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A Details of Causal Analysis

We need two steps to analyze causal effects between two variables. First, we need to design a
complete causal graph that conforms to the domain knowledge. Second, we need to determine
whether the causal effect between our variables of interest is identifiable.

For example, in Figure 1(a), we denote T as the treatment variable and Y as the outcome variable.
We want to estimate the causal effect of T on Y . There is a confounder C in the causal graph, which
is a common cause of T and Y . In other words, there is a backdoor path T ← C → Y between
T and Y , and C blocks the path. Correspondingly, T → W → Y is called the front-door path. In
order to represent the causal effect of T on Y , the intervention probability P (y|do(t)) is introduced
to replace the original conditional probability P (y|t), which means the probability of Y = y when
cutting off the path C → T and fixing T = t. How to remove the do-operator is thus a key problem
to identify the causal effect of T on Y . In this work, we leverage the front-door criterion [2] to solve
the problem of identifiability since the confounder is unobservable. If the mediator W satisfies the
front-door criterion, then the causal effect of T on Y is identifiable and is given by the following
front-door adjustment formula.

P (y|do(t)) =
∑
w

P (w|t)
∑
t′

P (y|t′, w)P (t′)

For the drug recommendation task, we propose a causal graph, as shown in Figure 1(b). We denote the
symptom (S) as the treatment variable and the drug recommendation probability (Y ) as the outcome
variable. Also, D, P and R can be treated as mediators, which satifies the front-door criterion like
Figure 1(a). Then the causal effect P (y|do(s),m) is formulated as

P (y|do(s),m) =
∑
r∈R

∑
d∈D

∑
p∈P

P (d|s)P (p|s)P (r|s, d, p)
∑
s′∈S

P (y|s′, r,m)P (s′)

=
∑
r∈R

P (r|s, ds, ps)
∑
s′∈S

P (y|s′, r,m)P (s′)

=
∑
s′∈S

P (y|s′, r(s, ds, ps),m)P (s′)

≜
∑
s′∈S

f(s′, r(s, ds, ps),m)P (s′).
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Figure 1: (a) A simple example for causal graph with unobservable confounder. The variables
represent: C: Confounder, T: Treatment, W: Mediator, Y: Outcome. (b) The causal graph for drug
recommendation. The variables represent: D: diagnosis, P: procedure, R: patient visit representation,
S: symptom, M: medication, Y: recommend or not. The dotted arrows and circles represent unobserv-
able variable and links.

B Model Details

B.1 Attention for Update Network

By introducing the learnable transformation matrices of query WQ, key WK and value WV , the
attention mechanism for vectors x = (x1, · · · , xL) is given by

Qx,Kx, Vx = x WQ, x WK , x WV ,

αm,n =
exp(QxmKxn)∑L
l=1 exp(QxmKxl)

,

Attn(x1, · · · , xL)xm =

L∑
n=1

αm,nVxn .

In particular, we select a shared-KV attetion scheme in our update network by sharing the matrices of
WQ and WK as WKV .

B.2 General Loss

In addition to our original Late, the ohter four loss functions Lbce, Lmul, Lpair and Lddi are
formulated as follows.

Lbce = −
N∑

j=1

Tj∑
t=1

m
(j)
t log(ŷ

(j)
t ) + (1−m

(j)
t ) log(1− ŷ

(j)
t )

Lmul =

N∑
j=1

∑
ŷ(+)∈ŷ

(j)(+)
t ,

ŷ(−)∈ŷ
(j)(−)
t

max(1− (ŷ(+) − ŷ(−)), 0)

|M|

Lddi =

N∑
j=1

Tj∑
t=1

|M|∑
u=1

|M|∑
v=1

Auvŷ
(j)
tu

ŷ
(j)
tv

Lpair = −
N∑

j=1

Tj∑
t=1

|M|−1∑
u=1

|M|∑
v=u+1

m̃
(j)
tu,v

log(ŷ
(j)
tu

ŷ
(j)
tv

) + (1− m̃
(j)
tu,v

) log(1− ŷ
(j)
tu

ŷ
(j)
tv

)

B.3 Training Algorithm

Our DrugRec model is trained with the Algorithm 1. The equtaions mentioned below are all from the
main text.
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Algorithm 1 Training Process for DrugRec

Input: EHR Training set: Xtra = {X(1), . . . ,X(Ntra)}, DDI adjacency matrix: A, the number of
sampled symptoms: ks, training epoches: L, weights of loss function: ωate, ωmul, ωpair, ωddi, γ.
Parameter: Learnable parameters in networks.
Output: The recommendation results for all patients ŷ.

1: for i = 1 to L do
2: for j = 1 to Ntra do
3: L ← 0.
4: for t = 1 to Tj do
5: Calculate s̃

(j)
t , d̃(j)t,st , p̃(j)t,st using Eq.(4)-(9) in the main text.

6: Calculate r
(j)
t = MLP([s̃(j)t , d̃

(j)
t,st , p̃

(j)
t,st ]).

7: Ŝ(j)t ←K random symptoms from the estimated conditional probability.
8: Calculate ŷ

(j)
t using Eq.(11).

9: Recalculate ŷ
(j)
0 using Eq.(4)-(11) (st ← s0 = 0).

10: Calculate L(j)
t using Eq.(13).

11: L = L+ L(j)
t .

12: end for
13: Update the learnable parameters.
14: end for
15: end for
16: return ŷ.

C Experiment Details

C.1 Datasets

After preprocessing real-world health records in MIMIC-III and MIMIC-IV, the statistics of the
eventual datasets can be shown in Table 1. The distribution of number of visits in two MIMIC datasets
are shown in Figure 2.

Table 1: The statistics of the eventual datasets.
Items MIMIC-III MIMIC-IV
# of patients 5208 6136
# of clinical visits 13490 17813
sypt./ diag./ prod. / med. space size 428/1895/1378/112 163/1851/4001/121
avg. # of visits 2.59 2.90
avg. # of sypt./ diag./ prod./ med. per visit 7.67/10.24/3.85/11.30 1.09/11.78/2.18/6.68
total # of DDI pairs 337 337

C.2 Baseline Details

• LR is a logistic regression algorithm with L2 regularization, where the multi-hot diagnosis
and procedure vector are concatenated as the input feature, and the One-vs-Rest classifier is
used for multi-label classification.

• ECC [3] is a 10-member ensemble classifier chain for dependent series of multi-label
classification.

• LEAP [8] is a typical instance-based method that treats the drug recommendation as a
sentence generation.

• RETAIN [1] is makes sequential prediction of medication combination based on a two-level
neural attention model.

• GAMENet [4] uses the memory neural network to store the information in historical health
records and graph convolution network to encode the EHR and DDI graph.
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(a) MIMIC-III (b) MIMIC-IV

Figure 2: The distribution of number of visits in two MIMIC datasets.

• MICRON [6] proposes a recurrent residual learning model for predicting medication
changes, which are used to reconstruct the recommended drugs.

• SafeDrug [7] leverages dual molecular encoders for rich molecule structures and uses DDI
controller for safe recommendation.

• COGNet [5] introduces a novel copy-or-predict mechanism to regard drug recommendation
as a sequence generation problem based on encoder-decoder framework.

C.3 Metric Details

For the evaluation metrics, we measure models with standard effectiveness metrics: Jaccard Similarity
Score (Jaccard), Precision Recall AUC (PRAUC) and F1 score (F1). We also meausure the safety
with DDI Rate. For the patient j at the t-th visit, we denote the groud-truth drug combination as
m

(j)
t , and the predicted drug combination as m̂(j)

t .

We can formulate the average Jaccard for patient j as

Jaccardj =
1

Tj

Tj∑
t=1

|{i : m(j)
ti = 1} ∩ {i : m̂(j)

ti = 1}|
|{i : m(j)

ti = 1} ∪ {i : m̂(j)
ti = 1}|

(1)

The average F1 for patient j is formulated as

F1j =
1

Tj

Tj∑
t=1

2R
(j)
t P

(j)
t

R
(j)
t + P

(j)
t

(2)

where the recall and precision at each time t for patient j are formulated as

R
(j)
t =

|{i : m(j)
ti = 1} ∩ {i : m̂(j)

ti = 1}|
|{i : m(j)

ti = 1}|
(3)

P
(j)
t =

|{i : m(j)
ti = 1} ∩ {i : m̂(j)

ti = 1}|
|{i : m̂(j)

ti = 1}|
(4)

The average PRAUC for patient j can be calculated as

PRAUCj =
1

Tj

Tj∑
t=1

|M|∑
m=1

P
(j)
t,m(R

(j)
t,m −R

(j)
t,m−1) (5)

where P
(j)
t,m represents the precision at cut-off m in the ordered list, and the change of recall from

drug m− 1 to m is the latter item.

The DDI Rate for patient j is calculated as
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DDIj =

∑Tj

t=1

∑
l,k∈{i:m̂(j)

ti
=1} I{Alk = 1}∑Tj

t=1

∑
l,k∈{i:m̂(j)

ti
=1} 1

(6)

where I is indicator function for counting the positions where the DDI matrix takes a value of 1.

C.4 Implementation Details

We follow the same data split setting [7], dividing the dataset into training, validation and test set
by different patients with a ratio of 4:1:1. The training process has 100 epoches using the Adam
optimizer and linear warm-up cosine-annealing learning rate scheduler with the base learning rate of
5e-4. The number of layers for all transformer encoders and MLPs is 2. The embedding size and
hidden size is 64. The number of sampled symptoms ks is set to 5. All dropout parameters are set to
0.1. The hyperparameters of the loss function ωate, ωmul, ωpair, ωddi and γ are set to 0.005, 0.1, 1.0,
0.5 and 0.05. We implement our experiments on two Nvidia A40 GPUs.

C.5 Standard Deviations & p-values of Main Results

We provide results of the standard deviation and p-value results in MIMIC-III (Table 2) and MIMIC-
IV (Table 3). We present standard deviations after ± and p-values for significant tests are in the
parentheses.

Table 2: Experimental results on MIMIC-III.
Model Jaccard F1 PRAUC DDI Rate
LR 0.4896 ± 0.0025 (3e-15) 0.6491 ± 0.0024 (1e-14) 0.7568 ± 0.0025 (2e-9) 0.0774 ± 0.0012 (2e-19)
ECC 0.4799 ± 0.0022 (0.0) 0.6390 ± 0.0022 (0.0) 0.7572 ± 0.0026 (4e-9) 0.0760 ± 0.0010 (8e-20)

LEAP 0.4465 ± 0.0037 (0.0) 0.6097 ± 0.0036 (0.0) 0.6490 ± 0.0033 (0.0) 0.0657 ± 0.0010 (3e-12)
RETAIN 0.4780 ± 0.0036 (2e-16) 0.6397 ± 0.0036 (2e-15) 0.7601 ± 0.0035 (6e-7) 0.0814 ± 0.0018 (3e-18)
GAMENet 0.5039 ± 0.0021 (3e-11) 0.6609 ± 0.0020 (5e-11) 0.7632 ± 0.0027 (8e-6) 0.0832 ± 0.0005 (9e-26)
MICRON 0.5076 ± 0.0037 (4e-8) 0.6634 ± 0.0035 (3e-8) 0.7685 ± 0.0038 (0.047) 0.0612 ± 0.0008 (2e-4)
SafeDrug 0.5090 ± 0.0038 (2e-7) 0.6664 ± 0.0033 (6e-7) 0.7647 ± 0.0020 (3e-5) 0.0658 ± 0.0003 (2e-16)
COGNet 0.5134 ± 0.0027 (7e-6) 0.6706 ± 0.0043 (1e-3) 0.7677 ± 0.0013 (2e-3) 0.0784 ± 0.0005 (5e-24)

DrugRec 0.5220 ± 0.0034 0.6771 ± 0.0031 0.7720 ± 0.0036 0.0597 ± 0.0006

Table 3: Experimental results on MIMIC-IV.
Model Jaccard F1 PRAUC DDI Rate
LR 0.3844 ± 0.0028 (0.0) 0.5379 ± 0.0031 (4e-16) 0.6568 ± 0.0036 (5e-6) 0.0645 ± 0.0012 (7e-22)
ECC 0.3680 ± 0.0041 (0.0) 0.5173 ± 0.0047 (0.0) 0.6541 ± 0.0030 (3e-8) 0.0648 ± 0.0018 (3e-19)

LEAP 0.3653 ± 0.0028 (0.0) 0.5201 ± 0.0033 (0.0) 0.5314 ± 0.0038 (0.0) 0.0570 ± 0.0011 (2e-19)
RETAIN 0.3903 ± 0.0038 (3e-14) 0.5471 ± 0.0040 (2e-12) 0.6563 ± 0.0055 (1e-4) 0.0618 ± 0.0025 (5e-16)
GAMENet 0.3957 ± 0.0035 (3e-13) 0.5525 ± 0.0041 (2e-10) 0.6479 ± 0.0055 (3e-8) 0.0757 ± 0.0014 (1e-23)
MICRON 0.4009 ± 0.0044 (4e-10) 0.5545 ± 0.0048 (8e-9) 0.6584 ± 0.0043 (2e-4) 0.0605 ± 0.0017 (3e-18)
SafeDrug 0.4082 ± 0.0026 (3e-9) 0.5651 ± 0.0028 (3e-5) 0.6495 ± 0.0036 (9e-10) 0.0553 ± 0.0010 (4e-19)
COGNet 0.4131 ± 0.0020 (1e-6) 0.5660 ± 0.0019 (2e-5) 0.6460 ± 0.0017 (8e-14) 0.0596 ± 0.0005 (9e-24)

DrugRec 0.4194 ± 0.0020 0.5713 ± 0.0022 0.6658 ± 0.0026 0.0396 ± 0.0007

D Supplementary Experiments

D.1 The Effect of Number of Visits

We stratifed the datasets based on different number of visits to study its impact on the performance of
different models. Follwing the preprocessing scripts of [7], patients with only 1 visit were removed.
Thus, we stratified the test set into 3 groups by the total number of patient visits: 2, 3 and more
than 3 visits. The comparison of various methods on different number of visits is shown in Table 4.
Here we chose the recent COGNet and SafeDrug as stronger baselines. Our DrugRec outperformed
baselines on all metrics in each group. For different values of k in DrugRec, DrugRec-2 has the best
performance, which concurs with the observation in Section Experiments.
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Table 4: The effect of number of visits.
Jaccard PRAUC F1

2 3 >3 2 3 >3 2 3 >3

SafeDrug 0.5114 0.5016 0.5006 0.7653 0.7652 0.7587 0.6678 0.6620 0.6617
COGNet 0.5131 0.5146 0.5140 0.7675 0.7689 0.7674 0.6703 0.6722 0.6705
DrugRec-1 0.5216 0.5170 0.5146 0.7687 0.7681 0.7674 0.6775 0.6731 0.6724
DrugRec-2 0.5237 0.5176 0.5147 0.7729 0.7691 0.7690 0.6782 0.6739 0.6729
DrugRec-3 0.5225 0.5170 0.5147 0.7720 0.7683 0.7680 0.6774 0.6738 0.6732

D.2 Case Study

To verify the impact of considering the existence of the hidden confounder for multi-visit drug
recommendation, an example recommendation drugs for a patient with three visits is provided in
Table 5. We choose COGNet and our ablation model DrugRec (w/o Late) as stronger baselines
ignoring the hidden confounder. Here we detail the patient’s symptoms and ICD codes of diagnoses
and procedures for each visit. At the same time, ground-truth medications prescribed by doctors
and recommended medications by different methods are also included. During the several visits,
the patient’s disease condition has changed, and the ground-truth medications have also changed
accordingly. In the patient’s early visit (1st), the performance of the baselines and DrugRec is similar.
While in later visits (2nd, 3rd), the baselines may accumulate recommendation bias. DrugRec can
alleviate this problem due to modeling the hidden confounder.

For COGNet and DrugRec (w/o Late) ignoring the hidden confounder, they will always predict a drug
"J01M" that is frequently recommended in the training set, but is not included in the current ground
truth. This makes drug recommendations more biased. Since DrugRec models the hidden confounder,
it will not always recommend the wrong drug and achieve debiased drug recommendations, improving
the recommendation accuracy.

Table 5: Example recommended drugs for a patient with three visits. Here “FN” refers to the number
of drugs that are in ground-truth but not predicted, while “FP” indicates the number of drugs predicted
but not in ground-truth. The key drugs that cause the prediction bias are marked in bold and are
always incorrectly recommended in this case.

Patient Disease Condition Method Recommended Drugs (ATC3)
1st Visit Ground Truth N02B, A01A, A02B, A06A, B05C, C07A, C03C, A12B, N02A, N06A, B01A, C10A, C01B, N05C, C09A,
Diag.: 2724, 4280, 41401, 25000, 4439, V4582, 5180, 3004, H04A

4240, E8781, 79001, 28860, V103, 42823, E8889, V4364, COGNet N02B, A01A, A02B, A06A, B05C, A12C, C07A, C03C, N02A, J01M, B01A, C10A, N05C, C09A, R03A,
41072, 92232, 40291 R01A, G04C (TP=12, FN=4, FP=5)

Prod: 9390 DrugRec (w/o Late) N02B, A01A, A02B, A06A, B05C, A10A, C07A, A12B, N02A, J01M, B01A, C01B, C09A, A07D, D04A
Sypt.: cough, shortness of breath, chest pain, nausea, (TP=11, FN=5, FP=4)

constipation DrugRec N02B, A01A, A02B, A06A, B05C, C07A, C03C, A12B, N02A, N06A, B01A, C10A, C09A, C01D (TP=13,
FN=3, FP=1)

2nd Visit Ground Truth N02B, A01A, A06A, B05C, A12A, A12C, C01C, A07A, C07A, C03C, A12B, N02A, N06A, B01A, A03B,
Diag.: 78551, 2724, 45829, 4280, 41401, 42731, 4271, 4019, C10A, C01B, N05C, C09A, B02B, C01D, N05B, R05C, R01A, D04A, C03B

V4582, 99672, 3004, 4240, 4168, 9971, 412, 5845, 79001, COGNet N02B, A01A, A02B, B05C, A12A, A07A, A10A, N01A, C07A, C03C, A12B, N07A, C02D, N02A, J01M,
E8497, E8790, 42823, 4260, 71590, E8782, E9444, 45989 B01A, A03B, C10A, C01B, N05C, C09A, C08C, C01D, A04A, D11A (TP=16, FN=10, FP=9)

Prod: 3893, 0066, 3895, 3995, 8856, 3722, 8964, 8842, 0041, DrugRec (w/o Late) N02B, A01A, A06A, B05C, A12A, C01C, A07A, A10A, A12B, N02A, J01M, C02A, B01A, A03B, N05C,
3607, 0046, 3964, 3768 C09A, D01A, B02B, N05B, R05C, A03F, R01A, D11A, C01E, A07D (TP=17, FN=9, FP=8)

Sypt.: cough, shortness of breath, bleeding, depression, chills, DrugRec N02B, A01A, A06A, B05C, A12C, C01C, A07A, A10A, C07A, C03C, A12B, N02A, N06A, B01A,
sob A03B, C10A, C01B, N05C, C09A, C01D, R03A, N05B, R01A (TP=21, FN=5, FP=2)

3rd Visit Ground Truth N02B, A01A, A02B, A06A, B05C, C01C, A07A, C07A, C03C, A12B, C02D, N06A, B01A, C10A, N05C,
Diag.: 4589, 311, 2724, 41071, 4280, 41401, 25000, 4439, C09A

4019, 5180, 2639, 2851, E8781, 27541, 51881, 9971, E8497, COGNet N02B, A01A, A02B, B05C, A12C, A07A, A10A, N02A, N06A, A02A, J01M, A03B, C10A, C01B, C09A,
42821, V103, 3962, 78052 C01D, R03A, N05B (TP=8, FN=8, FP=10)

Prod: 0066, 3606, 3723, 8856, 9671, 0045, 0040 DrugRec (w/o Late) N02B, A01A, A02B, A06A, A12A, A07A, N01A, A12B, C02A, A11C, N05C, C09A, C01D, B03B, D07A,
Sypt.: cough, depression, chest pain, vomiting, fever, nausea, N05B, R01A (TP=8, FN=8, FP=9)

bleeding DrugRec N02B, A01A, A02B, A06A, B05C, A07A, N01A, A12B, C02D, B01A, C01B, N05C, C09A, R03A, N05B
(TP=11, FN=5, FP=4)

D.3 Simulation Study

We also study the performance of DrugRec on simulated data. We create a random synthetic
dataset for simulation studies. The generation process of simulated data is detailed in Algorithm 2.
Specifically, we simulated 5000 pseudo patients and divided them into training, validation and test
set with a ratio of 4:1:1. According to the statistics of MIMIC-III, the space sizes of the symptoms,
diagnoses, procedures and medications are set to 428, 1895, 1378 and 112, respectively. The hidden
size H is 64 and all controlling weights are set to 0.5.
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Algorithm 2 Generating Process for Simulated data
Input: Number of pseudo patients: Nsim, number of historical visits: k, space sizes of symptoms,
diagnoses, procedures, medications: |S|, |D|, |P |, |M |. hidden size: H , controlling weights: wcs,
wsd, wsp, wcy .
Output: The simulated data X.

1: Draw the drug representations: M = rand(|M |, H)
2: Draw the weight matrices: Wcs = rand(H, |S|), Wsd = rand(|S|, |D|), Wsp = rand(|S|, |P |)
3: Draw the weight matrices: Wsr = rand(|S|, H), Wdr = rand(|D|, H), Wpr = rand(|P |, H)
4: for j = 1 to Nsim do
5: Draw the number of visits: Tj ∼ Poisson(0.5) + 2

6: Draw the confounder: c(j) = rand(Tj , H)

7: Draw the initial symptom representations: s(j) = wcs · c(j)Wcs + (1− wcs) · rand(Tj , |S|)
8: Draw the initial diagnosis representations: d(j) = wsd · s(j)Wsd + (1− wsd) · rand(Tj , |D|)
9: Draw the initial procedure representations: p(j) = wsp · s(j)Wsp + (1− wsp) · rand(Tj , |P |)

10: Calculate the patient visit representations: r(j) = mean(s(j)Wsr, d
(j)Wdr, p

(j)Wpr)

11: Calculate the initial scores: q(j) = (wcy · c(j) + (1− wcy) · r(j)) ·MT

12: for t = 1 to Tj do
13: Update the symptom representation: s̃(j)t = mean(s(j)t , s

(j)
t−1, · · · , s

(j)
t−k)

14: Draw the number of symptoms: ns = randint(2, 15)
15: Sort s̃(j)t and obtain the top ns symptom indices s̃(j)t [: ns]

16: Update the diagnosis representation: d̃(j)t = mean(d(j)t , d
(j)
t−1, · · · , d

(j)
t−k)

17: Draw the number of diagnoses: nd = randint(5, 15)
18: Sort d̃(j)t and obtain the top nd diagnosis indices d̃(j)t [: nd]

19: Update the procedure representation: p̃(j)t = mean(p(j)t , p
(j)
t−1, · · · , p

(j)
t−k)

20: Draw the number of procedures: np = randint(2, 10)
21: Sort p̃(j)t and obtain the top np procedure indices p̃(j)t [: np]

22: Update the scores: q̃(j)t = mean(q(j)t , q
(j)
t−1, · · · , q

(j)
t−k)

23: Draw the number of medications: ny = randint(10, 20)
24: Sort q̃(j)t and obtain the top ny medication indices q̃(j)t [: ny]
25: end for
26: X(j) = {s̃(j)[: ns], d̃

(j)[: nd], p̃
(j)[: np], q̃

(j)[: ny]}
27: end for
28: return X

The key to the simulation is to conditionally sample the variables in sequence based on our proposed
causal graph (Figure 1(b)). We compare DrugRec with COGNet and our ablation model DrugRec
(w/o Late) ignoring the hidden confounder. All methods are trained and tested on the same split
of simulated data. The results of the effectiveness metrics on simulated data are shown in Table 6.
DrugRec can achieve better performance than those ignoring the hidden confounder, indicating the
impact of modeling the hidden confounder.

Table 6: Effectiveness results on simulated data.
Method Jaccard PRAUC F1

COGNet 0.8211 0.9598 0.8959
DrugRec (w/o Late) 0.8334 0.9680 0.9047
DrugRec 0.8401 0.9779 0.9091

D.4 Error Analysis

We sort the prediction results of all cases by F1 score, and select the case with the lowest F1 score
for analysis, which is shown in Table 7. In this case, the model recommends a total of 13 drugs, and
there are 8 drugs in ground truth. The intersection of the two is only 3 drugs. We note that there are
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only 3 diagnosis codes and one procedure code for the patient in this case, significantly lower than
the average of test set (10.24 and 3.85). Thus, we analyze that the poor model recommendation effect
may be due to insufficient observed information for inference. But since we take unseen observations
into account in the confounder, the precision of our model is still stronger than the baseline COGNet.
Lower false positives (FP) indicate that DrugRec is less prone to recommending too many wrong
drugs.

Table 7: A bad case of drug recommendations.
Patient Disease Condition Method Recommended Drugs (ATC3)
Diag.: 2851, 56881, V6441 Ground Truth A01A, N02A, A02A, J01M, B01A, N05B, C01E, D04A

Prod.: 0331 COGNet N02B, A01A, A02B, A06A, B05C, A12A, A12C, A07A, N01A, C07A, A12B,
N02A, N06A, N05C, J01D, N03A, N05A, A04A, N05B (TP=3, FN=5, FP=16)

DrugRec N02B, A01A, A02B, A06A, B05C, A12C, A12B, N06A, B01A, N05C, J01D,
A04A, N05B (TP=3, FN=5, FP=10)
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