
1 Supplementary1

In this supplementary material, we cover a generalized description of the Gaussian Process and the2

algorithm of the N4SID technique.3

1.1 Gaussian Process4

A Gaussian process generalizes multivariate normal distributions to distributions over functions that5

are specified by a prior mean function µ(d) and covariance function κ(di, dj ; θ) as6

f(d) ∼ GP(µ(d), κ(di, dj ; θ)) (1)

Where θ indicates the kernel hyper-parameters that need to be optimized. The predictive distribution7

of the GP evaluated at the test points d∗ of data D = {(di, yi)}ni=1, is given by8

p(f(d∗)|D) ∼GP(µf |D(d∗), κf |D(d∗, d
′
∗)), (2a)

µf |D(d) =µ(d∗) +Kd∗dK̂
−1
θ y, (2b)

κf |D(d∗, d
′
∗)) =Kd∗d∗ −Kd∗dK̂

−1
θ KT

d∗d (2c)

where, K̂θ = Kθ + σ2I is the covariance (kernel) matrix for the noisy targets y, and y =9

(y(x1), ..., y(xn))
T . All kernel matrices implicitly depend on hyper-parameters, θ, and the log10

marginal likelihood conditioned on the hyper-parameters is given by11

log p(y|θ) = −1

2
yT K̂−1

θ y − 1

2
log |K̂θ| −

n

2
log 2π (3)

where the three terms of the eq.3 have readily interpretable roles: − 1
2y

T K̂−1
θ is the data-fit which12

involves the observed targets; 1
2 log |K̂θ| is the complexity penalty depending only on the kernel13

function and the inputs and n
2 log 2π is a normalization constant. Maximizing the log marginal14

likelihood provides a utility function for kernel learning.15

1.2 N4SID System Identification Algorithm16

In this work, we implement an alternative technique known as N4SID, a data-driven approach de-17

signed for system identification (proposed by Van Overschee & De Moor). This method utilizes18

a subspace-based strategy, which segregates the data into deterministic and stochastic elements by19

projecting them onto distinct orthogonal subspaces. The algorithm calculates the system’s state se-20

quence, state-transition matrid, input matrid, and output matrix from these subspaces, offering a21

concise and effective depiction of the inherent dynamical system. Essentially, N4SID is capable of22

directly approximating system behavior using input-output data in a state-space format. A descrip-23

tion of the algorithm is shown below:

Algorithm 1 N4SID Algorithm

1: procedure N4SID
2: Normalize input-output data.
3: Estimate a covariance matrix by applying QR decomposition.
4: Compute a singular value decomposition (SVD) of the covariance matrix.
5: Divide the SVD output into observable and unobservable subspaces.
6: From the observable subspace, compute the system matrices A, B, C, and D.
7: Perform the balancing transformation and reduction of the state-space model.
8: Return the state-space model.
9: end procedure

24

In this paper, considering the collected input-output data set u(k), y(k)Nk=1, with u(k) ∈ Rm repre-25

senting the input data sample,{vxk, vyk, ψk, δk, ωk, axk,∆δk, uT k, uBk}, and y(k) ∈ Rp denoting26

1



the output vector, ϵvxk
, ϵvyk

, ϵωk
, at time k, N4SID can effectively approximate the system’s dynam-27

ics using a state-space representation, as demonstrated in 4.28

{
x(t+ 1) = Ax(k) +Bu(k)

y(t) = Cx(k) +Du(k)
(4)
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