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ABSTRACT

Extracting temporally extended skills can significantly improve the efficiency of
reinforcement learning (RL) by breaking down complex decision-making prob-
lems with sparse rewards into simpler subtasks and enabling more effective credit
assignment. However, existing abstraction methods either discover skills in an
unsupervised manner, which often lacks semantic information and leads to er-
roneous or scattered skill extraction results, or require substantial human inter-
vention. In this work, we propose to leverage the extensive knowledge in pre-
trained Vision-Language Models (VLMs) to progressively guide the latent space
after vector quantization to be more semantically meaningful through relabel-
ing each skill. This approach, termed Vision-language model guided Temporal
Abstraction (VanTA), facilitates the discovery of more interpretable and task-
relevant temporal segmentations from offline data without the need for extensive
manual intervention or heuristics. By leveraging the rich information in VLMs,
our method can significantly outperform existing offline RL approaches that de-
pend only on limited training data. From a theory perspective, we demonstrate that
stronger internal sequential correlations within each sub-task, induced by VanTA,
effectively reduces suboptimality in policy learning. We validate the effectiveness
of our approach through extensive experiments on diverse environments, including
Franka Kitchen, Minigrid, and Crafter. These experiments show that our method
surpasses existing approaches in long-horizon offline reinforcement learning sce-
narios with both proprioceptive and visual observations.

1 INTRODUCTION

Reinforcement learning (RL) (Sutton & Barto, 2018) has demonstrated remarkable success across a
variety of domains, including robotics (Peng et al., 2020; Haarnoja et al., 2018), games (Silver et al.,
2016; Zha et al., 2021), and combinatorial optimization (Geng et al., 2024; Wang et al., 2024). How-
ever, in complex environments with sparse rewards, learning efficiently over long horizons remains
challenging. Temporal abstraction (Sutton et al., 1999; Villecroze et al., 2022; Park et al., 2023; Fu
et al., 2024) provides a solution by breaking down complex, long-term problems into simpler sub-
tasks, allowing agents to learn hierarchically, where credit assignment can be more easily managed
at the segment level. These methods seek to extract temporally extended primitive structures from
tasks into skills for further learning, while in real-world scenarios with logged data, this falls under
the scope of offline RL (Ajay et al., 2021; Venkatraman et al., 2024). The agent learns to behave
within the constraints of the skill context, which reduces the action search space.

*Equal contribution.
†Corresponding author.
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Despite previous efforts in hierarchical or goal-conditioned RL focusing on skill extraction for
downstream policy learning, creating useful and effective abstractions remains challenging. Some
methods apply unsupervised methods to discover skills (Ajay et al., 2021; Venkatraman et al., 2024),
which often result in fragmented segments. While heuristic approaches, such as using fixed horizons
to define subgoals (Emmons et al., 2022; Ghosh et al., 2021; Yang et al., 2022), can lead to unmean-
ingful divisions. In long-horizon tasks, particularly in offline RL, misleading extraction of primitive
options can result in poor value function learning and suboptimal policy learning. To address this
issue, another line of research incorporates human annotations or language descriptions into skill
extraction (Lee et al., 2019; Fu et al., 2024; Peng et al., 2024), but these methods are heavily reliant
on human supervision, which contradicts the pursuit of fully automated intelligence.

Humans inherently excel at efficient learning by instinctively decomposing complex tasks into
smaller, manageable components. Drawing inspiration from this phenomenon, we aim to extract
interpretable segments that emulate this task decomposition process, focusing on identifying mean-
ingful contexts that denote subtasks. These contexts serve as temporally extended signals, represent-
ing the current subtask or the next subgoal, and condition the learning of skills (low-level contextual
policies) for effective task execution. How can we discover more reasonable context and build skills
without relying on cumbersome human labor? One promising approach to addressing this challenge
is the integration of reinforcement learning agents with the prior knowledge and reasoning capabil-
ities of pretrained foundation models, such as Vision-Language Models (VLMs). These models,
trained on large-scale Internet data, offer rich interpretations of the environment and semantic un-
derstanding, allowing agents to reason in a more meaningful and effective manner (Du et al., 2024;
Mees et al., 2023).

Inspired by the success of VLM, we propose a novel approach that leverages the prior knowledge
of VLMs to decompose trajectories into reasonable subsequences, termed Vision-Language Model
Guided Temporal Abstraction (VanTA). Our method progressively shapes the latent space after vec-
tor quantization to be more semantically meaningful by relabeling each segment. This process facil-
itates the discovery of more interpretable, task-relevant temporal segmentations, all while reducing
the reliance on extensive manual intervention. Specifically, the latent space undergoes alternating
updates in two stages: first, it commits to the vector-quantized results; then, after VLM assigns
indices to the segments, the latent space is further refined. We employ a two-level policy extrac-
tion framework, where the high-level policy selects from a compact, discrete primitive skill space,
and Implicit Q-Learning (IQL) (Kostrikov et al., 2022) is used for low-level policy training. From
a theoretical standpoint, we demonstrate that our method, in a hierarchical manner, compresses
the raw MDP action space and reduces the horizon. Compared to the primitive skill space with-
out VLM guidance, VanTA reduces the complexity of low-level policy space, allowing the agent
to address subtasks more efficiently in expectation. We empirically validate our approach through
extensive experiments on environments including Franka Kitchen in D4RL (Fu et al., 2020), Mini-
grid (Chevalier-Boisvert et al., 2023), and Crafter (Hafner, 2021). These experiments show that our
method outperforms previous approaches in long-horizon offline reinforcement learning scenarios
for both proprioceptive and visual observations.

2 RELATED WORK

2.1 TEMPORAL ABSTRACTION IN HIERARCHICAL REINFORCEMENT LEARNING

Temporal abstraction is a key topic in hierarchical reinforcement learning. Many previous methods
rely on unsupervised objectives to discover skills (Pertsch et al., 2020; Eysenbach et al., 2019; Singh
et al., 2021), which can lead to scattered and unmeaningful skill extraction. To achieve more co-
herent skill discovery, some approaches incorporate human intervention (Lin et al., 2024; Oh et al.,
2017; Xu et al., 2018). Then these skills are used for planning (Sharma et al., 2020), few-shot imita-
tion learning (Nam et al., 2022), or online RL (Nachum et al., 2019). In contrast, our work leverages
VLM-guided skill extraction to enhance the limited available data, reducing the need for extensive
human intervention. While temporally extended and recurring structures have been effective in solv-
ing complex tasks in online RL, integrating them into offline RL is also beneficial (Dietterich, 1998;
Sutton et al., 1999; Kulkarni et al., 2016). The main challenge lies in how to hierarchically decom-
pose trajectories (Ajay et al., 2021; Jiang et al., 2023; Pertsch et al., 2020). Our method focuses on
extracting more meaningful skill context from offline data via VLM guidance.
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2.2 KNOWLEDGE DISTILLATION FROM VLM FOR REINFORCEMENT LEARNING

Vision-language models (VLMs) possess extensive world knowledge. The efficiency of reinforce-
ment learning is crucial (Chen et al., 2024; Wang et al., 2022), and leveraging knowledge in VLMs
can enhance it. VLMs are used to decompose high-level long-sequence tasks into multiple low-level
executable step-by-step plans (Huang et al., 2022; Wang et al., 2023; Brohan et al., 2023). These
plans then serve as conditions for downstream reinforcement learning tasks to guide RL learning
(Huang et al., 2023). However, due to the limited reasoning abilities of VLMs, they struggle to accu-
rately recognize dynamic environments and reason precisely. On the other hand, VLMs are also used
to embed useful information such as instructions (Liu et al., 2022; Mees et al., 2023; Myers et al.,
2023), feedback (Bucker et al., 2023) and data for world modeling (Lin et al., 2023). These ap-
proaches leverage (V)LMs to encode the semantic information of input text and images. Compared
to traditional knowledge distillation methods, our approach uses VLMs as a discriminative model to
assist in segmentation, which is more reliable than relying on their generation abilities (Pang et al.,
2024).

3 PRELIMINARIES

Let M = (S,A, P, r, γ, ρ0) represent a Markov Decision Process (MDP), where S is the state
space, A is the action space, P : S × A → ∆(S) is the transition function (∆(·) is the probability
simplex), r : S × A → [0, Rmax] is the reward function, γ ∈ [0, 1) is the discount faction and
ρ0 is the initial distribution over states. A policy π : S → ∆(A) describes a distribution over
actions for each state. The goal of RL is to learn the best policy π∗ that maximizes cumulative
discounted reward, i.e.,

∑
t Eat∼π∗γtr(st, at). The value function and Q function of policy π are

V π(s) =
∑
t Eat∼π(st)[γtr(st, at)|s0 = s], Qπ(s, a) =

∑
t Eat∼π(st)[γtr(st, at)|s0 = s, a0 = a].

V ∗ and Q∗ be the shorthand for V π∗
and Qπ∗

respectively. We assume access to experience dataset
D := {τi := (st, at, rt, st+1)

H
t=0}Ni=1.

Vector Quantized Variational Autoencoder (VQ-VAE) (van den Oord et al., 2017) is a neural net-
work architecture designed for unsupervised learning of latent representations. In VQ-VAE, the
input data x is mapped to a continuous latent space by the encoder qψ , which is then quantized to
the nearest codeword z in the discrete codebook embedding space Z . This codeword, cj , is indexed
in the codebook C, where the size of the codebook set is denoted as |C|. The decoder pϕ maps
the discrete code back to the output space, generating new samples. VQ-VAE updates the encoder,
decoder, and codebook parameters with the loss function Eq. (1), respectively reconstruction loss,
codebook loss and commitment loss:

L = Êx∼D
[
∥x− x̂∥22 + ∥sg(h)− z∥22 + β∥h− sg(x)∥22

]
, (1)

where x̂ ∼ pϕ(·|z), h ∼ qψ(·|x), and sg(·) represents the stop-gradient operation. Additionally,
we follow the technique from Gumbsch et al. (2024), which models sequential transitions in latent
space by introducing L1-regularization to context changes ∆ht = ∥ht+1−ht∥1, as the context code
is intended to change relatively sparsely.

4 METHOD

In this section, we introduce VanTA, a novel framework for extracting skills from offline trajectory
datasets D, grounded in pretrained vision-language models (VLMs). We incorporate VLM into the
skill context codebook Z update process, which distills states into a discrete space πθ(z|s). Then
conditioned on the extracted skill, low-level policy is further learned by offline RL.

Our framework, as illustrated in Fig. 1, consists of two stages. In the first stage, state sequences are
initially segmented using vector quantization (VQ) techniques to generate the initial set of skills.
These skills are then passed to the VLM, which relabels them based on its internal knowledge. The
relabeled skills are subsequently used to update the VQ codebook following the method described
in van den Oord et al. (2017). This process is repeated iteratively until convergence. In the second
stage, the low-level policy is refined using the skills derived from the first stage. The following
sections provide detailed insights into the implementation of our approach.
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Figure 1: Vision-language model guided Temporal Abstraction (VanTA) Overview: First stage for
primitive skill extraction, second stage for policy extraction, conditioned on the extracted skill.

4.1 SKILL CONTEXT LEARNING

To better distill the skill context, we leverage the knowledge in the foundation model VLM. VQ
provides a standard codebook Z , but directly querying each image may lead to hallucinations due to
the lack of clear meaning in a single observation. Additionally, this approach is inefficient when han-
dling large offline datasets. Therefore, we start with the VQ method to initialize trajectory segments.
The input for VQ is a single observation. By projecting consecutive observations into a single skill
context, segments are formed, which serve as a proper initialization for querying the VLM. We pro-
pose a modification to the original VQ-VAE architecture, to learn text-aligned temporal abstractions
of trajectories for decision-making policies. The original decoder is replaced with a policy decoder
pϕ(a|s, z), as temporal abstractions focus on behavior information for policy learning rather than
sharing the reconstruction objective.

As the encoder qψ(h|s) embeds the state into the continuous latent space, it is then projected into a
discrete code vector zj , where the index j corresponds to codebook cj in C. Consecutive states as-
signed to the same code index naturally segment the trajectory into sub-trajectories, where the initial
and terminal states of each sub-trajectory define the boundaries of a primitive skill. To ground the
codebook embedding space with semantic meaning, we query the VLM as follows: j = VLM(s̄),
where s̄ represents the initial and terminal states of the primitive skill. The returned j is the iden-
tified index. We adopt the update rule from van den Oord et al. (2017); Roy et al. (2018); Razavi
et al. (2019) to update the cj embedding zj , applying an exponential moving average with a smaller
decay rate after querying the VLM:

zj ← zj · λ+
∑
nj

hj(1− λ), (2)

where
∑
nj

represents all projected embeddings assigned to index j by the VLM. We denote the
EMA target of (

∑
n1

h1(1−λ), ...,
∑
nj

hj(1−λ), ...) as e, where j ranges from 1 to |C| in Eq. (3).

Scattered or unmeaningful skills are common during unsupervised learning. Leveraging knowledge
in the VLM, primitive skills can be merged, and misleading indices corrected. This alternation
process gradually makes the segmentation more semantically meaningful. Exception handling for
VLM is crucial, as the output of VLM can be stochastic, often providing misleading answers when
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an image only partially depicts the subtask. We thereby add one option for VLM to choose as
no suitable skill. During optimization, we increase the smoothness loss to improve consistency
with surrounding states, incorporating scattered observations into neighboring skills in subsequent
iterations. The final loss for training encoder qψ , decoder pϕ is defined as:

Lψ,ϕ = Ê
s,a∼D

[
∥a− â∥22 + β∥h− sg(z)∥22 + ∥z − sg(h)∥22 + ∥z − e∥22 + γ∥∆h∥1

]
, (3)

where sg(·) represents the stop-gradient operation, and ∆h denotes the smoothness loss, which
ensures representation consistency between consecutive states, following the approach in Gumbsch
et al. (2024). And z ∈ Z is the latent variable discretized by vector quantization in this loss function.

4.2 LOW-LEVEL POLICY EXTRACTION

We collect a replay buffer B from the dataset D, consisting of segmented sub-trajectories, and store
transition tuples {σi := (st, at, zt, rt:t+K−1, st+K)Ci

t=0}Mi=0 from σi ∼ B. Here, st and at repre-
sent the state-action pairs from D, zt is the latent variable labeled by our primitive skill extraction
method, rt+K−1 denotes the γ-discounted sum of rewards accumulated over K− 1 time steps start-
ing from time step t in σi, and st+K represents the initial state of the next skill. We first update the
high-level Q-function, which is conservatively learned using temporal-difference error at the skill
level. A batch of primitive transitions is sampled from B for maximizing the cumulative return of
the primitive skills. Since the latent space in the codebook is quantized, we apply discrete Deep
Q-learning under offline setting in a conservative manner (Kumar et al., 2020). The Bellman error
for the Q-update in high-level policy learning can be expressed as:

Q(st, zt)← rt:t+K−1 + γKQ(st+K , argmax
z∼πθ(z|st+K)

Q(st+K , z)), (4)

Once the high-level policy is applied to generate candidate primitive skills during evaluation, the
final policy for VanTA generates low-level actions conditioned on both the primitive skill and the
observation. The low-level policy is learned using a behavior cloning-style algorithm, where the
policy network approximates the action logits from the offline dataset:

min
ω

J(ω;D) = Êτ∼D

[
−
H−1∑
t=0

log πω(at|st, zt)

]
, (5)

where z is the latent space label assigned to the state. Additionally, we apply importance weighting
during the update, using exp(Q(s, a)− V (s)) (Kostrikov et al., 2022) with a certain coefficient.

5 ANALYSIS

Intuitively, more semantically meaningful skills can lead to better policies. To theoretically validate
this intuition, we analyze the relationship between algorithm performance and the learned skills.
We compare VanTA with reinforcement learning in the original space or hierarchical reinforcement
learning methods that lack external semantic information guidance in this section. Our algorithm
is divided into two parts: offline reinforcement learning for the high-level policy and weighted
behavior cloning for the low-level policy. First, we focus on the offline reinforcement learning part.
In the offline setting, the performance of the policy is highly related to the dataset. Therefore, we
introduce an assumption on the quality of the dataset as previous works did (Chen & Jiang, 2019;
Liu et al., 2024). We also give the definition of admissible distributions.
Definition 5.1 (Admissible distributions). We say a distribution ν ∈ ∆(S × A) is admissible in
MDP M , if there exists t ≥ 0 and a policy π such that ν(s, a) = Pr[st = s, at = a|s0 ∼ ρ0, π].

In other words, admissible distributions are distributions that can be generated by some policy under
the given MDP.
Assumption 5.2 (Concentratability coefficient). Given the dataset D, let the distribution of the
dataset be µ(s, a). We assume that there exists C < ∞ s.t. for any admissible ν, ν(s,a)

µ(s,a) ≤ C,
∀(s, a) ∈ S ×A.
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The assumption means the distribution of the offline dataset should be able to include all the state-
action pairs. Chen & Jiang (2019) gives the sample complexity of performing fitted Q iteration
under this assumption.
Theorem 5.3 (Theorem 2 of Chen & Jiang (2019)). Given a dataset D with sample size |D| = n
and F satisfies completeness, i.e., ∀f ∈ F , T f ∈ F , w.p. ≥ 1 − δ, the output policy of Fitted Q

Iteration after k iterations, πk, satisfies v∗ − vπk ≤ ϵVmax when k →∞ and n = O

(
C log

|F|
δ

ϵ2(1−γ)4

)
.

We assume the size of the function class |F| is influenced by the dimensions of the state space
and action space, i.e., |F| = g(|S|, |A|). This assumption is reasonable because the complexity of
function approximation is closely tied to the number of possible state-action pairs. Specifically, in
a tabular setting, the size of the function class can be represented as: |F| = (|S||A|)R, where |S|
is the cardinality of the state space, |A| is the cardinality of the action space, and R represents the
range of possible values that the Q-function can take. If we do Q iteration without establishing the
hierarchical structure, the sample complexity of the learning process is indicated by Thm. 5.3.

In our setting, the high-level policy outputs not the actions but the skills, the low-level policy learns
with weighted BC conditioned on the skill output by the high-level policy. To facilitate our analysis,
we assume the length of skills is the same, denoted as K. The learning process of the high-level
policy is similar to fitted Q iteration except the action space is replaced with the skill space and
the horizon changes correspondingly. Therefore, we get the sample complexity of high-level policy
directly from Thm. 5.3.
Corollary 5.4. Given a dataset D with sample size |D| = n and F satisfies completeness, w.p.
≥ 1 − δ, the output policy of FQI after k iterations, πk, satisfies v̂∗ − vπk ≤ ϵVmax when k → ∞

and n = O

(
C log

g(|S|,|Z|)
δ

ϵ2(1−γK)4

)
, where v̂∗ is the optimal policy conditioned on the low-level policy.

Note that v∗ in Thm. 5.3 is replaced with v̂∗, this is because the quality of the skills is also an
influence factor of the performance. Then we need to determine the difference between v̂∗ and v∗.

Note that the low-level policy is trained by weighted behavior cloning, the optimal policy of
weighted behavior cloning is Kostrikov et al. (2022): π̃∗(a|s) ∝ µ(a|s) exp

(
β(Q̂(s, a)− V̂ (s))

)
.

We denote the value induced by the optimal policy as ṽ∗. Therefore, v∗ − v̂∗ can be decomposed as
v∗ − ṽ∗ + ṽ∗ − v̂∗. Let ∆(β, Q̂, V̂ ) denote v∗ − ṽ∗, this is because this term is only related to β, Q̂
and V̂ . If Q̂ = Q∗, V̂ = V ∗, and β → ∞, then ṽ∗ → v∗. The last term we need to determine is
ṽ∗ − v̂∗. We give the result here, and the proof is deferred to Appx. A.
Lemma 5.5. For any π̃∗ ∈ Π, weighted BC algorithm ensures that with probability at least 1− δ,

ṽ∗− v̂ ≤ O(1) ·
√
1 + Q̂Var(β)

H

K

√
σ2
K log(|Π|δ−1)

n
+O(R log(n)) ·(1+Q̂Var(β))

H

K

log(|Π|δ−1)

n
,

where v̂ is the value function induced by the learnt policy π̂, n is the number of samples in the
dataset, Q̂Var = Var

(
exp(β(Q̂(s,a)−V̂ (s)))

Z(s)

)
, Z(s) is the normalization factor, and

σ2
K =

K∑
h=1

Eπ
∗
[
(Qπ∗

t (st, π
∗(st))−Qπ∗

t (st, at))
2
]
.

Note that a semantic skill implies temporal correlations of action sequences, which means the policy
space of a semantic skill is not the same as the original policy space. For ease of discussion, we can
make the following assumptions:

1. Original policy space (no temporal correlation assumptions): In the original policy space,
there is no temporal correlation between action sequences. The agent can freely choose each action
without considering the relationships between actions over time. This space is denoted as Πori.

2. Semantic skill policy space (with temporal correlation): Introducing temporal correlation
means that actions at the current time step are influenced not only by the current state but also by
previous actions. This will reduce the size of the strategy space, as not all action sequences are valid.
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Suppose the autocorrelation coefficient of action sequences generated by the policy belongs to the
new policy space is larger than α, then the new space can be denoted as Πα = {π ∈ Πori|ρ(π) > α},
where ρ(π) is the autocorrelation coefficient of the action sequence generated by policy π.

Combine the results together, we have

Theorem 5.6. Given a dataset D with sample size n, under the hierarchical learning process, with
probability as least 1− δ,

v∗ − vπk ≤ O

√C log |g(|S|,|Z|)
δ

(1− γK)4n

 · Vmax +O(1) ·
√

1 + Q̂Var(β)
H

K

√
σ2
K log(|Πα|δ−1)

n

+O(R log(n)) · (1 + Q̂Var(β))
H

K

log(|Πα|δ−1)

n
+∆(β, Q̂, V̂ ).

Compare Thm. 5.6 with Thm. 5.3, the hierarchical structure reduces the size of Q function class
from g(|S|, |A|) to g(|S|, |Z|), and the scale induced by horizon is reduced from (1 − γ)4 to (1 −
γK)4. However, it also introduces three other terms. Generally, ∆(β, Q̂, V̂ ) is not large, as the
weighted BC algorithm has already achieved good performance (Nair et al., 2020; Zhao et al., 2022;
Kostrikov et al., 2022) and ∆(β, Q̂, V̂ ) is even smaller because there is no BC loss and the high-level
policy is assumed as optimal. If the hierarchical structure of the problem is good, for example, the
action sequence of the skill has high temporal correlation and the middle two terms are also small,
then the performance bound of hierarchical methods is better than the original one.

Furthermore, Thm. 5.6 provides us with an approach to determine the performance of different
hierarchical methods. If the action sequence of the learned skill has high temporal correlation,
|Πα| can be much smaller, then the performance bound is much better. Intuitively, the skills with
semantic information are more temporal correlated, which explains why our method can be better
than previous methods. We test the temporal correlation in the experiment Sec. 6.5.

Table 1: Performance on Franka Kitchen, MiniGrid and Crafter environments, averaged over 5
random seeds. The best results are bolded and the second-best results are underlined.

Task Name BC CQL IQL RvS GCSL WGCSL LDCQ VanTA (Ours)

kitchen-complete-v0 65.0 43.8 62.5 50.2 58.6 57.7 52.8 69.2±8.5
kitchen-partial-v0 38.0 50.1 46.3 60.3 55.0 59.4 67.8 71.2±5.7
kitchen-mixed-v0 51.5 52.4 51.0 51.4 56.2 49.6 62.3 68.5±4.4

MiniGrid-DoorKey-6x6-complete-v0 0.92 0.67 0.91 0.89 0.82 0.85 0.86 0.92±0.03
MiniGrid-DoorKey-6x6-mixed-v0 0.70 0.61 0.72 0.67 0.59 0.79 0.72 0.80±0.17
MiniGrid-DoorKey-8x8-complete-v0 0.88 0.43 0.89 0.94 0.87 0.76 0.70 0.92±0.07
MiniGrid-DoorKey-8x8-mixed-v0 0.43 0.30 0.47 0.32 0.39 0.44 0.38 0.51±0.18
MiniGrid-KeyCorridorS3R3-complete-v0 0.47 0.62 0.72 0.64 0.55 0.57 0.69 0.81±0.06
MiniGrid-KeyCorridorS3R3-mixed-v0 0.09 0.23 0.51 0.42 0.21 0.23 0.38 0.61±0.12
MiniGrid-RedBlueDoors-6x6-complete-v0 0.80 0.51 0.90 0.78 0.73 0.61 0.64 0.85±0.11
MiniGrid-RedBlueDoors-6x6-mixed-v0 0.64 0.47 0.69 0.42 0.72 0.51 0.44 0.73±0.20

Crafter-partial 2.69 1.73 2.75 2.11 —— —— 0.96 5.46

6 EXPERIMENTS

In this section, we empirically validate the effectiveness of VanTA in providing a hierarchical
structure that improves agent learning performance. Sec. 6.1 evaluates the performance of offline
RL methods against hierarchical goal-conditioned approaches on tasks with hierarchical sub-tasks.
Sec. 6.2 explains VanTA’s superior performance by showcasing how it segments trajectories into
interpretable skills, outperforming traditional VQ methods. Sec. 6.3 reinforces this with an ablation
study, comparing codebooks with and without VLM guidance, showing that VLM guidance en-
hances learning, while its absence hinders performance. Sec. 6.4 demonstrates VanTA’s strength in
data-scarce scenarios, leveraging pretrained VLM knowledge to augment datasets and improve re-
sults. Finally, Sec. 6.5 verifies our theory and demonstrate the higher temporal correlation of VanTA.
For experimental benchmarks, we conduct our experiments on three long-horizon domains: Franka
Kitchen (Gupta et al., 2019) for manipulation tasks, MiniGrid (Chevalier-Boisvert et al., 2023)
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Figure 2: Skill extraction results without VLM guidance; no clear semantic meaning in each skill.

Figure 3: Skill extraction results using VanTA: sequentially 1) open the microwave, 2) move the
kettle, 3) rotate the knob, and 4) open the cabinet.

for navigation, and Crafter (Hafner, 2021), an open-world survival game. Further implementation
details, including model architectures and hyperparameter settings, are provided in Appx. B.5.4. We
first introduce the environment setup.

Franka Kitchen: This environment is initially introduced in Gupta et al. (2019). In our exper-
iments, we use offline data from the Fu et al. (2020) benchmark, which includes three types of
datasets collected from human demonstrations, with visual observations rendered using OpenAI’s
Gym framework rendering functions (Brockman et al., 2016) as input for VLMs.

MiniGrid: Chevalier-Boisvert et al. (2023) is a lightweight grid-world environment suite with Ope-
nAI Gym interfaces. All tasks fall within the grid navigation domain, where the agent starts from an
initial position, picks up an object, and navigates to the goal destination with sparse rewards.

Crafter: (Hafner, 2021) is a 2D open-world survival game benchmark with visual inputs that evalu-
ates a wide range of general abilities within a single environment. We collect data using intermediate
model training checkpoints from online reinforcement learning with PPO (Schulman et al., 2017).

6.1 EVALUATION ON BENCHMARKS

We empirically evaluate our two-level policy extraction method on diverse tasks, with all of them
providing sparse reward feedback. Prior approaches include typical offline reinforcement learn-
ing or imitation learning methods including Behavior Cloning (BC), Conservative Q-Learning
(CQL) (Kumar et al., 2020), and Implicit Q-Learning (IQL) (Kostrikov et al., 2022), along with
goal-conditioned variants RvS (Emmons et al., 2022), GCSL (Ghosh et al., 2021), WGCSL (Yang
et al., 2022) and LDCQ (Venkatraman et al., 2024), which use goal-setting methods like hindsight
goal relabeling or prior-shaped latent space. As shown in Fig. 1, VanTA outperforms the baselines
in most tasks, which demonstrates that the extracted primitive skills aid in policy learning. Since
Crafter is an open-world, vision-based environment, manually setting a desirable observation as the
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goal in GCSL and WGCSL is infeasible. Investigating the Kitchen tasks, when performing the final
subtask of opening the cabinet, the agent selects actions from a higher-level, discrete and internally-
compact skill space, where the robot arm has already been raised, rather than searching through the
full original action space. In Crafter, which involves more subtasks, the extracted skills motivate
the agent to explore a wider range of tasks, as demonstrated in Tab. 6. A similar conclusion can be
drawn in the KeyCorridor environment, which is comparatively more complex in MiniGrid.

6.2 VISUALIZATION OF SEGMENTATION RESULT

In this section, we compare the segmentation results with the vanilla VQ method to demonstrate
VanTA’s superiority in interpretable skill extraction. In the kitchen-complete-v0 task, the agent
sequentially opens the microwave door, moves the kettle, turns on the light, and finally opens the
cabinet. The skill assignment results, shown in Fig. 3, display the first two observations and the
terminal observation for each skill, highlighting how VanTA reduces the incoherence of primitive
skills. In contrast, the vanilla VQ method may abruptly shift to a new skill in successive time steps,
as seen during the microwave door opening in Fig. 2. Intuitively, although VQ occasionally provides
imperfect initialization, VLM intervention quickly corrects these erroneous assignments and merges
meaningful skills. Additional segmentation visualizations can be found in Appx. B.5.1.

6.3 ABLATION
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Figure 4: Comparison of normalized return between
VanTA and VanTA without VLM guidance in the
Franka Kitchen environment.

VanTA v.s. VanTA w/o VLM guidance We
next evaluate whether VLM guidance signifi-
cantly improves learning in hierarchical mod-
els. To test this, we replace the indices as-
signed to primitive skills with those from the
VanTA without VLM guidance method. As
shown in Fig. 4, in the Franka Kitchen en-
vironment, VLM-guided skills are conducive
to policy learning, demonstrating superior-
ity across all environments. When compared
with the performance of offline reinforcement
learning baselines shown in Tab. 1, the perfor-
mance of using non-VLM-guided extracted
skill contexts to supplement state information
for policy learning even shows a drop. This
suggests that an erroneous or broken code-
book introduces challenges in two-level pol-
icy learning, especially making it more diffi-
cult to learn primitive skills. Besides, using
irrational primitive skills to augment the state also may not be beneficial. Additional ablation results
are available in Appx.B.5.3.

6.4 EXPERIMENTS IN LOW-DATA REGIME

Leveraging the rich knowledge pretrained in VLMs enhances the efficiency of reinforcement learn-
ing, as it is a supplement to the limited available data. We further investigate whether VanTA enables
more efficient learning with limited data using varying data ratios: 100%, 50%, and 10%. As shown
in Tab. 2, VanTA maintains its performance advantage and degrades relatively more slowly as the
available data decreases. Notably, on the kitchen-complete-v0 task with only 10% of the data, the
smallest dataset in our experiment, VanTA achieves a 28.6% improvement, highlighting its ability
to boost the efficiency of offline reinforcement learning.

6.5 REDUCTION IN COMPLEXITY

As discussed in Sec. 5, the performance of the algorithm is influenced by the size of the policy space
it identifies. This size is largely determined by temporal correlations in the data. Therefore, in this
section, we calculate the temporal correlation to assess the identified policy space. We assume that
the original policy space is derived from the original dataset. To analyze this, we randomly sample
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Table 2: Performance with reduced offline data usage in Kitchen, averaged over 5 random seeds.
Task Name BC CQL IQL RvS GCSL WGCSL LDCQ VanTA (Ours)

kitchen-complete-v0 (100%) 65.0 43.8 62.5 50.2 58.6 57.7 52.8 69.2±8.5
kitchen-complete-v0 (50%) 23.6 18.6 35.4 36.0 28.3 29.5 32.5 44.2±6.2
kitchen-complete-v0 (10%) 7.6 2.7 13.3 5.0 7.3 9.1 12.5 17.1±7.7

kitchen-partial-v0 (100%) 38.0 50.1 46.3 60.3 55.0 59.4 67.8 71.2±5.7
kitchen-partial-v0 (50%) 27.1 12.8 39.7 15.6 12.9 25.8 17.7 42.8±5.1
kitchen-partial-v0 (10%) 19.1 9.2 33.2 19.5 14.2 36.9 21.3 37.5±3.3

kitchen-mixed-v0 (100%) 51.5 52.4 51.0 51.4 56.2 49.6 62.3 68.5±4.4
kitchen-mixed-v0 (50%) 30.4 14.4 25.5 20.8 16.9 31.4 21.2 45.8±5.2
kitchen-mixed-v0 (10%) 21.2 8.7 23.4 20.0 15.2 27.8 11.4 29.9±3.0

fractions of the trajectories from the dataset and calculate their temporal correlation. This allows
us to obtain the distribution of temporal correlations within the original policy space. For various
hierarchical algorithms, including VanTA and VanTA without VLM guidance, we similarly calculate
the temporal correlations of the identified skills. By comparing the range of temporal correlations
from these algorithms with the original distribution, we can estimate the ratio between the size of
the policy space identified by each algorithm and that of the original policy space.

To approximate the distribution of the temporal correlation of the original policy space, we sample
1000 fractions of trajectories and use Kernel Density Estimation (KDE). We also use 100 samples
to approximate the range of temporal correlation of low-level policies. The temporal correlation is
measured by the autocorrelation coefficient. For an action sequence {a1, a2, . . . , aK}, the autocor-
relation coefficient is defined as: rk =

(∑K
t=k+1(at − ā)(at−k − ā)

)
/
∑K
t=1(at − ā)2. In the

experiment, we set k = 1, with the results presented in Tab. 3. VanTA achieves a higher autocor-
relation coefficient than the non-VLM-guided version across all three environments. On average,
the policy space is reduced to 64% without VLM guidance and further to 54% with VLM guidance.
This reduction in policy space complexity explains VanTA’s superior performance and supports the
theory discussed in Sec. 5.

Table 3: The comparison of the policy spaces of the low-level policy learned using VanTA without
VLM guidance alone and those learned using VanTA.

Task Name VanTA w/o VLM VanTA

r1 Ratio r1 Ratio
kitchen-complete-v0 0.42 60% 0.69 41%
kitchen-partial-v0 0.44 80% 0.59 69%
kitchen-mixed-v0 0.67 53% 0.68 52%

7 CONCLUSION

Discussion. We introduce VanTA, a method for extracting discrete, task-relevant and semantic skills
from offline data with the guidance of pretrained Vision-Language Models (VLMs), which improves
learning efficiency. This grounding of the codebook in semantic knowledge facilitates subsequent
offline RL. In future work, we primarily aim to explore temporal abstraction with VLM for offline
preference learning (Zhang et al., 2024) and cooperative multi-agent systems (Yuan et al., 2023). Our
initialization technique has significantly reduced query complexity, which we aim to reduce further
in future work. However, VanTA has certain limitation. In our experiments, proper initialization is
essential for effective VLM guidance; without it, significant query complexity can arise, making it
difficult to extract interpretable meaning from a single observation. Additionally, if mode collapse
occurs, a common issue in unsupervised learning (Srivastava et al., 2017), VLM is unable to rectify
these errors. Therefore, in future work, we aim to explore simpler yet more effective initialization
methods.
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REPRODUCIBILITY STATEMENT

In this study, to ensure the reproducibility of our approach, we provide key information from our
submission as follows.

1. Training Algorithm. We provide the architecture in Sec. 4 and pseudo-code of our ap-
proach in Appx. 1.

2. Source Code. We have submitted the source code of our approach in the supplementary
materials. For BC, IQL (Kostrikov et al., 2022), CQL (Kumar et al., 2020) in Tab. 1, we
apply the code from https://github.com/yihaosun1124/OfflineRL-Kit. For the other base-
lines in Sec. 6, we follow the official code and build upon them. We use the code from
Emmons et al. (2022) for RvS. available at https://github.com/scottemmons/reinforcement-
learning-via-supervised-learning. For GCSL (Ghosh et al., 2021) and WGCSL (Yang et al.,
2022), we modify upon https://github.com/YangRui2015/AWGCSL. For LDCQ (Venkatra-
man et al., 2024), we build upon the official code, available at https://github.com/ldcq/ldcq.

3. Experimental Details. We list the detailed experiment settings, computational resources
and hyperparameters in Appx. B

4. Theoretical Proofs. We provide the missing proofs in Appx. A.
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A MISSING PROOFS

We state the proof of Lemma 5.5 here. Foster et al. (2024) provided the performance bound of BC
algorithms:
Theorem A.1 (Corollary 3.1 of (Foster et al., 2024)). For any π∗ ∈ Π, BC algorithm ensures that
with probability at least 1− δ,

v∗ − v̂ ≤ O(1) ·
√

σ2
K log(|Π|δ−1)

n
+O(R log(n)) · log(|Π|δ

−1)

n
,

where v̂ is the value function induced by the learnt policy π̂, n is the number of samples in the
dataset, and

σ2
K =

H∑
h=1

Eπ
∗
[
(Qπ∗

t (st, π
∗(st))−Qπ∗

t (st, at))
2
]
.

Note that weighted BC does not share the same performance bound as BC. Given the same dataset,
weighted BC has a higher variance, which increases the bound in Theorem A.1. Intuitively, ap-
plying weighted BC in a given dataset can be seen as applying BC in another data distribution at
the expense of excluding the data that does not conform to the new data distribution. Therefore, to
apply Theorem A.1 to our setting, we introduce the concept of effective sample size, under which
the estimator of the unweighted distribution has the same variance as that of the weighted estimator
under the original sample size.
Lemma A.2. Suppose the distribution before adding weight is p, and after adding weight is q, the
effective sample size is

neff ≈
n

1 + Var
(
q
p

) ,
where n is the size of the original dataset.

Proof. 1. Consider an unbiased estimator µ̂ obtained through resampling:

µ̂ =
1

N

n∑
i=1

wiXi

Here, Xi are the observed values, and wi are the weights reflecting the resampling. If all weights
wi are equal (e.g., wi = 1), this corresponds to simple random sampling. However, with weighted
sampling, unequal weights can reduce the “effective” information in the sample.

2. To derive effective sample size, we introduce the variance of the estimator:

Var(µ̂)weighted =
1

n2

n∑
i=1

w2
iVar(Xi) =

1

n2

n∑
i=1

w2
i σ

2,

where σ2 is the variance of a single sample Xi.

In the absence of weighting (i.e., wi = 1), the variance becomes:

Var(µ̂)unweighted =
σ2

n
.

3. Replace n in Var(µ̂)unweighted as neff, we make the two variances to be the same by tuning neff, i.e.,

1

n2

n∑
i=1

w2
i σ

2 =
σ2

neff

neff =
n2∑n
i=1 w

2
i
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In other words, effective sample size is the total sample size n squared divided by the sum of the
squared weights.

4. Given that wi =
q(xi)
p(xi)

, we have:

1

N

N∑
i=1

wi = 1 ⇒
N∑
i=1

wi = N

We need to evaluate the sum of the squared weights:

N∑
i=1

w2
i

This can be related to the variance of the weights. Recall that the variance of a set of values is
defined as:

Var(w) =
1

N

N∑
i=1

(wi − w)2

where w is the mean of the weights. Given that the weights are normalized to have a mean of 1
(w = 1), the variance simplifies to:

Var(w) =
1

N

N∑
i=1

(wi − 1)2

Expanding this:

Var(w) =
1

N

(
N∑
i=1

w2
i − 2

N∑
i=1

wi +

N∑
i=1

1

)
=

1

N

(
N∑
i=1

w2
i − 2N +N

)
=

1

N

(
N∑
i=1

w2
i −N

)

Rearranging to solve for
∑

w2
i :

N∑
i=1

w2
i = N(1 + Var(w))

5. Recall the original formula:

neff =
n2∑n
i=1 w

2
i

Substitute
∑

w2
i = n(1 + Var(w)):

neff =
n2

n(1 + Var(w))
=

n

1 + Var(w)

Thus, we obtain:

neff =
n

1 + Var
(
q(x)
p(x)

)
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Let ν(s, a) denote the state-action distribution of the dataset. In our setting, p(s, a) = ν(s, a),
q(s, a) ∝ ν(s, a) exp(β(Q̂(s, a)− V̂ (s))). Then

Var(p/q) = Var

(
exp(β(Q̂(s, a)− V̂ (s)))

Z(s)

)
= Q̂Var(β),

where Z(s) is the normalization factor. Q̂Var(β) is related to Q̂ V̂ and β. Use neff to replace n in
Theorem A.1, we conclude our proof.

B EXPERIMENTAL DETAILS

All experiments are conducted on AMD EPYCTM 9654 CPUs and NVIDIA RTX 4090 GPUs. GPT-
4o is used as our VLMs, while prompt designs are listed in Sec. B.3. The input to the VQ model can
be a state representation ϕ(s) or a high-dimensional pixel-based input, but for the VLM, rendered
observations are required.

B.1 ENVIRONMENT DESCRIPTION

Franka Kitchen

Franka Kitchen (Gupta et al., 2019) offers a variety of tasks in a simulated kitchen environment, such
as turning on the stove, turning on the light, opening microwave doors, and sliding drawers. Each
collected trajectory sequentially lists these subtasks, making it well-suited for continuous control
studies. The environment simulates realistic physical interactions, allowing the robot arm to perform
complex actions like grasping, rotating, and sliding. With tasks naturally broken down into subtasks,
it provides an ideal platform for exploring hierarchical reinforcement learning. Additionally, the
sparse reward mechanism, where rewards are granted only upon completing specific goals, requires
precise credit assignment. Minigrid

MiniGrid (Chevalier-Boisvert et al., 2023) is a lightweight, fast grid-world environment suite with
OpenAI Gym interfaces, specifically designed for reinforcement learning tasks. Each environment
consists of a 2D grid, where cells may be empty or occupied by objects such as walls, keys, doors,
or goals. In our experiments, we fix both the initial and terminal states, using rendered images to
represent the environment state, providing a controlled setting for reinforcement learning studies.
Agents are required to perform actions like turning left or right, moving forward or backward, and
interacting with objects such as picking up or dropping items to complete tasks efficiently. The
reward function is sparse, with non-zero rewards typically given only upon task completion, and
penalties applied based on the number of time steps taken.

Crafter

Crafter (Hafner, 2021) designs a survival game benchmark to evaluate reinforcement learning
agents. Inspired by Minecraft, the game features procedurally generated 2D environments—forests,
lakes, mountains, and caves—where agents perform survival tasks such as foraging, gathering re-
sources, crafting tools, and defending against enemies. These tasks are organized into 22 semanti-
cally meaningful achievements, making Crafter an ideal environment for researching semantic skill
extraction. Each new achievement unlocked during an episode rewards the agent with +1, making
achievements the primary source of rewards in the game.

B.2 MODEL ARCHITECTURE AND HYPERPARAMETERS

For the visual encoder, we adopt the same architecture as described in Liang et al. (2024). For the
state encoder, we use a linear layer, and for the policy decoder, we employ an MLP network that
maps the observation and skill context to the corresponding action. We list the hyperparameters used
in VanTA for Kitchen, MiniGrid, and Crafter, respectively.

B.3 PROMPT FOR VLMS

We use GPT-4o as the VLM to extract semantic skills. The query and response are separated
into two parts: first, we provide the initial state, followed by the terminal state with a designed
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(a) Franka Kitchen (b) Minigrid (c) Crafter

Figure 5: Rendering of the procedurally-generated environments in our experiments.

Table 4: Hyperparameters and their values in VanTA.
Hyperparameter Kitchen MiniGrid Crafter

Batch size 256 256 256
Learning rate 1e-4 1e-4 1e-4
Optimizer Adam Adam Adam
Iteration interval (I) 50 20 20
VQ option dim 16 16 16
VQ option num 20 6 20
β 3 5 5
γ 0.1 0.2 0.2
λ 0.99 0.99 0.99
Gradient step 3M 1M 2M

prompt. The query format follows a user-assistant-user structure. This simulated dialogue signifi-
cantly reduces VLM hallucinations in skill identification. However, the environment context differs
slightly. For MiniGrid, the listed prompt is tailored to MiniGrid-RedBlueDoors, while for MiniGrid-
KeyCorridorS3R3 and MiniGrid-DoorKey, the task descriptions require minor modifications.

Prompt Design and Q&A procedure for kitchen

19



Published as a conference paper at ICLR 2025

User: Are you familiar with the Franka Kitchen environment used for
reinforcement learning? In this environment, various skills represent
different subtasks. You can deduce which skill was executed or identify the
agent’s subprocess based on the initial and terminal observations. I will
now show you an image of the initial state. Here are examples of possible
subtasks already summarized: 1. No obvious skill 2. Red flame circles
appear on the stove as it turns on the gas stove 3. Rotate the knob to
turn on the white light above the stove, which is the left one among those
knobs 4. Open the cabinet 5. Move the kettle 6. Open the microwave. From
my perspective, you can reason what the skill is according to the initial
observation and terminal observation. Now I will show you the image, it
is the initial state. If you think the task happened between two states
in the summarized list, point the index out. Remember maybe many changes
happen between two images, so choose the most suitable skill name. If not
in them, and you still regard it as a new skill, try your best to give only
one suitable new name. Each time, you can provide only one new name if
necessary and carefully ensure that it is truly different from the names
in the original set. In total, you can describe up to 20 skills.
Assistant: Got it! Please provide the terminal observation image, and I
can help identify the skill or subtask executed between the initial and
terminal states.
User: Now I will show you the image of the terminal state, which means
it is the last frame of this segment. You should first judge what is the
most obvious one if many changes happen. Check the difference and choose
the most probable one. Please determine whether to choose from the given
subtask list or name yourself. Write down your choice in the following
format: the index selected by you; all the skills index and content. For
example 1; 1.content of 1 2.content of 2 etc. Do not need to display your
reasoning process.

Prompt Design and Q&A procedure for MiniGrid

User: Are you familiar with the Minigrid environment used for reinforcement
learning? In this environment, Door Key task have several subtasks. This
environment has a key that the agent must pick up in order to unlock a
door and then get to the green goal square. You can deduce which skill
was executed or identify the agent’s subprocess based on the initial and
terminal observations. I will now show you an image of the initial state.
Here are all the possible subtasks already summarized: 1. In the middle
part, move to the blue door 2. Try to get out from the left part 3. In the
middle part, move to the red door 4. Reach the Goal. From my perspective
you can reason what the skill is according to the initial observation and
terminal observation. Now i will show you the image, it is the initial
state.
Assistant: Got it, let’s proceed with identifying the skills based on the
initial and terminal observations. Please go ahead and show me the terminal
observation so we can determine which subtask was executed or describe a
new possible skill if necessary.
User: Now I will show you the image of the terminal state, which means
it is the last frame of this segment. You should first judge what is the
most obvious one if many changes happen. Please determine which one to
choose from the given subtask list or name yourself. Write down your choice
in the following format: the index selected by you; all the skills index
and content i provided. For example 1;1. No obvious skill 2. Initial
Positioning 3. Move to Key 4. Pass the door 5. Reach the goal position. Do
not need to display your reasoning process.
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Prompt Design for Crafter

User: Are you familiar with the Crafter environment used for reinforcement
learning? Crafter features randomly generated 2D worlds where the player
needs to forage for food and water, find shelter to sleep, defend against
monsters, collect materials, and build tools. It is the open world survival
game for evaluating a wide range of agent abilities. The agent’s view
evolves as the timestep increases, like from wood to water. You can deduce
which skill was executed or identify the agent’s subprocess based on the
initial and terminal observations. I will now show you an image of the
initial state. Here are all the possible subtasks already summarized: 1.
No obvious skill 2. collect sapling 3. collect stone. pay attention that
the legend at the botton of the image shows new tools the agent made if it
changes. From my perspective, you can reason what the skill is according
to the initial observation and terminal observation. Now i will show you
the image, it is the initial state. The task happened between two states is
summarized in the list, just point out the index. Try your best to suspect
the skill.
Assistant: Thank you for sharing the initial state image. To proceed,
please provide the terminal state image as well. With both the initial and
terminal observations, I can help deduce the executed skill or identify the
agent’s subprocess according to the summarized list of possible subtasks.
User: Now I will show you the image of the terminal state, which means it
is the last frame of this segment. You should first judge what is the most
obvious one if many changes happen. Please determine which one to choose
from the given subtask list. Please only choose no obvious skill when indeed
necessary, otherwise try your best to analyze according to the iconic item,
like water, stone or wood! Write down your choice with the following format:
the index selected by you; all the 16 skills index and content i provided.
This is an example: 3; 1. No obvious skill 2. collect sapling 3. collect
stone etc. Do not need to display your reasoning process.

B.4 PSEUDO-CODE FOR VANTA

We provide the pseudo-code for VanTA to further clarify the process. During the offline initialization
phase, we iterate at 2 times the VLM frequency to prepare the initial segmentation and reduce query
complexity in the early stages. The absence of smooth loss may give rise to misleading initialization
which is not conducive for VLM to reidentify the sub-task. Therefore, we add the smooth loss with
the appropriate coefficient, if meeting the no obvious skill option, the coefficient will increase to 10
times.

Algorithm 1 Vision-language model guided Temporal Abstraction (VanTA) for offline RL
Require: offline data D; pretrained VLM; high-level policy πθ; low-level policy πϕ;

query VLM frequency I; temporal abstraction epoch N ; policy update epoch M .
1: // Primitive Skill Extraction
2: for iter = 1 to N do
3: Sample a minibatch {(s, a, s′, r)} from D
4: Update codebook with Eq. (3)
5: if step meets query VLM frequency I then
6: Query VLM with initial segmentation {s̄1, s̄2, ...}
7: Update codebook with VLM indice using Eq. (2)
8: end if
9: end for

10: Relabel offline data with primitive skill as Dz = {(s, a, s′, r, z)}
11: // Policy Extraction
12: πω, πθ = Policy Extraction(Dz,M) .
Output: policy πω, πθ.
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B.5 ADDITIONAL RESULTS

B.5.1 MISSING SKILL EXTRACTION RESULTS

Figure 6: Skill extraction results without VLM guidance in kitchen-mixed; no clear semantic mean-
ing in each skill.

Figure 7: Skill extraction results using VanTA in kitchen-mixed: sequentially 1) open the mi-
crowave, 2) red flame circles appear on stove as it turns on the gas stove, 3) rotate the knob to
turn on the white light above the stove, which is the left one among those knobs, and 4) open
the cabinet.

Figure 8: Skill extraction results without VLM guidance in kitchen-partial; no clear semantic mean-
ing in each skill.
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Figure 9: Skill extraction results using VanTA in kitchen-partial: sequentially 1) Move the kettle,
2) red flame circles appear on the stove as it turns on the gas stove, 3) rotate the knob to turn
on the white light above the stove, which is the left one among those knobs, and 4) open the
cabinet.

Figure 10: Skill extraction results without VLM guidance in MiniGrid-DoorKey-6×6; the baseline
method mistakenly treats wandering as a valid action.

Figure 11: Skill extraction results using VanTA in MiniGrid-DoorKey-6×6: sequentially 1) move to
key, 2) pass the door, and 3) reach the goal position. Our method accurately segments the dataset
into these three essential skills without any redundant parts.
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Figure 12: Skill extraction results without VLM guidance in MiniGrid-DoorKey-8×8; no clear
semantic meaning in each skill.

Figure 13: Skill extraction results using VanTA in MiniGrid-DoorKey-8×8: sequentially 1) move
to key, 2) pass the door, and 3) reach the goal position. Unlike the baseline method, our approach
can effectively separate the semantic information for ‘move to the key’ and ‘pass the door’.

Figure 14: Skill extraction results without VLM guidance in MiniGrid-KeyCorridorS3R3; although
it can be roughly divided into four semantic parts: move to the sky blue door at the top right corner,
move to the purplish red door at the top right corner, reach the red key at the top left corner, and
move to the red door at the bottom right corner, there are still some unnecessary skills in between.
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Figure 15: Skill extraction results using VanTA in MiniGrid-KeyCorridorS3R3: sequentially 1)
move to the sky blue door at the top right corner, 2) move to the purplish red door at the top
right corner, 3) reach the red key at the top left corner, and 4) move to the red door at the
bottom right corner. Compared to the baseline, our method merges segments that do not carry
meaningful semantics.

Figure 16: Skill extraction results without VLM guidance in MiniGrid-RedBlueDoors; no clear
semantic meaning in each skill.

Figure 17: Skill extraction results using VanTA in MiniGrid-RedBlueDoors: sequentially 1) in the
middle part move to the blue doors, and 2) in the middle part move to the red door.
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＿

Figure 18: Skill extraction results without VLM guidance in Crafter-partial; no clear semantic mean-
ing in each skill.

Figure 19: Skill extraction results using VanTA in Crafter-partial: sequentially 1) collect sapling,
2) sleep to refresh, 3) collect water to drink, and 4) collect wood.The extracted segments largely
correspond to the achievements in the Crafter environment, and there are significant scene differ-
ences between distinct segments.

B.5.2 VISUALIZATION OF THE REDUCED DATA EXPERIMENTS

We have included a graphical visualization that more clearly demonstrates the slower degradation
of VanTA compared to other methods, such as CQL and GCSL. We believe this visualization high-
lights the comparison more effectively and strengthens the clarity of our claims. The graphical
representation is provided in Fig. 20.
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Figure 20: Visualization of reduced offline data experiment.
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B.5.3 FULL ABLATION STUDY

We conduct an ablation study across all environments, comparing the performance of VanTA with its
variant that lacks VLM guidance. The results show that conditioning training on irrational primitive
skills negatively impacts the final policy performance.

Table 5: Ablation study on VanTA and conditioning only non-VLM guidance skills, averaged over
5 random seeds.

Task Name w/o VLM Guidance w/ VLM Guidance

MiniGrid-DoorKey-6x6-complete-v0 0.91±0.02 0.92±0.03
MiniGrid-DoorKey-6x6-mixed-v0 0.72±0.14 0.80±0.17
MiniGrid-DoorKey-8x8-complete-v0 0.90±0.03 0.92±0.07
MiniGrid-DoorKey-8x8-mixed-v0 0.43±0.14 0.51±0.18
MiniGrid-KeyCorridorS3R3-complete-v0 0.77±0.12 0.81±0.06
MiniGrid-KeyCorridorS3R3-mixed-v0 0.47±0.09 0.61±0.12
MiniGrid-RedBlueDoors-6x6-complete-v0 0.82±0.07 0.85±0.11
MiniGrid-RedBlueDoors-6x6-mixed-v0 0.67±0.12 0.73±0.20

Crafter-partial 2.8 5.46

B.5.4 DETAILS OF CRAFTER PERFORMANCE

We observe that the policy induced by VanTA achieves the highest success rate in almost half of
the achievements. The overall score is calculated as the geometric mean of success rates across all
achievements.

Table 6: Performance listing of all achievements on Crafter benchmark for VanTA and 5 baselines,
averaged over 5 random seeds.

Achievement
Success Rate (%)

BC CQL IQL RvS LDCQ VanTA(Ours)

Collect Coal 0.2 0.0 0.0 0.0 0.0 0.6 ± 0.2
Collect Diamond 0.0 0.0 0.0 0.0 0.0 0.0± 0.0
Collect Drink 15.6 33.4 4.2 20.0 0.0 17.9± 5.5
Collect Iron 0.0 0.0 0.0 0.0 0.0 0.0 ± 0.0
Collect Sapling 42.8 63.4 88.2 90.6 99.0 78.7± 9.4
Collect Stone 2.4 0.0 0.0 0.0 0.0 4.4±2.2
Collect Wood 73.6 53.8 60.2 73.8 0.0 74.1±8.5
Defeat Skeleton 0.2 0.4 1.8 0.0 0.0 2.2 ± 0.7
Defeat Zombie 11.8 6.2 20.8 28.2 15.0 21.8±6.3
Eat Cow 21.6 7.4 27.0 20.0 15.6 27.2±2.4
Eat Plant 0.1 0.0 0.2 0.0 0.0 0.0 ± 0.0
Make Iron Pickaxe 0.0 0.0 0.0 0.0 0.0 0.0± 0.0
Make Iron Sword 0.0 0.0 0.0 0.0 0.0 0.0± 0.0
Make Stone Pickaxe 0.0 0.0 0.0 0.0 0.0 0.0 ± 0.0
Make Stone Sword 0.0 0.0 0.0 0.0 0.0 0.0 ± 0.0
Make Wood Pickaxe 31.0 0.0 0.4 0.4 0.0 30.5± 6.7
Make Wood Sword 17.2 0.0 15.0 0.0 0.0 21.7±8.9
Place Furnace 0.0 0.0 0.0 0.0 0.0 0.0±0.0
Place Plant 0.0 7.2 86.8 70.6 98.0 64.4± 5.6
Place Stone 0.0 0.0 0.0 0.0 0.0 4.4±1.2
Place Table 53.8 0.0 36.8 7.0 0.0 73.1 ± 2.4
Wake Up 0.2 47.6 0.0 0.0 0.0 16.7±8.1

Score 2.69 1.73 2.75 2.11 0.96 5.46

*The score is computed as S = exp
(

1
N

∑N
i=1 ln(1 + si)

)
− 1, where si ∈ [0, 100] is the success rate of the

i-th achievement and N = 22 denotes the total number of achievements.
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Table 7: Performance listing of all achievements for VanTA ablation study on Crafter benchmark.

Achievement
Success Rate (%)

w/o VLM Guidance w/ VLM Guidance

Collect Coal 0.0± 0.0 0.6 ± 0.2
Collect Diamond 0.0± 0.0 0.0± 0.0
Collect Drink 10.8±6.0 17.9± 5.5
Collect Iron 0.0±0.0 0.0 ± 0.0
Collect Sapling 94.2± 2.2 78.7± 9.4
Collect Stone 0.0±0.0 4.4±2.2
Collect Wood 41.3±16.3 74.1±8.5
Defeat Skeleton 1.1±0.7 2.2 ± 0.7
Defeat Zombie 20.3 ± 2.3 21.8±6.3
Eat Cow 20.5 ± 2.0 27.2±2.4
Eat Plant 0.0 ± 0.0 0.0 ± 0.0
Make Iron Pickaxe 0.0 ± 0.0 0.0± 0.0
Make Iron Sword 0.0 ± 0.0 0.0± 0.0
Make Stone Pickaxe 0.0 ± 0.0 0.0 ± 0.0
Make Stone Sword 0.0 ± 0.0 0.0 ± 0.0
Make Wood Pickaxe 3.2 ± 1.7 30.5± 6.7
Make Wood Sword 2.5 ± 1.6 21.7±8.9
Place Furnace 0.0±0.0 0.0±0.0
Place Plant 81.5±9.4 64.4± 5.6
Place Stone 1.6± 1.2 4.4±1.2
Place Table 18.2±1.8 73.1 ± 2.4
Wake Up 1.8±1.6 16.7±8.1

Score 2.85 5.46

*The score is computed as S = exp
(

1
N

∑N
i=1 ln(1 + si)

)
− 1, where si ∈ [0, 100] is the success rate of the

i-th achievement and N = 22 denotes the total number of achievements.
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