion, we have

vec(X̄) = [(I ⊗ (I + L̃rw))− ε((ΘΘT )⊗ I)]−1vec(X)

≈ [2I − (I ⊗ (I + L̃rw)) + ε((ΘΘT )⊗ I)]vec(X)

= vec(2X − (I + L̃rw)X + εX̄ΘΘT )

= vec(ÃrwX + εXΘΘT ).

Definition 4 Attention-based GCNs. An attention-based graph convolution filter:

X̄ = PX, (8)

is the first-order approximation of the optimal solution of the following optimization:

min
X̄

∑
i∈V
‖x̄(i)− x(i)‖2

D̃
+

∑
i,j∈V

pij‖x̄(i)− x̄(j)‖22, s.t.
∑
j∈V

pij = D̃ii,∀i ∈ V. (9)
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Proof. Let l denote the objective function. We have

l = tr[(X̄ −X)T D̃(X̄ −X)] + tr(X̄TLX̄).

Then,
∂l

∂X̄
= 2D̃(X̄ −X) + 2(D̃ − D̃P )X̄.

If we let ∂l
∂X̄

= 0:

(2D̃ − D̃P )X̄ = D̃X

(2I − P )X̄ = X.

Similarly, we can prove that (2I −P ) is a positive definite matrix, with eigenvalues in range [1, 3].
Therefore,

X̄ = (2I − P )−1X

≈ PX.

Definition 5 & 6 Topology-based GCNs Due to the fact that most of the topology-based models
adopt non-convolutional operations like concatenation, we derive a more general objective function
by combining with the non-convolutional operations:

min
X̄

α0

∑
i∈V
‖x̄(i)− x(i)‖2

D̃
+

t∑
k=1

αk
∑
i,j∈V

a
(k)
ij ‖x̄(i)Θ(k) − x̄(j)Θ(k)‖22, (10)

where
∑t
k=0 αk = 1, α0 > 0 and αk ≥ 0, k = 1, 2, . . . , t. If we let d be the feature dimension of

X , Θ(k) ∈ Rd×d correspond to the learning weights for the kth hop neighborhood. Let l denote the
objective function, we have:

∂l

∂X̄
= α0D̃(X̄ −X) +

t∑
k=1

αk(D̃ − D̃Ãkrw)X̄Θ(k)(Θ(k))T .

By letting ∂l
∂X̄

= 0, we have:

α0X̄ +

t∑
k=1

(In − Ãkrw)X̄Θ(k)(Θ(k))T = α0X.

Therefore, with the help of the Kronecker product operator ⊗ and first-order Taylor expansion, we
have

[α0In +

t∑
k=1

(αkΘ(k)(Θ(k))T )⊗ (In − Ãkrw)]vec(X̄) = α0vec(X). (11)

We can observe that
∑t
k=1(αkΘ(k)(Θ(k))T ) and (In−Ãkrw) have non-negative eigenvalues. Due to

the property of the Kronecker product that the eigenvalues of the Kronecker product (A⊗B) equal
to the product of eigenvalues of A and B, the filter (α0In +

∑t
k=1(αkΘ(k)(Θ(k))T ) is proved to

be a positive definite matrix. Therefore,

vec(X̄) = α0[α0In +

t∑
k=1

(αkΘ(k)(Θ(k))T )⊗ (In − Ãkrw)]−1vec(X)

≈ α0[(2− α0)In −
t∑

k=1

(αkΘ(k)(Θ(k))T )⊗ (In − Ãkrw)]vec(X)

= α0vec[(2− α0)X −
t∑

k=1

αk(In − Ãkrw)XΘ(k)(Θ(k))T ].
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If we let

W (0) =
2− α0

α0
In −

t∑
k=1

αk
α0

Θ(k)(Θ(k))T ; (12)

W (k) = Θ(k)(Θ(k))T ), k = 1, 2, . . . , t; (13)

we can denote the convolution filter as:

X̄ =

t∑
k=0

αkÃ
k
rwXW (k). (14)

As we have stated in the Section 2.2.2, although the learning weights has a constrained expressive
capability, it can be compensated by the following feature learning module. We omit the proofs of
Definition 5 and 6, as they can be viewed as particular instances of (10).

Definition 7 Regularized Feature Variance. Let ⊗ be the Kronecker product operator, vec(X) ∈
Rnd be the vectorized signal X . Let DX be a diagonal matrix whose value is defined by DX(i, i) =
‖x·i‖2. A graph convolution filter with regularized feature variance:

vec(X̄) = (In ⊗ [(α1 + α2)I − α2Ãrw]− α3[D−1
x (I − 1

d
11T )D−1

x ]⊗ D̃−1)−1vec(X) (15)

is equivalent to the optimal solution of the following optimization:

min
X̄

α1

∑
i∈V
‖x̄(i)− x(i)‖2

D̃
+ α2

∑
i,j∈V

aij‖x̄(i)− x̄(j)‖22 − α3
1

d

∑
i,j∈d

‖x̄·i/‖x·i‖ − x̄·j/‖x·j‖‖22,

(16)
where α1 > 0, α2, α3 ≥ 0. For computation efficiency, we approximate DX̄ with DX as we assume
that a single convolution filter provides little effect to the norm of features.

Proof. Let l denote the objective function. We have

l = α1tr[(X̄ −X)T D̃(X̄ −X)] + α2(X̄TLX̄)− α3tr[X̄D−1
x (I − 1

d
11T )D−1

x X̄T ].

Then,
∂l

∂X̄
= 2α1D̃(X̄ −X) + 2α2LX̄ − 2α3X̄D−1

x (I − 1

d
11T )D−1

x .

If we let ∂l
∂X̄

= 0:

[(α1 + α2)I − α2D̃
−1Ãrw]X̄ − α3D̃

−1X̄D−1
x (I − 1

d
11T )D−1

x = α1X.

With the help of the Kronecker product operator ⊗, we have

(In ⊗ [(α1 + α2)I − α2Ãrw]− α3[D−1
x (I − 1

d
11T )D−1

x ]⊗ D̃−1)vec(X̄) = vec(X). (17)

By setting α3 with a small positive value, the filter in Equation 17 is still a positive definite matrix.
Therefore we complete the proof.

Similarly, we can derive a simpler form via Taylor approximation. If we let:

A = (α1 + α2)I − α2Ãrw, B = In, (18)

C = −α3D̃
−1, D = D−1

x (1− 1

d
11T )D−1

x . (19)

Then, the first-order approximation of Equation 15 is summarized as:

vec(X̄) = (BT ⊗A + DT ⊗C)−1vec(X)

≈ (2I −BT ⊗A−DT ⊗C)vec(X)

= vec(2X −AXB −CXD).
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Additionally, we can also derive a t-order approximated formulation:

vec(X̄(t)) = (I +

t∑
i=1

[I − (BT ⊗A + DT ⊗C)]i)vec(X).

However, it is computationally expensive to calculate the Kronecker product. Therefore, we consider
utilizing a iterative algorithm. For any 0 ≤ k < t

vec(X̄(k+1)) = (I +

k+1∑
i=1

[I − (BT ⊗A + DT ⊗C)]i)vec(X)

= [I − (BT ⊗A + DT ⊗C)](I +

k∑
i=1

[I − (BT ⊗A + DT ⊗C)]i)vec(X) + vec(X)

= [I − (BT ⊗A + DT ⊗C)]vec(X̄(k)) + vec(X)

= vec(X + X̄(k) −AX̄(k)B −CX̄(k)D). (20)

B. REFORMULATION EXAMPLES

The reformulation examples of GCN derivatives are presented in Table 1.

Table 1: Reformulation of convolution-based graph neural networks. D and di in the attention-based
modules are normalization coefficients.

Models Non-Conv Module Attention-based Module Topology-based Module

GIN (Xu et al., 2018) Residual Connection - -

GraphSAGE (Hamilton et al., 2017) Concatenation - -

RGCN
(Schlichtkrull

et al.,
2018)

Concatenation
- -

W =
∑
r∈R

1
cr
Wr

SplineCNN (Fey et al., 2018) - pij = hθ(eij) -

AGNN (Thekumparampil et al., 2018) - pij = di
exp(βcos(xi,xj))∑

k∈N(i)∪i exp(βcos(xi,xk)) -

MoNet (Monti et al., 2017) Concatenation p
(k)
ij = diexp(− 1

2 (eij − µk)TΣ
(−1)
k (eij − µk)) -

GAT Veličković et al. (2018) Concatenation p
(k)
ij = di

exp(σ(aT(k)[θxi||θxj ]))∑
k∈N(i)∪i exp(σ(aT

(k)
[θxi||θxk]))

-

Cluster GCN (Chiang et al., 2019) Concatenation P = D(Ãrw + λdiag(Ãrw))

SGC (Wu et al., 2019) - P = DÃksym -

Hyper-Atten (Bai et al., 2019) - P = HWB−1HT -

APPNP (Klicpera et al., 2018) - - α0 = γ, α1 = 1− γ

GDC (Klicpera et al., 2019) - - αi = θi

TAGCN (Du et al., 2017) - - α0 = · · · = αk = 1/(k + 1)

MixHop (Kapoor et al., 2019) Concatenation - α0 = α1 = α2 = 1/3

C. DATA STATISTICS AND EXPERIMENTAL SETUPS

We conduct experiments on four real-world graph datasets, whose statistics are listed in Table 2. For
transductive learning, we evaluate our method on the Cora, Citeseer, Pubmed datasets, following
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Table 2: Dataset Statistics
Dataset Cora Citeseer Pubmed PPI
Nodes 2,708 3,327 19,717 56,944(24 graphs)
Edges 5,429 4,732 44,338 818,716

Features 1,433 3,703 500 50
Classes 7 6 3 121(multilabel)

Training Nodes 140 120 60 44,906(20 graphs)
Validation Nodes 500 500 500 6,514(2 graphs)

Test Nodes 1,000 1,000 1,000 5,524(2 graphs)

the experimental setup in Sen et al. (2008). There are 20 nodes per class with labels to be used
for training and all the nodes’ features are available. 500 nodes are used for validation and the
generalization performance is tested on 1000 nodes with unseen labels. PPI (Zitnik & Leskovec,
2017) is adopted for inductive learning, which is a protein-protein interaction dataset containing 20
graphs for training, 2 for validation and 2 for testing while testing graphs remain unobserved during
training.

To ensure a fair comparison with other methods, we implement our module without interfering the
original network structure. In all three settings, we use two convolution layers with hidden dimen-
sion h = 64. We set α1 = 0.2, α2 = 0.8 and α3 = 0.05 for all four datasets. We apply L2

regularization with λ = 0.0005 and use dropout on both layers. For training strategy, we initialize
weights using the initialization described in Glorot & Bengio (2010) and follow the method pro-
posed in GCN, adopting an early stop if validation loss does not decrease for certain consecutive
epochs. The implementations of baseline models are based on the PyTorch-Geometric library (Fey
& Lenssen, 2019) in all experiments.

D. RANDOM SPLITS

As illustrated in Shchur et al. (2018), using the same train/validation/test splits of the same datasets
precludes a fair comparison of different architectures. Therefore, we follow the setup in Shchur et al.
(2018) and evaluate the performance of our model on three citation networks with random splits.
Empirically, for each dataset, we use 20 labeled nodes per class as the training set, 30 nodes per class
as the validation set, and the rest as the test set. For every model, we choose the hyperparameters
that achieve the best average accuracy on Cora and CiteSeer datasets and applied to Pubmed dataset.

Table 3 shows the results on three citation networks under the random split setting. As we can
observe, our model consistently achieves higher performances on all the datasets. On Citeseer, our
model achieves higher accuracy than on the original split. On Cora and Pubmed, the test accuracies
of our model are comparable to the original split, while most of the baselines suffer from a serious
decline.

Table 3: Test accuracy (%) on transductive learning datasets with random slits. We report mean
values and standard deviations of the test accuracies over 100 random train/validation/test splits.

Dataset Citeseer Cora Pubmed
GCN(Kipf & Welling, 2017) 71.9±1.9 81.5±1.3 77.8±2.9
GAT(Veličković et al., 2018) 71.4±1.9 81.8±1.3 78.7±2.3
MoNet (Monti et al., 2017) 71.2±2.0 81.3±1.3 78.6±2.3

GraphSAGE (Hamilton et al., 2017) 71.6±1.9 79.2±7.7 77.4±2.2
GCN+reg (ours) 72.9±1.4 83.6±1.2 79.9±1.6
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