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ABSTRACT

Functional magnetic resonance imaging (fMRI) is essential for mapping brain ac-
tivity but faces challenges like lengthy acquisition time and sensitivity to patient
movement, limiting its clinical and machine learning applications. While gen-
erative models such as diffusion models can synthesize fMRI signals to allevi-
ate these issues, they often underperform due to neglecting the brain’s complex
structural and dynamic properties. To address these limitations, we propose the
Physiological Dynamics-Driven Hierarchical Diffusion Model, a novel framework
integrating two key brain physiological properties into the diffusion process: brain
hierarchical regional interactions and multifractal dynamics. To model complex
interactions among brain regions, we construct hypergraphs based on the prior
knowledge of brain functional parcellation reflected by resting-state functional
connectivity (rsFC). This enables the aggregation of fMRI signals across multi-
ple scales and generates hierarchical signals. Additionally, by incorporating the
prediction of two key dynamics properties of fMRI—the multifractal spectrum
and generalized Hurst exponent—our framework effectively guides the diffusion
process, ensuring the preservation of the scale-invariant characteristics inherent in
real fMRI data. Our framework employs progressive diffusion generation, with
signals representing broader brain region information conditioning those that cap-
ture localized details, and unifies multiple inputs during denoising for balanced
integration. Experiments demonstrate that our model generates physiologically
realistic fMRI signals, potentially reducing acquisition time and enhancing data
quality, benefiting clinical diagnostics and machine learning in neuroscience.

1 INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a non-invasive neuroimaging technique that cap-
tures spatio-temporal patterns of blood oxygenation in the active brain (D’Esposito et al., 2003).
Brain fMRI signals encapsulate the full spectrum of intrinsic functional networks and exhibit highly
complex fluctuating patterns, providing very accurate information of neural activity (Strangman
et al., 2002). Compared to other medical modalities, fMRI offers superior precision in predicting
and diagnosing various neurological and psychiatric conditions (Matthews et al., 2006).

Despite its utility, fMRI data also presents unique challenges, particularly during acquisition. A stan-
dard fMRI scan is highly time-consuming. For example, in the data collection process of Human
Connectome Project (HCP), a resting-state fMRI scan lasts 60 minutes, divided into four 15-minute
sessions (Van Essen et al., 2012). While necessary for capturing comprehensive brain activity, these
long sessions can be physically taxing for participants. Additionally, fMRI scans impose strict re-
quirements on patient stillness, which is particularly difficult for infants or those unable to stay still
for long periods, as even minor movements can introduce noise and artifacts, reducing data qual-
ity (Power et al., 2014; Bollmann & Barth, 2021). These challenges significantly limit its broader
application in clinical diagnosis and machine learning algorithm development. As a result, there is a
growing need for methods to generate and impute fMRI time series signals, which can reduce acqui-
sition times and optimize the quality of the acquired data. Notably, diffusion models have recently
emerged as a prominent generative approach and show promise in their generative capacity within
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the time series domain (Rasul et al., 2021; Shen et al., 2024; Fan et al., 2024), highlighting their
potential for further exploration in fMRI signal generation.

While showing potential for application, diffusion models often underperform when applied to brain
fMRI signal generation, as most advanced methods are designed for task-agnostic generation and ne-
glect two key intrinsic physical properties of brain fMRI signals. First, they tend to treat fMRI data
from each region-of-interest (ROI) independently, overlooking the high-dimensional interactions be-
tween signals from different ROIs (Logothetis, 2008; Bagley et al., 2017), which are indispensable
for examining hypothesized disconnectivity effects in neurodegenerative and psychiatric brain dis-
eases (Van Den Heuvel & Pol, 2010). To address this limitation, we incorporate brain regional
interactions using hypergraph (see Figure 2), which is constructed based on brain rsFC1. Second,
while these models excel at capturing temporal trends, they often fail to account for the unique physi-
ological patterns and dynamics properties of brain signals, specifically fractal characteristics. These
dynamics arise from repeated, scale-free information exchange between brain regions, generating
fMRI signals that exhibit self-similarity (He, 2014). Scale-free dynamics in fMRI have been shown
to vary across brain networks and behavioral conditions (Ciuciu et al., 2012), as well as change with
age (Suckling et al., 2008), arousal states (Tagliazucchi et al., 2013), and disease processes (Maxim
et al., 2005). Analyzing these dynamics provides critical insights into the brain mechanisms that
underlie cognition and behavior (Ciuciu et al., 2014). To overcome this shortcoming, we integrate
these dynamics properties into our model, emphasizing the multifractal nature of brain activity. By
introducing these two fundamental aspects of brain, our method achieves more realistic and precise
fMRI signal generation, better aligning with the brain’s physiological reality.

The contribution of this paper can be summarized as follows: We propose a novel framework for
generating brain fMRI time series signals, grounded in the above two key observations about fMRI
signals, brain regional interactions, and multifractal dynamics. This framework, called the Physio-
logical Dynamics-Driven Hierarchical Diffusion Model, is composed of three main components:

1. The Hypergraph-based Hierarchical Signals Generator: To incorporate intricate interdependen-
cies between brain regions, we model brain rsFC as a hypergraph structure that captures complex
interactions among signals of ROIs. This component aggregates fMRI signals based on the in-
trinsic brain functional connectivity matrix across multiple brain regions, producing hierarchical
fMRI signals that encapsulate information at various scales.

2. The Dynamics Properties Guiding Module: This module is designed to incorporate the dynamics
properties of brain activity, specifically utilizing the multifractal characteristics of fMRI signals
into diffusion generation process. It includes a predictor that estimates the multifractal spectrum
and the generalized Hurst exponent of the fMRI series. The predicted multifractal characteris-
tics are then projected as a conditioning input to guide the diffusion process, ensuring that the
generated signals maintain the complex, scale-invariant properties observed in real fMRI data.

3. The Cross-brain Region Guiding Progressive Diffusion Model: To ensure complementary signals
across different brain region ranges, progressive generation is employed, where broader regional
signal trends are used as conditioning inputs to guide the detailed signals of more localized brain
areas. Finally, we dynamically unifies multiple conditioning inputs during the denoising phase
of diffusion, ensuring balanced and coherent integration of multiple conditions.

2 PRELIMINARIES

2.1 FUNCTIONAL CONNECTIVITY OF FMRI SIGNALS.

The human brain is a complex network of functionally and structurally interconnected regions. Even
at rest, there is a high level of ongoing functional connectivity and continuous information process-
ing between the hemispheric motor cortices and between other well-established functional networks,
such as the primary visual, auditory, and higher-order cognitive networks (Rogers et al., 2007; Van
Den Heuvel & Pol, 2010). This leads to complex correlations between fMRI time series of ROIs on
brain, represented by functional connectivity.

1brain resting-state functional connectivity (rsFC) reflects the synchronized activity and communication
between brain regions during resting state.
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Functional connectivity is formally defined as the temporal dependence of neuronal activity patterns
of anatomically separated brain regions (Aertsen et al., 1989; Friston et al., 1993). Functional con-
nectivity can be described through Functional connectivity matrix (Venkatesh et al., 2020), whose
elements indicate the strength of functional interactions between pairs of regions, with higher values
signifying stronger correlations. This matrix reflects how different regions of the brain interact or
communicate and is often used to study the brain’s network organization and the functional relation-
ships underlying cognitive and physiological processes.

Given that functional connectivity reflects the complex interactions between different brain regions,
multi-level partitioning provides a powerful method to analyze these interactions across varying
spatial scales (Betzel & Bassett, 2017; Betzel et al., 2019). Multi-level partitioning is a common
approach in brain analysis, as it allows for the simultaneous examination of brain behavior at both
the macro level (e.g., interactions between brain regions) and the micro level (e.g., activity within
local neuronal clusters) (Wang et al., 2021; Kan et al., 2023; Varga et al., 2024), providing a more
comprehensive understanding of brain function and structure across different spatial scales.

2.2 MULTIFRACTALITY OF FMRI SIGNALS.

The fractal behavior has been ubiquitously observed in neuroimaging studies which may arise from
various mediators such as hemodynamics, respiration, cardiac fluctuations and brain neural activi-
ties (Campbell & Weber, 2022). Extensive research has demonstrated that brain activity, regardless
of the neuroimaging technique used for observation, is inherently arrhythmic and exhibits scale-free
temporal dynamics (Racz et al., 2018a; Guan et al., 2022). The scale invariance dynamics in fMRI
is often associated with long-range correlation in time and has been extensively demonstrated in
numerous studies to be closely related to intrinsic ongoing brain activity(Ciuciu et al., 2014).

(Definition Scale-free law and Self-similarity) Data series generated by complex systems tend to
fluctuate across different time scales (Boeing, 2016). These fluctuations often follow a scale-free
law, maintaining consistent and invariant patterns across several orders of magnitude (Proekt et al.,
2012). Scale-free dynamics can be described in the spectral domain by a power law as the power
spectrum follows a single power law over all ranges of frequency.

Let X denote the fMRI signals quantifying brain activity and ΓX(f) is its Power Spectral Density
(PSD). Scale-free property is classically defined as (Ciuciu et al., 2012):

ΓX(f) ∝ f−β , β ≥ 0 (1)

with fm ≤ f ≤ fM , fM/fm ≫ 1, where β is a constant parameter known as scaling exponent. The
power spectrum of fMRI data follows this power law across a wide range of frequencies, suggesting
that multiple frequencies equivalently contribute to its dynamics, rather than focusing solely on a
specific, preselected frequency band commonly used in brain analysis. Given that the fMRI signals
X follow the power law as described in equation 1, we further assume that X(t) is one-dimentional
time series data where t is the time step and X(t) is a stationary jointly Gaussian process. Then
the covariance function of X(t) can be expressed as follows: CX(τ) ∼ σ2

X (1 + C ′|τ |−α), for
τm ≤ τ ≤ τM with α = 1 − β. C ′ is a constant and σ2

X is variance of X . Then it is easily to
derive that: E(X(t+ τ)−X(t))2 = EX(t+ τ)2 +EX(t)2 − 2EX(t+ τ)X(t) = c2|τ |−α, where
c2 = −2σ2

XC ′. The fact that X is Gaussian further suggests that ∀q > −1:

E|X(t+ τ)−X(t)|q = cq|τ |−
qβ
2 , τm ≤ τ ≤ τM (2)

Defining Y (t) =
∫

tX(s)ds, equation is as follows, when τm ≤ τ1, τ2 ≤ τM :{
Y (t+ τ1)− Y (t)

τH1

}
t∈R

fdd
=

{
Y (t+ τ2)− Y (t)

τH2

}
t∈R

(3)

Where H = (−α/2) = (β−1)/2 and fdd
= means equality of all joint finite dimensional distributions.

In other words, this means that for all q > −1, such that E|Y (t)|q < ∞:

E|Y (t+ τ)− Y (t)|q = cq|τ |qH , τm ≤ τ ≤ τM , or

E |Y (t+ τ2)− Y (t)|q = E |Y (t+ τ1)− Y (t)|q
(

|τ2|
|τ1|

)qH

,
(4)

when τm ≤ τ1, τ2 ≤ τM .
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A geometric dataset exhibiting scale invariance is considered self-similar if it can be decomposed
into smaller parts, each of which resembles the entire original structure (MIshra & Bhatnagar, 2014).
As shown in equation 3 and equation 4, Y (t) is an example of a self-similar process.

From a more generalized perspective, above equations are not only fold for jointly Gaussian process
but for a broader and more general class, that of self-similar processes with stationary increments,
referred to as H-sssi processes, and defined in (Samorodnitsky et al., 1996):

{X(t)}t∈R
fdd
=

{
aHX(t/a)

}
t∈R (5)

For ∀a > 0, H ∈ (0, 1). Parameter H is referred to as the self-similarity exponent.

For real physiological data collected from brain, fMRI data can be also be viewed as the increment
process Y (t) = X (t+ τ0)−X(t) of an H-sssi process X , where τ0 is a constant chosen by physi-
ology and data acquisition set up, thereby exhibiting both scale-free and self-similarity properties.

Data from H-sssi processes can be typically characterized by monofractal scaling exponents. How-
ever, in reality, brain signals are more complex: while they exhibit global pattern consistency
(monofractality), they also demonstrate distinct functional activity patterns in local areas (multifrac-
tality) (Racz et al., 2018b; França et al., 2018; La Rocca et al., 2018). This reflects the multi-scale
regulation of neural activity in the brain. Larger-scale signals may capture whole-brain functional
coordination, aligning with the global self-similarity described by monofractal models, whereas
smaller-scale signals represent localized neuronal group activity.

(Definition Multifractality) For fMRI data Y (t), equation 1 holds over a wide range of τ . However,
the scaling exponent deviate significantly from the expected linear behavior qH , manifesting as:

E|Y (t+ τ)− Y (t)|q = cq|τ |ζ(q), τm ≤ τ ≤ τM (6)

Note the q-order scaling exponent ζ(q) is necessarily a strictly concave function of q. For this
reason, instead of H-sssi process, there need a broader class to depict this process, referred to as that
of multifractal processes.

Data with multifractal properties are more complex, featuring varying local characteristics and de-
scribed by a range of scaling exponents. Multifractal signals exhibit both small-scale and large-scale
local fluctuations, which are absent in monofractal signals. These fluctuations, associated with dif-
ferent statistical moments, enable multifractals to capture fractal properties across multiple scales
and represent localized nonlinear dynamics within the data (Lopes & Betrouni, 2009). By extending
this capability, multifractal models provide a deeper understanding of brain dynamics, characteriz-
ing the interactions across various scales and revealing how cognitive functions emerge from the
synergy of processes operating at multiple levels.

3 METHOD

3.1 THE FRAMEWORK

The overall framework of the Physiological Dynamics-Driven Hierarchical Diffusion Model is il-
lustrated in Figure 1. The fMRI time series data of a subject with N ROIs can be denoted as
XT = (x1, . . . , xi, . . . , xN )

T ∈ RN×T , where xi ∈ RT represents the time series of the i-th ROI.
Each xi spans T timesteps in the time series. We are given input data Xt0−L:t0 ∈ RN×L, where
L represents the size of the retrospective window, and t0 denotes the initial position of the forecast
window. The objective of the task is to predict the future fMRI values of N ROIs for a time span of
t future time steps Xt0:t0+t ∈ RN×t.

First, we input the fMRI time series data Xt0−L:t0 into the Hypergraph-based Hierarchical Signal
Generator to produce R time series data Xr

t0−L:t0
, where r denotes signals aggregated from r-level

spatial ranges of brain regions. Then, we use a diffusion model to generate R time series data
X̂r

t0:t0+t signals. Specifically, we first extract the historical embedding hr
t0 = RNNθ

(
xr
t0 ,h

r
t0−1

)
of the known time window using RNN, which serves as the basic historical condition chistory for
the diffusion process. This embedding is then input into the Dynamics Properties Guiding Module,
where a specifically designed loss function Lfractal is used to optimize the predicted multifrac-
tal characteristics and generate the corresponding multifractal conditions cfractal. Additionally, in
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Figure 1: The framework of Physiological Dynamics-Driven Hierarchical Diffusion Model (PDH-
Diffusion) with three main modules (a, b, and c), where we introduce two key physiological charac-
teristics of brain fMRI to generate more realistic fMRI signals.

the Cross-brain Region Guiding Progressive Diffusion Model, signals from broader brain region
ranges X̂r+1

t0:t0+t are used as cross-brain region conditions cregion to guide the generation of more
detailed signals X̂r

t0:t0+t during the diffusion process. As a result, we obtain realistic generated
signals X̂r=1

t0:t0+t, which accurately capture brain region relationships, fractal characteristics, while
maintaining alignment with the known retrospective window data.

3.2 HYPERGRAPH-BASED HIERARCHICAL SIGNALS GENERATOR

The first key module in our framework is the Hypergraph-based Hierarchical Signals Generator,
where we model the complex interdependence between fMRI signals from sample points across dif-
ferent brain regions as a hypergraph structure. This structure enables the propagation of information
across varying spatial scales of brain regions, resulting in hierarchical fMRI signals that capture
multiple levels of information.

As mentioned before, the fMRI time series data of a subject with N ROIs is denoted as X =

(x1, . . . , xi, . . . , xN )
T ∈ RN×T . Traditional generation methods (Rasul et al., 2021; Alcaraz &

Strodthoff, 2022) fail to capture the complex high-dimensional physiological and structural depen-
dencies between fMRI data of ROIs, leading to suboptimal outcomes. In this framework, we address
this by modeling the relationships between fMRI signals from different ROIs using a hypergraph
structure.

To align with real physiological conditions, we first model the fMRI signals as a standard graph
structure Gs, based on the functional connectivity matrix C ∈ RN×N as the adjacency matrix,
where N is the number of ROIs and each element in C reflects the interaction patterns between
different ROIs (i.e., between distinct fMRI signals). In particular, a threshold is applied to the value
distribution in C, where edges are established between sampling points that exhibit connectivity
values exceeding the threshold. The resulting graph is denoted as Gs = (Vs, Es), where vi ∈ Vs

denotes a vertex corresponding to a sampling point, and eij ∈ Es represents an edge connecting
vertices vi and vj .

On the basis of constructed graph Gs of fMRI signals, we further construct a hypergraph G =
(V, E ,W ) by defining hyperedges using the k-Hop neighbors method as described in (Gao et al.,
2022). The hypergraph G consisting of a vertex set V , a hyperedge set E , and a hyperedge weight
matrix W and can be represented by its incidence matrix H ∈ {0, 1}|V|×|E|, where the entries of
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Figure 2: The construction of hierarchical hypergraph. Starting from a standard graph Gs constructed
using rsFC as the adjacency matrix, hypergraphs with different aggregation levels Gr are built using
a k-hop method. As the number of neighbors kr increases, each node (fMRI signal of a certain
ROI) integrates more intra-regional and, gradually, inter-regional information (with different brain
regions’ information represented by different colors).

H are defined as: H(v, e) =

{
1, if v ∈ e,

0, otherwise.
. We form hyperedge group using k-Hop neigh-

bors E which seeks to identify vertices related to a central node through k-Hop reachability within
the graph and group them as a hypervertex. The k-Hop neighborhoods of a vertex v in graph
Gs is defined as: Nhopk(v) =

{
u | Ck

uv ̸= 0, u ∈ Vs

}
. Here k can vary from [2, nv], where nv

is the number of vertices in Gs. Finally, the hyperedge group with k-Hop can be written as:
Ehop k

=
{
Nhop k

(v) | v ∈ V
}

. Additionally, existing brain parcellation techniques can also be used
to construct a hypergraph, which may vary depending on the task performed during fMRI acqui-
sition. In the experiment, we select a neighbor list K = {k1, ..., kR}, where each neighbor kr is
used to construct a corresponding hypergraph Gr. We construct R hypergraphs, each representing
information from a distinct range of brain areas, as shown in Figure 2.
In hypergraph propagation process, a signal takes the aggregation of messages from its inter neighbor
set vertices to get a new representation of the central vertex. We leverage the two steps of hypergraph
message propagation method in (Gao et al., 2022), which is defined as two stage:

The first stage is:


mβ =

∑
α∈Nv(β)

Mv(xα)

yβ = Ue(wβ ,mβ)

, and the second stage is:


m′

α =
∑

β∈Ne(α)

Me(xα, yβ)

x′
α = Uv(xα,m

′
α)

.

where xα ∈ X is the signal of vertex α ∈ V , and x′
α is the updated signal of vertex α ∈ V after

information propagation. mβ is the message of hyperedge β ∈ E and m′
α is the message of vertex α.

yβ is the representation of hyperedge β. Mv(·), Ue(·),Me(·), Uv(·) are the vertex message function,
hyperedge update functions, hyperedge message function and vertex update function respectively.
In experiment, we choose the basic implement as message function and update functions, both of
which are mean functions and the propagation step is set to 1.

By constructing fMRI data as hypergraphs at various scales, we can obtain multiple sets of fMRI data
XR ∈ RR×N×T . FMRI data aggregated from larger regions capture broader brain area information,
while data from smaller regions provide more detailed, localized insights within the region. To fully
utilize these hierarchical fMRI signals and ensure complementary information across different brain
regions, we design a cross-brain region guiding module, as detailed in Section 3.4.

3.3 DYNAMICS PROPERTIES GUIDING MODULE

To ensure that the fMRI signals generated by the diffusion model exhibit the same dynamic charac-
teristics as real brain physiological signals, we design a module in which a multifractal properties
predictor is optimized to estimate the multifractal characteristics of the signal over a future time
window. The multifractal condition is then obtained through a projection layer and serves as one of
the multiple conditions guiding the signal generation in the diffusion model.

We perform multifractal analysis on the fMRI signals and extract their fractal characteristics to serve
as ground truth. Multifractal detrended fluctuation analysis (MFDFA) is a widely used method for
analyzing the multifractal properties of time series, with detailed studies available in (Telesca et al.,
2016; Ihlen, 2012). This method provides various indicators to characterize the fractal nature of the
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time series. From these, we selected two representative and commonly used characteristics. Their
descriptions are provided below:

1. The generalized Hurst exponent H(q): It reflects the inhomogeneity of the signal’s structure. For
monofractals, H(q) is independent of the parameter q and remains constant, whereas for multifrac-
tals, H(q) varies with changes in q.

According to definition in Equation 6, H(q) can be derived from the q-order scaling exponent ζ(q):

ζ(q) = qH(q)−DT (7)

where DT is the topological dimension, which equals 1 for time series.

2. The multifractal spectrum f(α): It implies the variation of the local Hurst exponent. The gener-
alized fractal dimension D(q) and multifractal spectrum f(α) can be derived as:

D(q) ≡ ζ(q)

q − 1
, α = ζ ′(q), f(α) = qα− ζ(q) (8)

Note that α and f(α) are also referred to as q-order singularity exponent hq and q-order singularity
dimension Dq in (Ihlen, 2012), as h and D(h)in other literature (Ihlen & Vereijken, 2010).

Though the multifractal properties of fMRI time series can be calculated by MFDFA during the train-
ing phase, in practical inference, no direct observations are available for the signals in future window.
To address this, we design a multifractal properties predictor to forecast the multifractal characteris-
tics of future signals. The prediction is based on the historical embedding hr

t = RNNθ

(
xr
t ,h

r
t−1

)
which is extracted by RNN model from the observed window of the time series.

During training, we optimize the predicted generalized Hurst exponent Ĥ(q) using the Mean
Squared Error (MSE) loss, a commonly used loss function for regression tasks. Additionally, to
ensure the predicted multifractal spectrum f̂(α) closely approximates the true distribution, we em-
ploy the Kullback-Leibler (KL) divergence DKL(f̂(α)||f(α)) to measure the difference between the
predicted spectrum f̂(α) and the ground truth spectrum f(α), which is calculated using MFDFA.

The complete fractal loss for a certain fMRI data xr is:

L
(r)
fractal(γ) =

1

n

n∑
i

(Hi(q)− Ĥi(q))
2 +

m∑
i

fi(α) log
fi(α)

f̂i(α)
(9)

where n and m is the dimension of calculated generalized Hurst exponent and multifractal spectrum.

After obtaining the predicted multifractal properties, we project them using a multifractal projector,
which can be implemented as a MLP, and obtain the multifractal condition cfractal that captures the
multifractal dynamics of fMRI data.

3.4 CROSS-BRAIN REGION GUIDING PROGRESSIVE DIFFUSION MODEL

We aggregate signals from brain regions of different ranges to complement the information in diffu-
sion generation process, as signals from broader brain regions capture overall brain activity trends,
while those from smaller regions provide finer details within a region. According to previous studies
on brain function (Weiskopf et al., 2004; Kriegeskorte & Bandettini, 2007), different brain regions
respond to various tasks with distinct activation states, reflected in the overall increase or decrease
trend of fMRI signals. In diffusion model, the broader trend signals correspond to the early genera-
tion steps, representing brain region activity at a larger scale. Therefore, we generate fMRI signals
that represent the general activity trends of broader brain regions, and then use these trends as con-
ditions to guide the generation of finer-scale signals. This multi-level, progressive approach ensures
that signals at each level collectively contribute to refining the generation of the final fMRI signal.

Intuitively, the signal representing the trend across a broader range of brain regions tends to be
smoother, as it integrates multiple fMRI signals that exhibit similar trends within that region. As a re-
sult, fewer diffusion generation steps are required. We also set up share ratio as in (Fan et al., 2024),
defined as: σr := 1− (Nr

∗ − 1)/N , which represents the shared percentage of variance schedule
between the data aggregated from r-level brain region and the original data. For the original fMRI
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data, N1
∗ = 1 and σ1 = 1.

αr
n (N

r
∗ ) =

{
1 if n = 1, . . . , Nr

∗
α1
n if n = Nr

∗ + 1, . . . , N
(10)

Here, {βr
n}

N
n=1 = {1− αr

n}
N
n=1 is the variance schedule in diffusion and arn (N

r
∗ ) =

∏n
k=1 α

r
k,

brn (N
r
∗ ) = 1 − arn (N

r
∗ ). Noted that aligning with the intuition, there is N1

∗ < N2
∗ . . . < Nr

∗ <
. . . < NR

∗ for brain region level r ∈ {1, ..., R}.

Unlike the conventional multi-granularity diffusion generation process, in the case of brain fMRI
generation, signals representing different spatial scales of brain regions play a clearer guiding role.
We first generate signals that represent the overall active trend of brain regions, which then guide the
generation of finer detailed signals within each region. To achieve this, we establish a progressive
generation framework. Specifically, when generating the signal at the r-th level, we leverage (r+1)-
th level generated signal through extracting its embedding and then mapping it by a MLP, as a
cross-brain region condition cregion to guide the diffusion generation.

3.5 TRAINING PROCEDURE

For the signal aggregated from r-range of brain regions, we train the conditional denoising diffusion
model with condition cr = whc

r
history +wfc

r
fractal +wrc

r
region. We have diffusion loss L(r)(θ) at

timestep t and diffusion step n as below, where ϵ ∼ N (0, I):

L
(r)
diffusion(θ) = Eϵ,xr

0,t,n
∥(ϵ− ϵθ(

√
arnx

r
0,t +

√
brnϵ, n, c

r)∥22, (11)

The final training objective is a weighted sum of diffusion loss in Equation 11 and the fractal loss in
Equation 9 for all signals:

Lfinal =

R∑
r=1

ωrL
(r)
diffusion(θ) +

R∑
r=1

L
(r)
fractal(γ)

=

R∑
r=1

ωrEϵ,xr
0,t,n

[∥ϵ− ϵθ(x
r
n,t, n, c

r)∥22] +
R∑

r=1

L
(r)
fractal(γ),

(12)

where xr
n,t =

√
arnx

r
0,t +

√
brnϵ and

∑R
r=1 ω

r = 1 is hyper-parameter controlling the scale of
guidance as in (Fan et al., 2024).

4 EXPERIMENT

4.1 SETTINGS

Datasets

To evaluate the advanced capabilities of proposed fMRI generation method, we choose the Human
Connectome Project (HCP) dataset 900 Subject Release (Van Essen et al., 2012; 2013), which is a
public fMRI dataset for brain related research. We preprocess the fMRI data using standard meth-
ods (Glasser et al., 2013) and parcellate it into nodes using a whole-brain functional AAL atlas, from
which we select 86 nodes in the cerebrum. The brain functional connectivity matrix is constructed
by calculating the Pearson correlation between the fMRI time series of different brain ROIs.

Baselines and Evaluation Metrics

As our model is diffusion-based time series generation model, we mainly choose two types of base-
lines to compare. (1) we choose time series forecasting methods, such as TimesNet (Wu et al., 2023),
Flowformer (Huang et al., 2022), iTransformer (Liu et al., 2023), MSGNet (Cai et al., 2024), U-
Mixer (Ma et al., 2024); (2) we include recent time series diffusion models: non-autoregressive dif-
fusion model TimeGrad (Rasul et al., 2021), structured state space model-based diffusion SSSD (Al-
caraz & Strodthoff, 2022).

We evaluate our model and all baselines using MAE (Mean Absolute Error), MAPE (Mean Absolute
Percentage Error) and RMSE (Root Mean Square Error), which are widely used metrics for accuracy
of time series forecasting.
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Figure 3: Prediction performance of fMRI signals across 32 and 96 time steps. Each row represents
a different subject, and each column corresponds to a distinct ROI.

Table 1: Comparison on fMRI forecasting task on HCP dataset. Baseline methods include time
series forcasting methods (TimesNet (Wu et al., 2023), Flowformer (Huang et al., 2022), iTrans-
former (Liu et al., 2023), MSGNet (Cai et al., 2024), U-Mixer (Ma et al., 2024)) and the diffusion-
based method (TimeGrad (Rasul et al., 2021), SSSD (Alcaraz & Strodthoff, 2022)). ↓ indicates
smaller values are preferred. Bold font indicates the best result in a column.

Method Tpred = 32 Tpred = 64 Tpred = 96
MAE ↓ RMSE ↓ MAPE(%) ↓ MAE ↓ RMSE ↓ MAPE(%) ↓ MAE ↓ RMSE ↓ MAPE(%) ↓

TimesNet (Wu et al., 2023) 31.17 42.12 0.2956 31.39 42.64 0.2998 31.70 42.82 0.3015
Flowformer (Huang et al., 2022) 30.55 40.89 0.2917 30.74 40.16 0.2953 30.97 40.28 0.2974
iTransformer (Liu et al., 2023) 32.64 43.54 0.3166 32.52 43.59 0.3183 32.77 43.82 0.3214

MSGNet (Cai et al., 2024) 31.21 42.53 0.2981 31.56 42.82 0.3015 31.95 42.90 0.3022
U-Mixer (Ma et al., 2024) 29.36 39.70 0.2793 29.42 39.81 0.2804 29.83 39.92 0.2817

TimeGrad (Rasul et al., 2021) 34.47 47.79 0.3413 36.42 49.13 0.3527 37.62 50.35 0.3720
SSSD (Alcaraz & Strodthoff, 2022) 34.38 47.06 0.3394 35.18 48.21 0.3406 36.27 49.31 0.3685

PDH-Diffusion (Ours) 28.56 38.70 0.2744 29.04 38.91 0.2768 29.73 39.25 0.2803

Experimental Setups

There are 696 data in training dataset and 174 data in test dataset. Each data has size NROI × T ,
where NROI = 82 is the number of ROIs on brain, T = 1200 is the timesteps of fMRI time
series. For fMRI time series prediction, we set the context length L = 64, and prediction length
Tpred = {32, 64, 96}. These settings were applied to all compared models. The initial learning rate
was LR = 0.00001 and batch size was 32. The training was conducted for 200 epochs.

4.2 RESULTS AND ANALYSIS

The MAE, RMSE, and MAPE values, averaged over 10 independent runs, are reported in Table 1.
From the results, we can see for all three prediction time length Tpred = 32, Tpred = 64 and
Tpred = 96, PDH-Diffusion consistently outperforms the baselines in terms of MAE, RMSE, and
MAPE. We also observe that as the prediction length increases while keeping the context length
constant, the forcasting accuracy of all models declines to varying degrees. We show the prediciton
performance of fMRI data in Figure 3. Overall, the result indicates that our method can generate
fMRI that are closest to the true physiological fMRI signals.

4.3 ABLATION ANALYSIS

To verify the rational business of our framework, we provide detailed ablations. In particularly,
we conducted three separate ablation experiments, each corresponding to the removal of one of the
proposed modules: (1)w/o-HHSG, i.e. Model without the Hypergraph-based Hierarchical Signals
Generator from the framework, meaning that the diffusion model was only trained to generate the
original fMRI data without any cross-brain region information. (2)w/o-DPGM, i.e. Model with-
out the Dynamics Properties Guiding Module, which also eliminates the need for the loss function
Lfractal during training. (3)w/o-CRGM, i.e. Model with the Cross-brain Region Guiding Progres-
sive Diffusion Model removed, which means there is no cross-brain region condition derived from
the wider range of brain regions. We evaluated the whole framework with these three variants on
HCP dataset and the results are reported in Table 2, highlighting improvements of proposed modules.
The influence of the weights of condition cfractal and cregion

In the proposed framework, the diffusion generation process is guided by multiple conditions, with
the historical condition as the base and the cross-brain region and multifractal conditions added.
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Table 2: Ablation study covering removing
three key components proposed in framework.

Metric MAE ↓ RMSE ↓ MAPE (%)↓
PDH-Diffusion(Full) 29.04 38.91 0.2768

w/o-HHSG 34.26 44.93 0.3397
w/o-DPGM 33.72 43.55 0.3356
w/o-CRGM 31.08 42.47 0.3218

Table 3: The influence of the brain region range
setting in HHSG.

Number of ranges MAE ↓ RMSE ↓ MAPE(%) ↓
1 34.26 44.93 0.3397
2 33.89 44.25 0.3314
3 31.08 42.53 0.3132
4 29.86 40.24 0.2893
5 29.04 38.91 0.2768

To evaluate the importance of these additional conditions, we explored the impact of their weights
wr and wf on the generation results, as presented in Figure 4a.

As shown in Figure 4a, for both conditions, the results initially decrease and then increase as the
weight grows. The initial decline reflects the effectiveness of the added conditions, while the sub-
sequent increase may be due to excessive weighting interfering with the basic (history) condition.
Additionally, it demonstrates that the fractal condition consistently improves the generation results.

(a) The impact of the weights of cross-brain region condition and
multifractal condition.

Share Ratios

(b) The influence of share ratios on the
generation of signals from different brain
ranges.

Figure 4: The impact of weights of conditions and share ratios.

The influence of share ratios σ

To assess the impact of the share ratios σ on signal generation across different brain region ranges,
we conducted an experiment with four ranges (R = 4), as shown in Figure 4b. The share ratio for
signal from each range was varied from 0.1 to 1. In the figure, r = 1 represents the original, most
localized signal, while r = 4 corresponds to the signal from the widest brain region range.

Figure 4b shows that for the original signal, which contains more detailed local information, a higher
share ratio leads to better generation performance. In contrast, for signals that aggregate more global
information and represent broader brain region trends, the optimal share ratio tends to be lower.

The influence of the brain region range setting

In Table 3, we experimentally examined the effect of varying the number of ranges of brain regions
on the generated results. As shown in Table 3, the generation performance improves as the number
of ranges of brain regions increases, indicating that richer and more detailed transmission of brain
region information significantly enhances the quality of generated fMRI signals. This finding further
suggests that incorporating additional medical-based prior knowledge about brain partitions holds
great potential for further improving fMRI signal generation.

5 CONCLUSION

In this paper, we propose the Physiological Dynamics-Driven Hierarchical Brain Diffusion Model,
a novel framework for generating realistic fMRI time series by integrating key aspects of brain
functional connectivity and multifractal dynamics. By leveraging a hypergraph-based functional
connectivity structure and a multifractal guiding module, our approach improves the physiological
accuracy of generated fMRI signals, addressing limitations in current generative models and offering
potential for enhanced applications in neuroscience and clinical diagnosis.
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