
8 Appendix
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Inequality (7) adds ELBOs for each individual loss term. Equation (8) uses the linearity of expectation.
Inequality(9) follows because the fact that |F u| ≥ 1. Equation (10) collects the KL expressions into
a single term, and establishes the inequality (5).

8.2 Benchmark datasets

Following previous studies [47, 32], we utilize synthetic and real graph datasets as follows.

Triangle Grid. Includes 100 synthetic 2D graphs, regular tiling of the 2D plane with equilateral
triangles, with 100 ≤ |V | < 400 [47].
Lobster. Includes 100 synthetic graphs with 10 ≤ |V | ≤ 100. Generated using the code from [47].
(Square) Grid. Includes 100 synthetic 2D graphs, regular tiling of the 2D plane with equilateral
squares, with 100 ≤ |V | < 400 [47].
Protein. Consists of 918 real-world protein graphs with 100 ≤ |V | ≤ 500 [13].
ogbg-molbbbp. Consists of 2039 real-world molecular graphs with 2 ≤ |V | ≤ 132 [23].

8.3 Flowchart for evaluating generated graphs

Figure 5: Each dataset is split into train, validation and test sets. A model is trained on the train set.
The trained model generates new samples. The generated samples are then compared with the test set.

Figure 5 illustrates the evaluation approach. To split the datasets and for statistic-based evaluation
metrics we use the code from [32]. For GNN-based metrics we used the code from [44]. Following
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Goyal et al. [18], for all the GGMs if a graph with disconnected components is generated, we take
the maximum connected component.

8.4 Setup and hyper-parameters

GraphVAE. We examine the effect of micro-macro modeling on the GraphVAE architecture [43].
GraphVAE encoder utilizes a two-layer GCN (256, 1026 dimension) followed by the graph-level
output formulation (sum of nodes representation) finalized with FCL (1024 dimension) outputting
the parameters of the variational posterior distribution. The model assumes isotropic and standard
Gaussian distributions for the variational posterior and prior, respectively. The GraphVAE decoder
is a three-layer fully connected neural network (1024,1024,1024 dimension) that directly maps
the graph representation to a probabilistic adjacency matrix. Layers utilize Layer Normalization
[2] and LeakyReLU activation function. Our AB methodology is to keep the architecture the same
and train the model A) using GraphVAE ELBO i.e. L0

θ(A), and B) the joint MM ELBO (6) that
combines both local and global graph properties. GraphVAE and GraphVAE-MM are trained using
the Adam optimizer [26] with a learning rate of 0.0003 for 20, 000 epochs except for Lobster and
ogbg-molbbbp, smaller datasets, which are trained for 10, 000 epochs. For the hyperparameters γ
and β see table 4. Hyperparameters are selected by validation set performance.

Baselines. For all Baselines, we used the implementation and hyperparameters setting provided by
the original papers.

Table 4: γ and β hyperparameters for each dataset used in graph generation task.
Dataset Triangle Grid Lobster Grid ogbg-molbbbp Protein MUTAG PTC QM9

γ 50 40 50 40 50 4 2 80
β 2e3 1.5e3 2e3 1.5e3 1e3 60 60 200

8.5 Qualitative evaluation of GGMs in detail

Here we extend the visual examination of the micro-macro modeling and benchmark GGMs from
Figure 3. The AB methodology for evaluating the micro-macro modeling is to use the same VGAE
architecture, here GraphVAE section 8.4, and applying micro-macro modeling. Figures 8, 7, 6, 10
and 9 provide visual comparisons of benchmark GGMs and the effect of the micro-macro modeling
approach. For each model, we generate 20 samples and visually select and plot the most similar ones
to the test set. The first block in each of the figures shows randomly selected target graphs from the
test set. The second block compares the effect of the micro-macro modeling on the GraphVAE and
the last block samples graphs generated by the benchmark GGMs.

8.6 Lesion studies on MM objective components

This section drills downs into the different components of the MM objective and the importance
of KL-divergence penalty. The KL-divergence importance is studied by training the GraphVAE
with β-VAE and different values for hyperparameter β which controls the relative importance of the
KL-divergence penalty. The result shows that while the KL-divergence weighting affects the model
performance, it cannot replace macro modeling. See the first block of table 5. The second block of
table 5 investigates the effects of each target statistic in isolation. As shown, no single statistic has the
power of all three combined. We also observe that different statistics are more important for different
datasets.

8.7 Variance parameter

Table 6 shows the values of the learned variance parameter σ2
u by the optimal σ-VAE approach for

each of the datasets. The variance of a graph statistic can be interpreted as quantifying the empirical
uncertainty of a graph statistic. Taking for example the Triangle count statistic, the learned variance
for the Lobster, Grid, and ogbg-molbbbp datasets is very small because there are almost no triangles
in these datasets. For the protein dataset, the learned variance is comparatively large, which indicates
the number of triangles has a wider range of values in this dataset.
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Figure 6: Visualization of generated Triangle Grid graphs by benchmark GGMs and the micro-macro
modeling effect. The first block shows four randomly selected graphs from the test set. The first and
second rows in the second block show samples generated by GraphVAE and GraphVAE-MM models
respectively. The bottom block shows graphs generated by benchmark GGMs. Graphs generated
with micro-macro modeling, GraphVAE-MM, match the target graph the best and make a noticeable
improvement in comparison to GraphVAE. For each model we visually select and visualize the most
similar generated samples to the test set.
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Figure 7: Visualization of generated Lobster graphs by benchmark GGMs and the micro-macro
modeling effect. The first block shows four randomly selected graphs from the test set. The first and
second rows in the second block show samples generated by GraphVAE and GraphVAE-MM models
respectively. The bottom block shows graphs generated by benchmark GGMs. Graphs generated
with micro-macro modeling, GraphVAE-MM, match the target graph the best and make a noticeable
improvement in comparison to GraphVAE. For each model we visually select and visualize the most
similar generated samples to the test set.
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Figure 8: Visualization of generated Grid graphs by benchmark GGMs and the micro-macro
modeling effect. The first block shows four randomly selected graphs from the test set. The first and
second rows in the second block show samples generated by GraphVAE and GraphVAE-MM models
respectively. The bottom block shows graphs generated by benchmark GGMs. Graphs generated
with micro-macro modeling, GraphVAE-MM, match the target graph the best and make a noticeable
improvement in comparison to GraphVAE. For each model we visually select and visualize the most
similar generated samples to the test set.
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Figure 9: Visualization of generated Protein graphs by benchmark GGMs and the micro-macro
modeling effect. The first block shows four randomly selected graphs from the test set. The first and
second rows in the second block show samples generated by GraphVAE and GraphVAE-MM models
respectively. The bottom block shows graphs generated by benchmark GGMs. Graphs generated
with micro-macro modeling, GraphVAE-MM, make a noticeable improvement in comparison to
GraphVAE. For each model we visually select and visualize the most similar generated samples to
the test set.
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Figure 10: Visualization of generated ogbg-molbbbp graphs by benchmark GGMs and the micro-
macro modeling effect. The first block shows four randomly selected graphs from the test set. The
first and second rows in the second block show samples generated by GraphVAE and GraphVAE-
MM models respectively. The bottom block shows graphs generated by benchmark GGMs. Graphs
generated with micro-macro modeling, GraphVAE-MM, make a noticeable improvement in com-
parison to GraphVAE. For each model we visually select and visualize the most similar generated
samples to the test set.
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Table 5: Sensitivity Analysis and Lesion Studies on MM objective components. The first block shows
the GraphVAE trained with β-VAE [22] and different β. β-VAE has a limited effect and cannot
compensate for the lack of macro components. The second block investigates the effects of each
target statistic in isolation. No single statistic has the power of all three combined.

Method Lobster ogbg-molbbbp
Deg. Clus. Orbit Spect Diam. Deg. Clus. Orbit Spect Diam.

GraphVAE (β = 1) 0.081 0.739 0.372 0.056 0.129 0.028 0.442 0.047 0.015 0.055
GraphVAE (β = 2) 0.039 0.324 0.262 0.031 0.021 0.022 0.425 0.032 0.015 0.028
GraphVAE (β = 4) 0.068 0.485 0.472 0.065 0.147 0.044 0.560 0.063 0.019 0.046
GraphVAE (β = 8) 0.080 0.432 0.465 0.065 0.085 0.127 0.736 0.250 0.034 0.055
GraphVAE (β = 16) 0.024 0.314 0.295 0.024 0.068 0.243 0.834 0.537 0.051 0.109
GraphVAE (β = 32) 0.099 0.513 0.594 0.045 0.148 0.392 0.975 0.896 0.103 0.266

GraphVAE–MM 2e-4 0 0.008 0.017 0.187 0.001 0.005 8e-4 0.005 0.018
GraphVAE-Triangle-Count 0.009 0 0.052 0.016 0.209 0.382 0.962 0.846 0.076 0.116
GraphVAE-s-step 0.015 0.255 0.092 0.025 0.097 0.399 0.943 0.866 0.097 0.336
GraphVAE-Degree-Hist 0.025 0.336 0.342 0.228 0.078 0.349 0.950 0.811 0.080 0.128

Table 6: Values of the learned variance parameter, σ2
u, for each graph statistic. The variance values

can be interpreted as quantifying the empirical uncertainty of a graph statistic.
Dataset 2-step 3-Step 4-step 5-step 6-step Degree hist. Triangle count
Triangle Grid 3.93e−5 4.11e−5 4.39e−5 4.53e−5 4.63e−5 0.21 4.94
Lobster 1.18e−5 9.85e−6 9.61e−6 9.49e−6 9.45e−6 3.89e−5 6.87e−6

Grid 2.90e−5 2.16e−5 2.02e−5 1.92e−5 1.86e−5 0.02 6.85e−6

Protein 2.09e−5 1.47e−5 1.41e−5 1.39e−5 1.38e−5 0.13 158.82
ogbg-molbbbp 3.94e−5 2.82e−5 2.74e−5 2.61e−5 2.54e−5 7.84e−4 1.40e−4

8.8 Statistics-based comparison with benchmark GGMs

Table 7 shows the benchmark results of statistics-based evaluation. On synthetic graphs, the
GraphVAE-MM scores are superior to or competitive with the BiGG and GRAN scores. On
the real-world graphs, the GraphVAE-MM scores are competitive with the BiGG and GRAN scores,
and superior to the other benchmarks.

Table 7: Statistics-based comparison with benchmark GGMs. For a named evaluation graph statistic,
each column reports the MMD between the test graphs and the generated graphs. The best result is in
bold and the second best is underlined.

(a) Synthetic Graphs

Method Triangle Grid Lobster Grid
Deg. Clus. Orbit Spect Diam. Deg. Clus. Orbit Spect Diam. Deg. Clus. Orbit Spect Diam.

50/50 split 3e−5 0.002 8e−5 0.004 0.014 0.002 0 0.002 0.005 0.032 1e−5 0 2e−5 0.004 0.014

GraphVAE-MM 0.001 0.093 0.001 0.013 0.133 2e−4 0 0.008 0.017 0.187 5e-4 0 0.001 0.014 0.065
GraphRNN-S [47] 0.053 1.094 0.121 0.033 1.124 0.016 0.319 0.285 0.045 0.242 0.014 0.003 0.090 0.112 0.128
GraphRNN [47] 0.033 1.167 0.107 0.030 1.121 0.004 0 0.033 0.035 0.384 0.013 0.166 0.019 0.111 0.460
GRAN [32] 0.134 0.678 0.673 0.184 1.133 0.005 0.304 0.331 0.043 0.446 0.003 1e−4 0.007 0.012 0.281
BiGG [11] 0.001 0.107 0.004 0.020 1.123 0.001 0 6e−4 0.012 0.101 0.002 3e−5 0.003 0.018 0.328

(b) Real Graphs

Method Protein ogbg-molbbbp
Deg. Clus. Orbit Spect Diam. Deg. Clus. Orbit Spect Diam.

50/50 split 4e−5 0.004 5e−4 4e−4 0.003 2e−4 2e−5 9e−5 5e−4 0.002

GraphVAE-MM 0.006 0.059 0.152 0.007 0.091 0.001 0.005 8e−4 0.005 0.018
GraphRNN-S [47] 0.046 0.324 0.316 0.028 0.302 0.016 0.572 0.006 0.045 0.199
GraphRNN [47] 0.012 0.123 0.264 0.018 0.342 0.002 9e−4 4e−4 0.135 0.495
GRAN [32] 0.003 0.059 0.053 0.004 0.009 0.008 0.353 0.013 0.056 0.317
BiGG [11] 0.007 0.099 0.316 0.012 0.181 0.003 0.001 5e−5 0.007 0.033
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8.9 Comparison of GGMs on train and generation time

Table 8 compares benchmark GGMs and VGAEs on generation and train time for the main datasets.
The benchmark GGMs require substantially more generation time than GraphVAEs. While MM
modeling slows down training for the GraphVAE, the training time is still less than the benchmarks.

Table 8: Comparison of benchmark GGMs on the train and generation time. Train and Generation
show average training time per epoch and average generation time per batch respectively. The best
result is in bold and the second best is underlined.

Method Grid Lobster Triangle Grid Protein ogbg-molbbbp
Train (s) Generation (s) Train (s) Generation (s) Train (s) Generation (s) Train (s) Generation (s) Train (s) Generation (s)

GraphVAE 0.28 0.00 0.11 0.00 0.24 0.00 2.36 0.00 1.11 0.00
GraphVAE-MM 0.49 0.00 0.15 0.00 0.40 0.00 4.87 0.00 2.70 0.00
GraphRNN-S [47] 10.02 32.20 4.09 24.21 82.32 12.62 369.44 110.23 2.40 37.92
GraphRNN [47] 16.16 294.53 4.66 72.68 296.76 16.33 864.1 236.24 2.02 30.89
GRAN [32] 7.62 22.13 1.12 1.34 12.61 29.27 9.51 44.19 4.62 37.60
BiGG [11] 97.75 2.00 18.02 0.31 82.86 2.59 130.28 2.93 23.14 0.11

8.10 Details on extended experiments

This section extends the experiments on real graph sets by evaluating the micro-macro modeling on
MUTAG, PTC, and QM9 datasets.

• MUTAG is a dataset of 188 mutagenic aromatic and heteroaromatic nitro compounds [46].

• PTC is a dataset of 344 chemical compounds that reports the carcinogenicity of male and
female rats [46].

• QM9 is a large dataset containing about 134k organic molecules [39].

Following [48] we withhold the edges/nodes labels to obtain homogenized datasets in which two nodes
are connected if there is an edge between them in the original graph. Table 9 shows statistics-based
and GNN-based evaluation of GraphVAE with and without micro-macro modeling and comparison
of micro-macro modeling on the train and generation time. Table 10 compares GraphVAE–MM with
benchmark GGMs. It was not feasible to train all auto-regressive benchmarks on QM9, so we report
results only for the GraphVAE architecture with and without micro-macro modeling. GraphVAE and
GraphVAE-MM are trained for 20, 000 epochs except for QM9, a large dataset with more than 134k
graphs, which are trained for 100 epochs. The experiments follow the setting in the main body of the
paper, for details see section 8.4.

Impact on GraphVAE. Table 9 shows a very large improvement from micro-macro modeling for
MMD RBF of generated graphs, especially for PTC the MMD RBF is reduced by more than one
order of magnitude. The diversity of generated graphs, F1 PR, also substantially increased, The
magnitude of the increase is up to 53%. For QM9, also the reality of generated graphs slightly
improved. GraphVAE already had a strong performance on QM9, compared to the other datasets. To
calculate the ideal score, we used two randomly selected subsets of QM9 dataset, each including 5k
graphs, because statistic-based evaluation metrics are slow to compute [44].

GraphVAE-MM vs. Benchmark GGMs. As table 10a shows, GraphVAE-MM beats the baselines
on the MMD RBF, and is very competitive on the F1 PR, though worse than BiGG. In addition, in
our experiments, GraphVAE-MM is much faster than the auto-regressive baselines in generation time,
see 10c.

8.11 System architecture

The code for all models is run on the same system, an Intel(R) Core(TM) i9-9820X CPU 3.30GHz and
Nvidia TITAN RTX GPU with TU102-core. Because of package compatibility issues, GraphRNN(-S)
is run on an Intel(R) Core(TM) i7-5820K CPU 3.30GHz and a GM200 GeForce GTX TITAN X.
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Table 9: Evaluation of micro-macro modeling for GraphVAEs on MUTAG, PTC, and QM9 datasets.

(a) GNN-based evaluation of micro-macro modeling.

Method MUTAG PTC QM9
MMD RBF F1 PR MMD RBF F1 PR MMD RBF F1 PR

50/50 split 0.03± 0.00 98.58± 0.00 0.04± 0.00 98.58± 0.00 0.010± 0.00 99.90± 0.20

GraphVAE 0.09± 0.02 78.38± 10.50 0.53± 0.13 31.96± 16.00 0.024± 0.01 97.28± 0.03
GraphVAE-MM 0.07± 0.01 86.63± 10.59 0.04± 0.01 84.40± 5.60 0.019± 0.00 96.16± 0.01

(b) Statistics-based evaluation of micro-macro modeling.

Method MUTAG PTC QM9
Deg. Clus. Orbit Spect Diam. Deg. Clus. Orbit Spect Diam. Deg. Clus. Orbit Spect Diam.

50/50 split 3e−4 0 1e−5 0.005 0.013 1e−4 9e−5 8e−5 0.002 0.013 5e−5 4e−4 4e−4 7e−5 2e−6

GraphVAE 0.005 0.126 0.003 0.019 0.055 0.197 0.757 0.562 0.036 0.143 0.007 0.002 0.003 0.004 0.005
GraphVAE-MM 0.001 0 1e-4 0.019 0.015 0.020 3e-4 0.003 0.018 0.043 0.005 0.002 0.003 0.003 0.004

(c) Comparison of micro-macro modeling on the train and generation time per-epoch and
per-batch respectively

Method MUTAG PTC QM9
Train (s) Generation (s) Train (s) Generation (s) Train (s) Generation (s)

GraphVAE 0.07 3e-4 0.23 5e-4 0.38 3e-4

GraphVAE-MM 0.15 3e-4 0.32 5e-4 0.75 3e-4

8.12 Complexity bounds

Table 11 gives complexity bounds for the different default statistics we use in this paper. Table 12
presents computational complexity of GGMs. The bounds are based on the literature and the analysis
presented in this paper.

8.13 Societal impact

Graph generation could have both positive and negative Societal impact, depending on the application
domain. On the positive side, graphs can represent molecules, and graph modeling supports medical
discovery. On the negative side, network analysis ,as a field, has potential to increase and misuse
control over network participants. For example, to motivate surveillance violations of privacy in
targeting recommendations, or identify users through their social links. However, these harms can
be mitigated by strengthening privacy protections during data collection. Furthermore, network
analysis can provide significant societal benefit, for example, by highlighting the existence and
situation of marginalized communities and understanding the flow of influence and (mis)information
in social networks. The main contribution of our work supports more beneficial uses by enhancing
the understanding of global network structure, as opposed to surveillance and the potentially harmful
targeting of individuals.

8.14 Code overview

The implementation is provided at https://github.com/kiarashza/GraphVAE-MM. main.py
includes the training pipeline and also micro-macro objective functions implementation. Source
codes for loading real graph datasets and generating synthetic graphs are included in data.py. All
the Python packages used in our experiments are provided in environment.yml. Generated graph
samples for each of the datasets are provided in the "ReportedResult/" directory, both in the pickle
and png format. This directory also includes the log files and hyperparameters details used to train
the GraphVAE-MM on each of the datasets.
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Table 10: Micro-macro modeling comparison with benchmark GGMs on MUTAG, and PTC datasets.
The benchmark methods were infeasible on QM9. The best result is in bold and the second best is
underlined.

(a) GNN-based comparison of micro-macro modeling with benchmark GGMs.

Method MUTAG PTC
MMD RBF F1 PR MMD RBF F1 PR

50/50 split 0.03± 0.00 98.58± 0.00 0.04± 0.00 98.58± 0.00

GraphVAE-MM 0.07± 0.01 86.63± 10.59 0.04± 0.01 84.40± 5.60

GraphRNN-S [47] 0.83± 0.14 55.25± 22.62 0.66± 0.15 34.50± 18.12
GraphRNN [47] 1.64± 0.05 0.99± 0.00 0.88± 0.15 32.26± 0.05
GRAN [32] 0.29± 0.08 93.24± 3.68 0.17± 0.02 81.20± 7.14
BiGG [11] 0.56± 0.00 98.08± 0.00 0.04± 0.00 98.11± 1.66

(b) Statistics-based comparison of micro-macro modeling with benchmark GGMs.

Method MUTAG PTC
Deg. Clus. Orbit Spect Diam. Deg. Clus. Orbit Spect Diam.

50/50 split 3e−4 0 1e−5 0.005 0.013 1e−4 9e−5 8e−5 0.002 0.013

GraphVAE-MM 0.001 0 1e-4 0.019 0.015 0.020 3e-4 0.003 0.018 0.043

GraphRNN-S [47] 0.006 5e−4 0.002 0.105 1.157 0.022 0.254 0.035 0.057 0.270
GraphRNN [47] 0.006 0.210 8e−4 0.070 0.819 0.005 0.003 0.002 0.075 0.397
GRAN [32] 6e−4 0.015 0.007 0.053 0.685 0.013 0.137 0.006 0.034 0.194

BiGG [11] 0.004 0 0.002 0.040 0.293 1e-4 0.002 3e−5 0.016 0.015

(c) Comparison of micro-macro modeling on the train and generation time, per-epoch and per-batch respectively,
with benchmark GGMs.

Method MUTAG PTC
Train (s) Generation (s) Train (s) Generation (s)

GraphVAE-MM 0.15 3e-4 0.32 5e-4

GraphRNN-S [47] 1.18 5.77 2.12 21.62
GraphRNN [47] 1.38 5.97 2.08 26.15
GRAN [32] 0.88 24.63 0.61 35.58
BiGG [11] 5.20 0.08 7.66 0.07

Table 11: Complexity of MM-ELBO Components
Component Time Complexity Space Complexity Property

Edge Reconstruction Probability O(N2) O(N2) Permutation Equivariant

Triangle Count O(N3) O(N2) Permutation Invariant
Degree histogram O(N2) O(N2) Permutation Invariant
S-Step transition probability O(N3) O(N2) Permutation Equivariant

Table 12: Graph Generative Models complexity comparison
Model Train (Computational Complexity) Graph Generation (Computational Complexity) Auto-Regressive Decision Steps

GraphVAE [43] O(N4) O(N2) O(1)
GraphVAE O(N2) O(N2) O(1)
GraphVAE-MM O(N3) O(N2) O(1)
BiGG [11] O(min((|E|+N) logN, N2)) O(min((|E|+N) logN, N2)) logN
GRAN [32] O(N2) O(N2) N
GraphRNN [47] O(N2) O(N2) |E|N
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