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1 Supplementary

In this supplementary material, we cover a generalized description of the Gaussian Process and the
algorithm of the N4SID technique.

1.1 Gaussian Process

A Gaussian process generalizes multivariate normal distributions to distributions over functions that
are specified by a prior mean function /(d) and covariance function x(d;, d;; 6) as

f(d) ~ GP(ul(d), k(di, dj; 0)) (D

Where 6 indicates the kernel hyper-parameters that need to be optimized. The predictive distribution
of the GP evaluated at the test points d.. of data D = {(d;,y;)}?_;, is given by

p(f(d)|D) ~GP(ppip(di), pp(ds, d.)), (2a)

ppp(d) =p(dy) + Ka,aKy 'y, (2b)

kfp(de,dy)) =Ka,a, — Ka.aK; KL, (20)

where, Ky = Ky + o2l is the covariance (kernel) matrix for the noisy targets y, and y =

(y(z1),...,y(z,))T. All kernel matrices implicitly depend on hyper-parameters, #, and the log
marginal likelihood conditioned on the hyper-parameters is given by

1 a_ 1 A n
log p(y|0) = *;JTK@ ly — 5 log | Ko| — 5 log 27 3)

where the three terms of the eq.3 have readily interpretable roles: f%yTIA( 0 !is the data-fit which

involves the observed targets; = log |K' g| is the complexity penalty depending only on the kernel
function and the inputs and 3 log 27 is a normalization constant. Maximizing the log marginal
likelihood provides a utility function for kernel learning.

1.2 N4SID System Identification Algorithm

In this work, we implement an alternative technique known as N4SID, a data-driven approach de-
signed for system identification (proposed by Van Overschee & De Moor). This method utilizes
a subspace-based strategy, which segregates the data into deterministic and stochastic elements by
projecting them onto distinct orthogonal subspaces. The algorithm calculates the system’s state se-
quence, state-transition matrid, input matrid, and output matrix from these subspaces, offering a
concise and effective depiction of the inherent dynamical system. Essentially, N4SID is capable of
directly approximating system behavior using input-output data in a state-space format. A descrip-
tion of the algorithm is shown below:

Algorithm 1 N4SID Algorithm

1: procedure N4SID

2: Normalize input-output data.

3 Estimate a covariance matrix by applying QR decomposition.

4 Compute a singular value decomposition (SVD) of the covariance matrix.

5: Divide the SVD output into observable and unobservable subspaces.

6: From the observable subspace, compute the system matrices A, B, C, and D.
7.

8

9:

Perform the balancing transformation and reduction of the state-space model.
: Return the state-space model.
end procedure

In this paper, considering the collected input-output data set u(k), y( k)szl, with u(k) € R™ repre-
senting the input data sample,{vyx, Vyk, Yk, Ok, Wk, Azk, AOk, Urk, Bk}, and y(k) € RP denoting



27 the output vector, €,,, , €y, , €w),» at time k, N4SID can effectively approximate the system’s dynam-

28 1ics using a state-space representation, as demonstrated in 4.

z(t +1) = Az(k) + Bu(k) @
y(t) = Cx(k) + Du(k)
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