Under review as a conference paper at ICLR 2025

H4RM3L: A LANGUAGE FOR COMPOSABLE JAILBREAK
ATTACK SYNTHESIS

- SUPPLEMENTARY MATERIALS -

1
S
3
4
5

S % o

2oL~

1
o)
3
{
5
6
7

0

AL B W —

-

Anonymous authors
Paper under double-blind review

1 H4rM31 LANGUAGE SPECIFICATION AND IMPLEMENTATION

h4rm31 programs are Python expressions with one or more derived instances of
PromptDecorator chained with the then member function, which returns a single decorator
that composes the current decorator with the specified composing_decorator. Child decorators
can use the prompt_model member function is used to prompt an LLM as part of the prompt
transformation process (Listing 1).

class PromptDecorator (object) :

def __init__ (self, seed=42) -> None:
self._random_state = RandomState (seed=seed)

def prompt_model (self, prompt, maxtokens=256, temperature=1):
return get_model_prompting_interface () (prompt, maxtokens, temperature)

def decorate(self, prompt):
raise NotImplementedError (

def then(self, composing_decorator):
d = PromptDecorator ()
d.decorate = lambda p: composing_decorator.decorate (self.decorate(p))

return d

Listing 1: Base Class of h4rm31 Decorators

The h4rm31 expression compiler first uses the built-in eval function, which returns a simple
or composite PromptDecorator, then return a lambda expression that invokes its decorate
function. This lambda expression also removes NULL characters from the decorator’s output. The
current specification is our second (v2) iteration of the h4rm31 language. The first version (v1),
which defined programs as a sequence of decorator instantiations separated by semicolons, proved to
be harder to maintain and expand.

Our generic decorators, RolePlayingDecorator, which affixes prompts with a constant spec-
ified prefix and suffix, and TransformFxDecorator, which allows specifying a decorator’s
transformation as the source code of a function named t rans form are shown in Listing 4 and 3.
We wish Python offered anonymous functions, which would have allowed the direct definition of the
transform function, instead of its specification as a string. TransformFxDecorator uses the
built-in exec function to dynamically execute the definition of the t rans form function in a local
namespace, and then invokes this function while passing in the prompt, a callable that can invoke an
auxiliary language model, and a seeded random generator.

def compile_decorator_v2 (expression) :

try:
decorator = eval (expression)

return la a p: str(decorator.decorate(p)) .replace(’\0’, ’’).replace(’\x00","")
except Exception as ex:

logging.error (f"Error compiling decorator: {expression}")

logging.error (ex)

return None

Listing 2: h4rm31 Program Compiler

class RoleplayingDecorator (PromptDecorator) :
def __init__ (self, prefix="", suffix="") -> None:
super () .__init__ (seed=42)
self._prefix = prefix
self._suffix = suffix

def decorate(self, prompt) :

Under review as a conference paper at ICLR 2025

return f"{self._ prefix}{prompt}{self._suffix}"

Listing 3: RoleplayingDecorator

class TransformFxDecorator (PromptDecorator) :
def __init__ (self, transform_fx, seed=42) -> None:
super () .__init__ (seed=seed)
self._transform_fx = transform_fx

def decorate(self, prompt):
ns = {}
exec (self._transform_fx, ns)
try:
return ns["transform"] (prompt, self.prompt_model, self._random_state)
except:
return ""

Listing 4: TransformFxDecorator

See the following file for more details on the h4rm31 language, its compiler, runtime environment,
and examples of concrete decorators.

ROOT/
h4rm31l/src/h4rm3l/decorators.py

Under review as a conference paper at ICLR 2025

Mean Attack Success Rate (All Generated Programs)

0.20+
//\/\f - —— bandit_offspring_score_mixed
15 ; ~—— bandit_random_mixed

—— bandit_self_score_lle
—— bandit_self_score_mixed

Mean ASR
°
G

Iterations

Figure 1: Mean Attack Success Rate of all synthesized programs by approach. The approach which
involved higher-level Jailbreak abstractions (mixed), and a bandit algorithm based on program scores
generated the most successful attacks on gpt4-o

2 COMPARISON OF PROGRAM SYNTHESIS METHODS (EXP. 117)

We synthesize new attacks by using human-designed attacks as few-shot examples for instruction fol-
lowing LLM promoted to general novel programs. To assess the value of human-designed abstractions
for jailbreak attacks, we implemented several previously published attacks in h4 rm31 both as special-
ized primitives and in terms of our generic decorators. In our experiment 117, we compared 4 program
synthesis approaches: the first three bandit_random_mixed, bandit_offspring_score_mixed, and
bandit_self_score_mixed all use mixed examples, but compare different synthesis algorithms (see
section 3.1 in main paper). The last approach, bandit_self_score_lle uses our best synthesis algorithm,
but with the low-level expression of examples. Detailed notes, steps to reproduce and generated
artifacts from our experiment 117 are available at the following paths. A summary of the results
is in Figure 1, which shows the average yield of each synthesis approach in terms of Mean Attack
Success Rates. Also see Figure 2 in our main manuscript, which shows the mean scores of the top-20
programs generated by each method.

ROOT/experiments/experiment_117_bandit_synthesis_gptdo/
config/primitives_hle.txt
config/primitives_lle.txt
config/program_examples_lle.csv
config/program_examples_mixed.csv

data/synthesized_programs/
syn_progs.bandit_self_score.mixed.csv (1939 attacks)
syn_progs.bandit_offspring_score.mixed.csv (1936 attacks)
syn_progs.bandit_random.mixed.csv (1815 attacks)
syn_progs.bandit_self_score.lle.csv (1680 attacks)

Makefile
README .md

The implementation of our program synthesis algorithms can be found at this path:

ROOT/h4rm31/src/hd4rm31/synthesizer.py

3 TARGETED ATTACK SYNTHESIS EXPERIMENTS (ExP. 118, 119, 120, 121,
122)

These experiments are similar to experiment 117 (which targets gpt4-o), but only employ our best
program synthesis approach, and target Claude-3-sonnet, Claude-3-haiku, GPT-3.5, llama-8b and
Ilama3-70b. Attacks generated from each experiment can be found at the following paths:

ROOT/experiments/
experiment_117_bandit_synthesis_gptd4o/data/synthesized_programs/
syn_progs.bandit_self_score.mixed.csv (1939 attacks)
experiment_118_bandit_synthesis_claude_sonnet/datasynthesized_programs/

Under review as a conference paper at ICLR 2025

syn_progs.bandit_self_score.mixed.csv (1766 attacks)
experiment_119_bandit_synthesis_claude_haiku/datasynthesized_programs/
syn_progs.bandit_self score.mixed.csv (1920 attacks)
experiment_120_bandit_synthesis_gpt3.5/data/synthesized_programs/
syn_progs.bandit_self_score.mixed.csv (1713 attacks)
experiment_121_bandit_synthesis_llama3-8b/data/synthesized_programs/
syn_progs.bandit_self_score.mixed.csv (1725 attacks)
experiment_122_bandit_synthesis_llama3-70b/data/synthesized_programs/
syn_progs.bandit_self_ score.mixed.csv (1397 attacks)

Detailed logs for each experiment are available under the logs subfolder. These include:

* Program synthesizer logs, including few-shot examples and example pool at the start and
end of each iteration.

* HTTP logs from API calls

Program synthesizer logs: from the program synthesizer including few shot examples selected for
each iteration and the history of the few-shot example pool ar

4 BENCHMARKING (EXP. 130)

Selected Synthesized Attacks For our benchmarking experiment, we selected the top 10 synthe-
sized attacks for each target model. The selected attacks can be found at the following paths:

ROOT/experiments/experiment_130_benchmark/data/synthesized_programs_top_k/
Meta-Llama-3-70B-Instruct.syn_progs.bandit_self_ score.mixed.csv
gpt-3.5-turbo.syn_progs.bandit_self_ score.mixed.csv
gpt-40-2024-05-13.syn_progs.bandit_self_score.mixed.csv
Meta-Llama-3-8B-Instruct.syn_progs.bandit_self score.mixed.csv
claude-3-sonnet-20240229.syn_progs.bandit_self_ score.mixed.csv
claude-3-haiku-20240307.syn_progs.bandit_self_score.mixed.csv

the following attacks from experiment#117

were also included in the final benchmark

but not reported in the main results
gpt-40-2024-05-13.syn_progs.bandit_random.mixed.csv
gpt-40-2024-05-13.syn_progs.bandit_self_score.lle.csv
gpt-40-2024-05-13.syn_progs.bandit_offspring score.mixed.csv

Reference SOTA attacks The 23 reference SOTA attacks available at the following path were also
included in the benchmark

ROOT/experiments/experiment_130_benchmark/
config/sota_programs.csv (23 attacks)

Final 113 attacks used for benchmarking The final set of attacks used to benchmark the 6 target
models is available here

ROOT/experiments/experiment_130_benchmark/data/benchmark/
h4rm31_benchmark_20240604.csv (113 attacks)

AdvBench prompt Samples used for benchmarking The 50 AdvBench that we sampled for
benchmarking are available here:

ROOT/experiments/experiment_130_benchmark/data/
sampled_harmful_prompts/benchmark-advbench-50.csv (50 prompts)

Under review as a conference paper at ICLR 2025

Decorated Prompts The 113 selected attacks were used to decorate each of the 50 prompts, for
5650 decorated prompts available here:

ROOT/experiments/experiment_130_benchmark/data/
decorated_prompts/benchmark—advbench-50.decorated.csv (5650 decorated prompts)

Model Responses & Evaluation Each target model was prompted with each of the 5650 decorated
prompts. The resulting model responses are available here at the below paths. The CSV files contain
the eval_harmful column, which contains the output of our harm classifier.

ROOT/experiments/experiment_130_benchmark/results/benchmark-advbench-50.decorated
.evaluated_claude-3-haiku-20240307.csv (5650 responses)
.evaluated_claude-3-sonnet-20240229.csv (5650 responses)
.evaluated_gpt-3.5-turbo.csv (5650 responses)
.evaluated_gpt-40-2024-05-13.csv (5650 responses)
.evaluated_Meta-Llama-3-70B-Instruct.csv (5650 responses)
.evaluated_Meta-Llama-3-8B-Instruct.csv (5650 responses)

Qualitative Analysis We clustered synthesized programs, and plotted the average attack success
rate achieved as a function of the numbthe number of primitives used by each attack results/prog-
synthesis-clusters

ROOT/experiments/experiment_130_benchmark/results/

Frequency of each primitive in synthesized attacks > 80% ASR
prog-synthesis-clusters.txt

One folder per target model

(only claude-3-haiku-20240307 shown here)

experiments/experiment_130_benchmark/results/prog-synthesis-clusters/
Plot of ASR vs number of primitives used by attacks
claude-3-haiku-20240307.syn_progs.bandit_self_score.mixed/asr_vs_length.png
t-sne plot of CodeBert features of attacks >80% ASR
claude—-3-haiku-20240307.syn_progs.bandit_self_score.mixed/cluster_0.8.png
t-sne plot of CodeBert features of all attacks
claude-3-haiku-20240307.syn_progs.bandit_self_score.mixed/cluster.png

5 HARMFUL CONTENT CLASSIFIER

Our is_harmful () function, used to determine whether a model response constitutes harm is
defined in this file.

ROOT/
h4rm31/src/h4rm31l/harm_evaluation.py

	h4rm3l Language Specification and Implementation
	Comparison of Program Synthesis Methods (Exp. 117)
	Targeted Attack Synthesis Experiments (Exp. 118, 119, 120, 121, 122)
	Benchmarking (Exp. 130)
	Harmful Content Classifier

