
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

H4RM3L : A LANGUAGE FOR COMPOSABLE JAILBREAK
ATTACK SYNTHESIS
- SUPPLEMENTARY MATERIALS -

Anonymous authors
Paper under double-blind review

1 H4RM3L LANGUAGE SPECIFICATION AND IMPLEMENTATION

h4rm3l programs are Python expressions with one or more derived instances of
PromptDecorator chained with the then member function, which returns a single decorator
that composes the current decorator with the specified composing decorator. Child decorators
can use the prompt model member function is used to prompt an LLM as part of the prompt
transformation process (Listing 1).

1 class PromptDecorator(object):
2 def __init__(self, seed=42) -> None:
3 self._random_state = RandomState(seed=seed)
4
5 def prompt_model(self, prompt, maxtokens=256, temperature=1):
6 return get_model_prompting_interface()(prompt, maxtokens, temperature)
7
8 def decorate(self, prompt):
9 raise NotImplementedError()

10
11 def then(self, composing_decorator):
12 d = PromptDecorator()
13 d.decorate = lambda p: composing_decorator.decorate(self.decorate(p))
14 return d

Listing 1: Base Class of h4rm3l Decorators

The h4rm3l expression compiler first uses the built-in eval function, which returns a simple
or composite PromptDecorator, then return a lambda expression that invokes its decorate
function. This lambda expression also removes NULL characters from the decorator’s output. The
current specification is our second (v2) iteration of the h4rm3l language. The first version (v1),
which defined programs as a sequence of decorator instantiations separated by semicolons, proved to
be harder to maintain and expand.

Our generic decorators, RolePlayingDecorator, which affixes prompts with a constant spec-
ified prefix and suffix, and TransformFxDecorator, which allows specifying a decorator’s
transformation as the source code of a function named transform are shown in Listing 4 and 3.
We wish Python offered anonymous functions, which would have allowed the direct definition of the
transform function, instead of its specification as a string. TransformFxDecorator uses the
built-in exec function to dynamically execute the definition of the transform function in a local
namespace, and then invokes this function while passing in the prompt, a callable that can invoke an
auxiliary language model, and a seeded random generator.

1 def compile_decorator_v2(expression):
2 try:
3 decorator = eval(expression)
4 return lambda p: str(decorator.decorate(p)).replace(’\0’, ’’).replace(’\x00’,’’)
5 except Exception as ex:
6 logging.error(f"Error compiling decorator: {expression}")
7 logging.error(ex)
8 return None

Listing 2: h4rm3l Program Compiler

1 class RoleplayingDecorator(PromptDecorator):
2 def __init__(self, prefix="", suffix="") -> None:
3 super().__init__(seed=42)
4 self._prefix = prefix
5 self._suffix = suffix
6
7 def decorate(self, prompt):

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

8 return f"{self._prefix}{prompt}{self._suffix}"

Listing 3: RoleplayingDecorator

1 class TransformFxDecorator(PromptDecorator):
2 def __init__(self, transform_fx, seed=42) -> None:
3 super().__init__(seed=seed)
4 self._transform_fx = transform_fx
5
6 def decorate(self, prompt):
7 ns = {}
8 exec(self._transform_fx, ns)
9 try:

10 return ns["transform"](prompt, self.prompt_model, self._random_state)
11 except:
12 return ""

Listing 4: TransformFxDecorator

See the following file for more details on the h4rm3l language, its compiler, runtime environment,
and examples of concrete decorators.

ROOT/
h4rm3l/src/h4rm3l/decorators.py

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Mean Attack Success Rate of all synthesized programs by approach. The approach which
involved higher-level Jailbreak abstractions (mixed), and a bandit algorithm based on program scores
generated the most successful attacks on gpt4-o

2 COMPARISON OF PROGRAM SYNTHESIS METHODS (EXP. 117)

We synthesize new attacks by using human-designed attacks as few-shot examples for instruction fol-
lowing LLM promoted to general novel programs. To assess the value of human-designed abstractions
for jailbreak attacks, we implemented several previously published attacks in h4rm3l both as special-
ized primitives and in terms of our generic decorators. In our experiment 117, we compared 4 program
synthesis approaches: the first three bandit random mixed, bandit offspring score mixed, and
bandit self score mixed all use mixed examples, but compare different synthesis algorithms (see
section 3.1 in main paper). The last approach, bandit self score lle uses our best synthesis algorithm,
but with the low-level expression of examples. Detailed notes, steps to reproduce and generated
artifacts from our experiment 117 are available at the following paths. A summary of the results
is in Figure 1, which shows the average yield of each synthesis approach in terms of Mean Attack
Success Rates. Also see Figure 2 in our main manuscript, which shows the mean scores of the top-20
programs generated by each method.

ROOT/experiments/experiment_117_bandit_synthesis_gpt4o/
config/primitives_hle.txt
config/primitives_lle.txt
config/program_examples_lle.csv
config/program_examples_mixed.csv

data/synthesized_programs/
syn_progs.bandit_self_score.mixed.csv (1939 attacks)
syn_progs.bandit_offspring_score.mixed.csv (1936 attacks)
syn_progs.bandit_random.mixed.csv (1815 attacks)
syn_progs.bandit_self_score.lle.csv (1680 attacks)

Makefile
README.md

The implementation of our program synthesis algorithms can be found at this path:

ROOT/h4rm3l/src/h4rm3l/synthesizer.py

3 TARGETED ATTACK SYNTHESIS EXPERIMENTS (EXP. 118, 119, 120, 121,
122)

These experiments are similar to experiment 117 (which targets gpt4-o), but only employ our best
program synthesis approach, and target Claude-3-sonnet, Claude-3-haiku, GPT-3.5, llama-8b and
llama3-70b. Attacks generated from each experiment can be found at the following paths:

ROOT/experiments/
experiment_117_bandit_synthesis_gpt4o/data/synthesized_programs/

syn_progs.bandit_self_score.mixed.csv (1939 attacks)
experiment_118_bandit_synthesis_claude_sonnet/datasynthesized_programs/

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

syn_progs.bandit_self_score.mixed.csv (1766 attacks)
experiment_119_bandit_synthesis_claude_haiku/datasynthesized_programs/

syn_progs.bandit_self_score.mixed.csv (1920 attacks)
experiment_120_bandit_synthesis_gpt3.5/data/synthesized_programs/

syn_progs.bandit_self_score.mixed.csv (1713 attacks)
experiment_121_bandit_synthesis_llama3-8b/data/synthesized_programs/

syn_progs.bandit_self_score.mixed.csv (1725 attacks)
experiment_122_bandit_synthesis_llama3-70b/data/synthesized_programs/

syn_progs.bandit_self_score.mixed.csv (1397 attacks)

Detailed logs for each experiment are available under the logs subfolder. These include:

• Program synthesizer logs, including few-shot examples and example pool at the start and
end of each iteration.

• HTTP logs from API calls

Program synthesizer logs: from the program synthesizer including few shot examples selected for
each iteration and the history of the few-shot example pool ar

4 BENCHMARKING (EXP. 130)

Selected Synthesized Attacks For our benchmarking experiment, we selected the top 10 synthe-
sized attacks for each target model. The selected attacks can be found at the following paths:

ROOT/experiments/experiment_130_benchmark/data/synthesized_programs_top_k/
Meta-Llama-3-70B-Instruct.syn_progs.bandit_self_score.mixed.csv
gpt-3.5-turbo.syn_progs.bandit_self_score.mixed.csv
gpt-4o-2024-05-13.syn_progs.bandit_self_score.mixed.csv
Meta-Llama-3-8B-Instruct.syn_progs.bandit_self_score.mixed.csv
claude-3-sonnet-20240229.syn_progs.bandit_self_score.mixed.csv
claude-3-haiku-20240307.syn_progs.bandit_self_score.mixed.csv

the following attacks from experiment#117
were also included in the final benchmark
but not reported in the main results
gpt-4o-2024-05-13.syn_progs.bandit_random.mixed.csv
gpt-4o-2024-05-13.syn_progs.bandit_self_score.lle.csv
gpt-4o-2024-05-13.syn_progs.bandit_offspring_score.mixed.csv

Reference SOTA attacks The 23 reference SOTA attacks available at the following path were also
included in the benchmark

ROOT/experiments/experiment_130_benchmark/
config/sota_programs.csv (23 attacks)

Final 113 attacks used for benchmarking The final set of attacks used to benchmark the 6 target
models is available here

ROOT/experiments/experiment_130_benchmark/data/benchmark/
h4rm3l_benchmark_20240604.csv (113 attacks)

AdvBench prompt Samples used for benchmarking The 50 AdvBench that we sampled for
benchmarking are available here:

ROOT/experiments/experiment_130_benchmark/data/
sampled_harmful_prompts/benchmark-advbench-50.csv (50 prompts)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Decorated Prompts The 113 selected attacks were used to decorate each of the 50 prompts, for
5650 decorated prompts available here:

ROOT/experiments/experiment_130_benchmark/data/
decorated_prompts/benchmark-advbench-50.decorated.csv (5650 decorated prompts)

Model Responses & Evaluation Each target model was prompted with each of the 5650 decorated
prompts. The resulting model responses are available here at the below paths. The CSV files contain
the eval harmful column, which contains the output of our harm classifier.

ROOT/experiments/experiment_130_benchmark/results/benchmark-advbench-50.decorated
.evaluated_claude-3-haiku-20240307.csv (5650 responses)
.evaluated_claude-3-sonnet-20240229.csv (5650 responses)
.evaluated_gpt-3.5-turbo.csv (5650 responses)
.evaluated_gpt-4o-2024-05-13.csv (5650 responses)
.evaluated_Meta-Llama-3-70B-Instruct.csv (5650 responses)
.evaluated_Meta-Llama-3-8B-Instruct.csv (5650 responses)

Qualitative Analysis We clustered synthesized programs, and plotted the average attack success
rate achieved as a function of the numbthe number of primitives used by each attack results/prog-
synthesis-clusters

ROOT/experiments/experiment_130_benchmark/results/

Frequency of each primitive in synthesized attacks > 80% ASR
prog-synthesis-clusters.txt

One folder per target model
(only claude-3-haiku-20240307 shown here)
experiments/experiment_130_benchmark/results/prog-synthesis-clusters/

Plot of ASR vs number of primitives used by attacks
claude-3-haiku-20240307.syn_progs.bandit_self_score.mixed/asr_vs_length.png
t-sne plot of CodeBert features of attacks >80% ASR
claude-3-haiku-20240307.syn_progs.bandit_self_score.mixed/cluster_0.8.png
t-sne plot of CodeBert features of all attacks
claude-3-haiku-20240307.syn_progs.bandit_self_score.mixed/cluster.png

5 HARMFUL CONTENT CLASSIFIER

Our is harmful() function, used to determine whether a model response constitutes harm is
defined in this file.

ROOT/
h4rm3l/src/h4rm3l/harm_evaluation.py

5

	h4rm3l Language Specification and Implementation
	Comparison of Program Synthesis Methods (Exp. 117)
	Targeted Attack Synthesis Experiments (Exp. 118, 119, 120, 121, 122)
	Benchmarking (Exp. 130)
	Harmful Content Classifier

