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Supplementary Document:

VARIANCE-REDUCED FORWARD-REFLECTED
ALGORITHMS FOR GENERALIZED EQUATIONS

Due to space limit, some parts of our algorithmic construction and theory are not described in detail
and motivated in the main text. This supplementary document aims at providing more details of
the algorithmic construction, motivation, related work, technical proofs, and additional experiments
related to our methods.

A A FURTHER DISCUSSION OF RELATED WORK

As we already discussed in the introduction of the main text, both standard stochastic approximation
and variance-reduction methods have been broadly studied for and (NI), including (Juditsky
et al.,[2011; [Kotsalis et al., [ 2022; [Pethick et al., 2023). In this section, we further discuss some other
related work to (NE) and (NI), their special cases, and equivalent forms.

Beyond monotonicity. Classical methods such as extragradient, prox-mirror, and projective
schemes often relax the monotonicity to star-monotonicity, and other forms such as pseudo-
monotonicity and quasi-monotonicity (Konnov, 2001} Noor, [2003; Noor & Al-Said, {1999; [Tu,
2018). These assumptions are certainly weaker than the monotonicity and can cover some wider
classes of problems, including some nonmonotone subclasses. Another extension of monotonicity
is the weak-Minty solution condition in Assumption|[I.4] which was proposed in early work, perhaps
Diakonikolas et al. (2021)), as an extension of the star-monotonicity and star-weak-monotonicity
assumptions. Other following-up works include Bohm (2022); Gorbunov et al. (2022b); |[Luo &
Tran-Dinh| (2022). A comprehensive survey for extragradient-type methods using the weak-Minty
solution condition can be found in Tran-Dinh| (2023). The monotonicity has also been extended to
a weak monotonicity, or related, prox-regularity (Rockafellar & Wets, [1997) (in particular, weak-
convexity). Other types of hypo-monotonicity or co-monotonicity concepts can be found, e.g., in
Bauschke et al./ (2020). These concepts have been exploited to develop algorithms for solving (NE)
and and their special cases. For stochastic methods, extensions beyond monotonicity have been
also extensively explored. For instance, some further structures beyond monotonicity such as weak
solution were exploited for MVIs in [Song et al.| (2020), a pseudo-monotonicity was used in [Bot
et al. (2021); Kannan & Shanbhag|(2019) for stochastic VIPs, a two-sided Polyak-f.ojasiewicz con-
dition was extended to VIP in|Yang et al.| (2020) to tackle a class on nonconvex-nononcave minimax
problems, an expected co-coercivity was used [Loizou et al.|(2021), and a strongly star-monotone
was further exploited in |Gorbunov et al. (2022a). While these structures are occasionally used in
different works, the relation between them is still largely elusive.

Further discussion on stochastic methods. Under the monotonicity, several authors have exploited
the stochastic approximation approach (Robbins & Monro, |1951)) to develop stochastic variants for
solving (NE) and and their special cases. For example, a stochastic Mirror-Prox was proposed
in Juditsky et al.| (2011)), which has convergence on a gap function, but requires a bounded do-
main assumption. This approach was later extended to the extragradient method under additional
assumptions in|[Mishchenko et al.|(2020). In|Hsieh et al.|(2019), the authors discussed several meth-
ods for solving MVIs, a special case of (NI), including stochastic methods. They experimented on
numerical examples and showed that the norm of the operator can asymptotically converge for un-
constrained MVIs with a double learning rate. In the last few years, there were many works focusing
on developing stochastic methods for solving (NE) and (NI), and their special cases using different
techniques such as single-call stochastic schemes in (Hsieh et al., 2019), non-accelerated and ac-
celerated variance reduction with Halpern-type iterations in [Cai et al. (2023} 2022), co-coercive
structures in Beznosikov et al.| (2023)), and bilinear game models inLi et al.|(2022).

Among many existing works, perhaps, (Cai et al.|(2023) is one of the most recent works that develops
variance-reduction methods for solving and achieves the state-of-the-art oracle complexity.
However, (Cai et al. (2023) explores a different approach that ours, which relies on some recent
development of the Halpern fixed-point iteration and a biased SARAH estimator. Let us clarify the
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differences of this work and our paper here. Algorithm 1 in|Cai et al.| (2023) is a single-loop and
achieves a better oracle complexity. However, it requires a much stronger assumption, Assumption
3, which is a co-coercive condition. Note that this assumption excludes the well-known bilinear
matrix game, or the synthetic WGAN model below. Section 4 of |Cai et al.| (2023) studies both
the monotone and the co-hypomonotone cases of (NI). The main idea is to reformulate into a
resolvent equation J, g4y = 0 and then apply Algorithm 1 to this equation, where J,, (g1 1) 18
co-coercive. However, exactly evaluating J,, 1) is impractical, one needs to approximate it by an
appropriate algorithm. For instance, (Cai et al. (2023) suggests to use the variance-reduced FRBS
method in|Alacaoglu et al. (2022) to approximate this resolvent, leading to a double loop algorithm.
This approach is not a direct variance-reduced method (i.e., the inner loop can be any algorithm) as
ours or Algorithm 1 of |Cai et al. (2023). Moreover, practically implementing as well as rigorously
analyzing an inexact double loop algorithm, when the inner loop is also a stochastic method, is often
very challenging and technical as it is difficult to conduct a stopping criterion of the inner loop, and
to select appropriate parameters. Nevertheless, our algorithms developed in this paper are simple to
implement and applicable to both (NE) and whose weak-Minty solution exists. These problems
are broader than the ones in|Cai et al. (2023)).

Randomized coordinate and cyclic coordinate methods for and (NI). Together with
stochastic algorithms for solving (NE) and and their special cases, randomized coordinate
methods have also been proposed to solve these problems, including Combettes & Eckstein|(2018);
Combettes & Pesquet (2015); [Peng et al.| (2016). Recent works on randomized coordinate and
cyclic coordinate methods can be found, e.g., in (Chakrabarti et al. (2024);|Cui & Shanbhag|(2021);
Hamedani et al.| (2018)); |Song & Diakonikolas| (2023)); Tran-Dinh & Luo (2023); |Yousefian et al.
(2018). These methods are not directly related to our work, but they can be considered as a dual
form of stochastic methods in certain settings such as convex-concave minimax problems. Study-
ing relations between randomized coordinate methods and stochastic algorithms for (NE) and
appears to be an interesting research topic.

B THE PROOF OF TECHNICAL RESULTS IN SECTION [2]

This supplementary section provides the full proof of Lemma[2.T]and Lemma 2.2
Further discussion of FR operator. Let us recall our operator S’; defined by (FRO) as follows:

Sfj = Gk — vGa:k_l. (FRO)

As we mentioned earlier, vy plays a crucial role in our methods as v € ( %, 1). Ify = %, then
we can write Sy, = 1Ga* + L(GzF — Ga*~1) = 1[2Ga2* — G2*~] used in both the forward-
reflected-backward splitting (FRBS) method (Malitsky & Tam, |2020) and the optimistic gradient
method (Daskalakis et al., 2018).

Note that if we write Gz* — Gz*~! = Jg(a%)(2* — 2F~1) by the Mean-Value Theorem, where
Jo(xh) = [} VG (@R 4 r(aF — 25~1))dr, then S = (1 — 7)G(2) + e (a¥) (2 — 2 1).
Clearly, if y is small, then S’; can be considered as an approximation of Gz* augmented by a second-
order correction term ’ng(x’“)(a:k — xF=1) (called Hessian-driven damping term or second-order
dissipative term) widely used in dynamical systems for convex optimization, see, e.g.,|Adly & At-
touch (2021); |Attouch & Cabot|(2020). These two viewpoints motivate the use of our new operator
Sfj, not only in our (VFR) and (VFRBS), but in other methods such as accelerated algorithms. Thus
the results in Section [2|are of independent interest.

Other possible stochastic estimators for S’;. One natural idea to construct an unbiased estimator

k - . . .. . . ok 1 ok k=1
for S™ is to use an increasing mini-batch stochastic estimator as 5% := - >, [Gia" —yGiz™ ],
where By is an increasing mini-batch in [n], with b, := |Bg| > f:}; > b_1, see, e.g.,[lusem et al.

(2017). While this idea may work well for the general expectation case Gz = E¢ [G(m, 13 )], it may
not be an ideal choice for the finite-sum operator (1)) as by, < n, which requires to stop increasing
after finite iterations (i.e. O %) iterations). Other stochastic approximations may also fall
into our class in Definition such as JacSketch (Gower et al.,|2021), SEGA (Hanzely et al.,|2018)),
and quantized and compressed estimators ( see, e.g., Horvath et al. (2023)).
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B.1 PROOF OF LEMMA 2.1} LOOPLESS-SVRG ESTIMATOR
Let us further expand Lemma 2.1]in detail as follows and then provide its full proof.

Lemma B.1. Let Slj = GaF —.Vka_l be defined by and glj be generated by (L-SVRG).
We consider the following quantity:

Ay = 30 E[||Giak —4Giak Tt — (1 —4)Giw® 2], (7
Then, we have

Ex [gﬁ] = S’; = GzF — G2kt
E[HS’,j — S’,j||2] < Ay — 1E[[|GaF — yGaht — (1 — 4)Gw”|]?] < Ay,
Ay (1—B)Aj_y + BB 570 B)|Gyak — Giah 12

270 2
+ ZLCIRER) S | R[||Giah ot — Giak 22,

(18)

IN

Consequently, the SVRG estimator gff constructed by (L-SVRQ) satisfies Definition with Ay in
~ 2 2
@D, p:=5 € (0,1], C = S=BEIH" g &= Q750107

Proof. 1t is well-known, see, e.g., Johnson & Zhang (2013), that g’; is an unbiased estimator of S*
conditioned on Fj, we have E, [5,’;] = S,’j.

Next, let X; := Go* — vG;z¥~1 — (1 — v)G;wk for any i € [n]. Then, we have Ej, [Xi] =
Ga* —yGaF~1 — (1 —v)Gw"* forany i € [n]. Since By is in Fy, using the property of expectation,
we can derive
Ex[118% - s517) B2 g )14 Yien, Xi = [GaP +9G2" 1 — (1 = 9)Gu]|?]
1 2
Ex[ll3 Xies, [% —Ex[X:]][]"]
B[ Cien, 16 — Ex[X] ]
_ 2
B[S, G —1Giab =1 — (1 = )Gk 2] — 4 [Be[X.]
n _ 2
a5 i |Giah =Gzt — (1 = 5) G |? — 3 [Ex[Xi]]"

(G

Here, @ holds due to the i.i.d. property of By, and @ holds since IE;C[HXZ — Eg [XZ] ||2] =
Ex [1X:]1%] — (Ex [Xi])Q. This estimate implies the second line of by taking the total ex-
pectation E| - | both sides and the definition of Ay, from (17).

Now, from (@) and (17), we can show that

Ay o L3 EB[|Giak — 4Gkt — (1 — )Gk ]
8 R TIL E[|Gat —1Giah ! — (1 =) Gt ]

nb
+ B E[|Giak —4Giakh Tt — (1= 4) G112

g (1+c21(b1—p) ZLI E[HGixk—l _ ,yGixk—2 o (1 _ 7)Giwk—1||2]
+ {9Uop) s Bl Guak — 4Guah! — [Giab Tl — 4Gk 2))2]
+ 5 i E[lGia® — G 7]

S U S Gkt - 4Gk ? — (1 - 7) Gk L]

c — 2 n — —
4 20+ )n(bl(' p)Y Zi:lE[”Gixk LGk 2”2]
+ g [p+ AR S B[ Gink - Gaa 1))
— 2 n — —
= (14+¢)(1—p)Ap_1 + 2(1+c3l(b1C p)Y Zi=1E[||Gi$k LGk 2H2]

+ L [p+ 2R s B)|Gak — Gz 7]
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Here, in both inequalities @ and @, we have used Young’s inequality twice. If we choose ¢ :=

C — — _ 2
i p),then(l—l-c)(l p)=1-2, a+ )(1 p) =(1— p)(1—|—2(1 P)) _ (2 P)p(l p) _ 2 31;+p ,

and w +p= %. Hence, we obtain
4—6p+3p? n _
Ap < (1 B)Ap_y + USRI 570 R[|Giab — Gia 2]
2v2(2—3 2 n _ _
+ 2 nb;ﬂrp ) Zi:1E[||Gi1'k 1 Gk 2”2]_
This is exactly the last inequality of (18)). O

B.2 PROOF OF LEMMA 2.2} SAGA ESTIMATOR

Similarly, we also further expand Lemma 2.2]in detail as follows and then provide its full proof.

Lemma B.2. Ler St := Ga* - vGx*~1 be defined by (FRO) and 5’7“ be generated by the SAGA
estimator (SAGA)), and e* := Sf/ — Sf/. We consider the following quantity:

Ay = 3 E[|Giat — 4Gzt — (1 - v)éfﬂz] (19)
Then, we have

Ey [gﬂ = Slj = Gzk — vGak 1,

E[|Sk — SE|2] < A — tE[||Ga" —1Gah—t — L0 GF|P] < A,

Ay (1—2)A + wz_lE[HGz — Giz* 12
+ 2GRN S B[||Gat ! - G2,

n2b2

(20)

IN

Consequently, the SAGA estimator g,’; constructed by (SAGA) satisfies Definition with Ay in
2 N 2

(19, p := (0,1], C := —[2(”7b);2b2+b)+b L and ¢ = 7“"*%2;‘”)7 .

Proof. 1t is well-known, see, e.g., Defazio et al. (2014), that g,lj defined by (SAGA) is an un-

biased estimator of S*. Indeed, we have E; [G’gk] = L1y, G‘E, E[Gp,2*] = Gz*, and

E; [G kakfl] = Gk 1, Using these relations and the definition of S k we have

E[S*] = B[22 S0 GF] — (1 — 4)Ex[Gl, ] + Er[Gso2*] — vEx[Gp,2"!]
— 17)21 le 17)21 1Gk—|—G$ Gk—l
= GaF — Gkt
= S*.

Hence, S* is an unbiased estimator of S*.

Next, let X; = Giz* — vG;z*~! — (1 — 7)G¥ for any i € [n]. Then, we have E;[X;] =
GaF — yGah—1 — (1%) S GP for any i € [n]. Therefore, we can derive

Ex [|55 — SE1?] = Bx [} Sien, Xi — [Gah +4Gat=t - LD 570 G|
= Er[ll3 Xien, Xi —Ek[ Xi]]II?]
= b%Ek [ZieBk [ Xi — Ex [XZ] Hz]
= HEr[ e, IGia" —Giah~t — (1 - 7)GH?] - [Ex[X]]°
= L0 Gk — 4Gkt — (1 - 9)GE|)? - LB [ X))

This implies the second line of (20) by taking the total expectation E| - | both sides.
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Now, from (5)) and and the rule (5), for any ¢ > 0, by Young’s inequality, we can show that

Ay @ a4 i B[l Giak — 4Gkt — (1 - 7)(?5”2]

@ (1- )% T BlIGia* —1Gatt - (1= )GE ]
+ g i E[|Giah —1Giah Tt — (1 - 7)Gia* 7]

< (1= 2) S EIGt ! — Gk — (1= )G ]
+ G (1= 2) DI E[IGat Gt = (Giah ™t = 4Gk 2]
+ 0z Dim B[l Gia® — Gia® 7]

< 1+ 901 = ) A+ [+ (1= 2) 257 DI E[|Gia* = Giak 7]
+ 2 (1= ) DL E[Gat ! - Gt 2)?).

If we choose ¢ := & € (0,1),then (1 — 2)(1+¢)=1—- L — % < 1— 2. Hence, we can

further upper bound the last inequality as

— n 2 n —
Ay < (1 _ %)Ak_l 4+ R(=b)@ntb)+b7] S ]E[||szk — Gyt 1H2}

n2b2

2(n—b)(2n+b)v? —n _ _
+ (n T)L(ng )Y Zi:lE[HGixk I_Gixk 2”2].

This is exactly the last inequality of (20). O

C CONVERGENCE ANALYSIS OF|VFR FOR (NE): TECHNICAL PROOFS

To analyze our (VFR) scheme, we introduce the following two functions:

Ly, = ||z* +ynGaF—1 — 2*||? + plja* — 2+ 12,

- 21
& = Ly + 772(1+I;)(1—P) An_ i+ L27720p(1+ﬂ) ”xkfl N xkf2”2’

where p is a given positive parameter, p, C, C, and A, are given in Definition and 72 =
2~ = 2% Clearly, we have £}, > 0 and &, > 0 forall & > 0 a.s.

One key step to analyze the convergence of (VFR) is to prove a descent property of & defined by
(21). The following lemma provides such a key estimate to prove the convergence of (VER).

Lemma C.1. Suppose that Assumptionsandhold for (NE). Let {z*} be generated by (VFR)
and &, be defined by Q1) for any v € [0, 1). Then, with M := 10+8=2) | QFm(CHC) *\ e paye
H pp

E[&x] —E[Er41] > p(1— M- L) E[||l2* — 217
+ (1 =) [n(2y = 1= p) = 26]E[[|Gz*|?] (22)
+ Py (1= 7)1+ wE[|Ga* 1],
Proof. First, using x*+1 := 2k — ngl,j from (VFR), we can expand

la+ + ynGat — o> OB |k — o 4 ynGak — nSE?
= |la* —2*|* + 2yn(Ga", a* — 2*) + %P Ga* |2
— 2n(S%, 2% — x*) — 2y (Ga*, SF) + n?||SE 2.
Second, it is obvious to show that
2% +nGat =t — 2| = [la* — a*||? + 29n(Gat T 2P — 2%) + %P Ga 2.
Third, using again 2**+1 := zF — ngfj from (VEFR), we can show that

4 — k| = 2 S
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Combining three expressions above, and using L, from (21)), we can establish that

Li— L1 = ||2% + Gzt — 2|2 — |25+ + 4G — 2|2
+ plla® = 22— et = a2
= 2yn(GxF L 2% — 2*) — 2yn(Gak, 2* — z*) + 42n?||GzF L2 (23)
— 2| Gt |2 + 2n(SE, 2 — 2*) + 2yn?(Ga*, SE)
+ pllt — 2E 7112 = 2 (1 4 )| SE)2.

Next, since Ey, [:S‘vlj] = S’; = Gz* — yGx*~! as shown in the first line of (3 of Definition
Moreover, since g’,j is conditionally independent of x* — 2* and Ga* w.rt. the o-field Fy, we have

Ex [(glj,xk —2*)] = (Ga*, 2k — 2*) — y(Ga*, b — z¥),
QEk[<§f{,Ga}k>] = 2||Gz*||? — 2v(Gx* 1, Gat)
= (2= PIG2"|]? = |G + 4[| Ga* — G2

Taking the conditional expectation [y, | - | both sides of and using the last two expressions, we
can show that

Ly —Eg [£k+1] = 2y(Gar 1, zk — 2*) — 2yn(Gak, % — 2*) + 4202 ||GaF L2
— 22| Gk |2 + 2B [(SE, 2% — 2*)] + 2yn?Ey [(Ga®, §5)]
— (1 + wEL[[|SE?] + pllat — 2512
= 29(1 = )(Ga®, 2k —a*) + 29(1 — )| Ga||?
+90?)|Gak — GaF Y2 — (1 + B [||SE?] + plla® — 2R 12,

Since g’; is an unbiased estimator of S’j , if we denote e := g’; - Slj, then we have E, [¢"] = 0.
Hence, we can show that Ej, [||S’,j||2] =E,; [||S,’;+ek||2] = ||S§||2+2Ek [(ek, S,’j)] +Eyg [Hek||2] =
Ex [|[e¥||?] + [IS%||?. Using this relation and S¥ = Ga* — vG*~!, we can show that
Ec[IS51%] = 15511 + Ex [lle*]?] = |Ga* — vG* =12 + Ex [[l€*(|?]
= [|Ga¥|]> — 29(Ga", Ga*1) + 92| G2 + Bk [[l €[]
= (L =IGz*|]? = ~(1 = NNGa*1|? + 7||Gz* — Ga* ] + Ex [[le* %]
Substituting this expression into the last estimate, we can show that
Ly —Ep[Lrs1] = 2n(1 = 1)(GzF, zF — 2*) + n?(1 —v)(2y — 1 — p) || G2
+ 0?1 =) A+ WG P = y? (1 + p— ) [|Ga® — Ga* |2
= (L + wEx[[|e*[1P] + plla® — 212,

Taking the total expectation IE[ : ] both sides of this expression, we get

E[Lk] —E[Lis1] = 20 = )nE[(Ga®, 2% — a*)] + 7Py (1 — ) (1 + w)E[||Gz*1|1?]
+2(1 =) (2y — 1 — p)E[|Gz*||?] 4+ pE[||lz> — %~ 1]?]
— (14 p = NE[[|Gar — GaP12] —n?(1 + p)E[[|€¥]]?].

By Young’s inequality in @ and (2)) of Assumption[I.3] we have

- @
1450 [Giak — Gt ]2 < L [IGaak — Giah 2

L2z — zh 12,

HGCEk _ vak—1”2
(24)

A=

20



Under review as a conference paper at ICLR 2025

Utilizing this inequality, (Gz*, 2% — 2*) > —k|/G2*||? from Assumption [1.4/ with 7' = 0, and
E[[le*]|?] < A from (3), we can bound the last expression as
E[Lr] —E[Let1] = [p— Ln*y(1+p—y)]E[2* — 1]

+ (1 + )y = y)PE[[|Gz* 1] (25)
+0(l =) [n(2y =1 - ) = 26]B[|G2*[*] = 1°(1 + p) Ay

By the third line of (3) in Definition2.T]and again (2), we have

Ap < (1= p)Ap_y + CL2E[||lz* — 2F=1)2] + CL2E[|la*~1 — 2%=2)2].
Rearranging this inequality, we get
A, < (1 L0) (Apy — Ay) + %[ (%=1 — 2=2)2] — E[a* — 2*=1)2]]
B &
Substituting this inequality into (25), we can show that
E[Ly] — E[Lri1] > [u — P> y(L+p—7) - —L2”2(1+ﬁ)(c+é)}]E[I|x’“ — k1))
+n(1 =) [n(2y =1 = p) — 2] E[||Ga*?]

+ (1+ w1 = y)?E||Gz* 2]

_ LzWQC;)(l-Ht) [IE[ka—l _ mk—2H2} _ E[”xk _ l,k—1||2”

_ n2(1+/;)(1*p) (Ar_1 — Ay).

Rearranging this inequality and using &, from (21)), we obtain (22). O

Now, we are ready to prove our first main result, Theorem@in the main text.

ProofofTheorem- Let us denote by M := 'Y(H:_'Y) + (H“L(NCJré) Then, to keep the right-

hand side of (22)) positive, we need to choose the parameters such that L?n? < 1 andn >

These two conditions lead to @ﬁ%u)? < L2 < ﬁ

271;},

Now, for a given v € (3,1), let us choose p1 := 3(277_1) > 0. Then, the last condition holds if

Lk <§:= 2:’/% as stated in Theorem In this case, we have M = gg:’g + 3(124;6_71) . C:C as

stated in @ Hence, we can choose ﬁ <n< as claimed in Theorem

L\/M
Next, utilizing 1 + 1 = @ >1land p = w, reduces to
3(2y—1 _ _
E[&] — E[&xa] > 282 (1- M- L29?) E[[|l2* — 21?] + (1 — »)n?E[||Ga* 1|2,
Averaging this inequality from k := 0 to k := K, we obtain

1 K k— E[€o]
7T ko E[IGZ*H1?] < Sao R (RED
1—ML%*n? . _ AR[E
U S G E 2% — 251 < sty
Finally, since 27! = 272 = 2V, and Sg is chosen as 53 = (1—7)Gz", wehave A_; = Ag = 0.

Using this fact, Gx* = 0, the Lipschitz continuity of G, p € [0, 1], and v < 1, we can show that
E[éo] = E[lls” + mG(a®) - o*[?] + TR A

ZE[HxO — x*||2] + QUQ’YQE[HGQSO — Gm*Hz} + %AO

21+ L2y ?)E[[l20 — 2 2] + LA,

2 (14 L*n?) [|a° — =*||2.

Substituting this upper bound into the above estimates, we get the second bound of (7). For the first
bound, we replace k — 1 by k, and K by K + 1, using ||G2°||? < 2||Gz°||?, and then multiplying

both sides of the result by ﬁﬁ to obtain the first line of (7). O

IN AN IA
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Next, we restate Corollary for the case v € (1,1) instead of v = 2 as in the main text. Then,
we derive the proof of Corollaryfrom this result by fixing v = %.
Corollary C.1. Suppose that Assumptions[I.1) [I.3] and [ 4 hold for (NE) with k > 0 as in Theorem
Let {2*} be generated by (VFR) using the SVRG estimator (L-SVRG), y € (%, 1), and

2y 2y 2
0= 1M7 where A = 2077 3;);2(3%7 P° nd M o= ;8;15'8 + 3(1;;6]1) A, (26)
Then, we haven > < pr foro = V3D , and the following bound holds:
/8497 +1372 +48~3
K 2(1+L%n?)R? %
—Kﬁrl Yoo E[lGzF|?] < 77(1(jy)n;7(f)(+01)’ where Ry := ||z0 — z*|. 27)

For a given tolerance ¢ > 0, if we choose p := n~ /3 and b := LnQ/SJ, then (VER) requires

) AT L2 R2n?/3 . . 1 K k2 2 .
Ta, == n+ | ——2"—| evaluations of G; to achieve e Yo E[lGa* (2] < €% where T :=
2(572+77—3)(8+497+137%+48~3)

372 (2y—1)(1—7)(1457)

Proof. For the SVRG estimator (L-SVRG), by Lemma we have p = B ¢ (0,1],

_ 2 A o2 (2— 2 -
C = %, and C' := W. Therefore, we can compute A := CZC =

2 2 2 2
4(14~ )(2—3;gj2(3+2v P’ < 8(11;27 ) and M in Theoremas M = ggﬁg i 3(1;;@1) A<

ggjfﬁ + 8(;;531)8;;22) as stated in (26). The estimate (27) is exactly the first line of (7).

Now, suppose that bp?> < 1. Then, by ([26), we have M < %. Therefore, if we

choose 1 := —L—, then 7 satisfies the conditions of Theorem provided that Lp < §. Moreover,

VM’
3(2y—1)Vb 3(27—1

we have 7 > V3@y-DVbp  5bp \/3(2y—1) .

\/8+497+1372+48+3

= where o =
/8449741372 +48+3 L

1 K 2 2 . 2(1+L*n*)R3
From 27), to guarantee 715 >, E [[[G2*|?] < €2, we need to impose W

572 +7v—3 aVbp
S Sarey andn = 7T

the last condition holds if we choose K := {I‘ . %J, where I' = _26°47y-3)

< €,

where Ry := |lz° — z*|. However, since 1 + L*n? = 1 + 47

bp?e? o2y2(1—=7)(1+57)
2(572+77—3)(8+497+137%+48~>)
372(2y—1)(1—v)(1+57)
Finally, note that, at each iteration k£, (VFR) requires 3 mini-batches of size b, and occasionally
compute the full batch Gw¥, leading to the cost of np + 3b. The total complexity is

L _ TL?R2(np+3b) _ T'L®R2 3
7; T K(’I’Lp+3b) - b(;))252 - 2 0(%4’_?)

/
If we choose b := |n?/?] and p := n~'/3, then bp? = 1 and T, = %. For the SVRG
estimator (L-SVRG]), one needs to compute Gw?, which requires n evaluations of GG;. Hence, the

2/372p2
total complexity of the algorithm is 7¢, :=n + L%J as stated. O
. . 3(2y—1)
Proof of Corollary3.1) Since we fix v := 2, we can easily compute o :=
f of ryB.1] v 1 y P /8449741372 +4843

20572 +Ty—3) (8+49v+137%+48+%)
0.144025 > 0.1440 and T := 2% 3727(2771)(1:;)(1:57) )~ 730.736842 < 731. Therefore, we

. AT 2/3L2R2

obtain n > % and T, :=n + | ———=—"2|, where I' := 731. Moreover, (27) reduces to
1 K k12 32(1+0.1440%)L*R2 526-L° RZ

K+1 Do E[IG2*|?] < 3:0.1440%0p2 (K1) = bp?(K+1)" [

Finally, we also restate Corollary for the case v € (%, 1) and then derive the oracle complexity
of Corollaryfrom this result by fixing v := %.
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Corollary C.2. Suppose that Assumptions and hold for (NE) with k > 0 as in
Theoremh Let {x*} be generated by (VFR) using the SAGA estimator (SAGA)), v € ( %, 1), and

4(1+72)(n—b)(2n+b 1+5
n = T}M’ where A := 2+ Aty )(’;3 )Cntb) g M o= géj_g + 3(1216_'71) -A. (28)
S ob3/? — 3(2y-1) : )
Then, we have n > Z>— for o JoTen s and the following bound holds:
K 2(1+L%*n*)R2
K{kl Zk:oE[”GmkHﬂ < 77(1(,,y),7;7(1)(+01), where Ry := ||2° — 2*|. (29)
Moreover, for a given tolerance ¢ > 0, if we choose b = LnQ/ 3|, then (VFR) requires
252 2/3
Te, = n+ L%J evaluations of G, to achieve ﬁZkKZOE“GmkHQ] < €% where

.= 2(7y+572 —3)(104+61v+137%+48~3)
T 372(1—7)(2v—1)(1+57)

Proof. Since we use the SAGA estimator (SAGA), we have p = £ € (0,1], C :=
%W, and C' = W In this case, since b > 1, we can easily show that

A= LJ;C =24 4(1+72)(’Z;b)(2"+b) <2+ W. Hence, M in Theoremreduces to

— y(1+57) 1+6 2413v+572 | 8(1+72)(1467)n>
M= 3(2v—1) + 3(27—71) A< 3(23—1;Y + 3(2y—1)b3 :

Suppose that 1 < b < n?/3. Then, one can prove that M < [2+137+572 + 8(1+“’2)(1+6”)} n? _

3(27—1) 3(27—1) b3

(10461741372 +48v%)n? _ p2 L 3(2y—1) . 1
32 —1)5° = —p3, Where o 1= o Hence, if we choose 1 := IR
3/2 . .
then we getn > "Z 7— as stated. Moreover, we obtain (27) from the first line of (7)) as before.
1 b3/2 1 K k|2 2
Now, for 1) := ;== > ai—, from 27), to guarantee 715 >0, E [IGz*[?] < €2, we need
. 2(1+L°n*) R} 2 o [0 * : 2,2 _ 1
to impose =Sy < €, where Ry = |« — «*||. Since 1 4+ L*n = 12+ i <
7'Y+5'7273 O.b3/2 .. . L . L“R:n
T5) and n > T the last condition holds if we choose K := |I' Trr— |» where
r.— 2(774+57%=3)  _ 2(Ty+5+v°—3)(10+61y+13+°+48+%)
o272 (1—y)(1457) 372 (1—v)(2y—1)(1+57)

Finally, at each iteration k, (VFR) requires 3 mini-batches of size b, leading to the cost of 3b per
iteration. Hence, the total complexity is

T, = 3bK = | LLHnY |

/
If we choose b := |n?/3], then T, = L?’FL?#J . For the SAGA estimator (SAGA), one needs to
compute Gw®, which requires n evaluations of G;. Hence, the total complexity of the algorithm is

3FL2R2 2/3
Ta, =n+ | =—=5"—]. O
Proof of Corollary[3.2] Since we choose v := 2, we have o := V) =
4 /10461741372 +48+3

L 2(Ty+592—3)(10+61y+13724+48~3) .
0.14948 > 0.1494 and T := =X 332(17”(2771’)(1%@ 70 = 2815.8 < 2816. Applying the

results of Corollary [C.2, we obtain our conclusions in Corollary 3.2l Moreover, (29) reduces to

1 K k2 32(1+0.494*)L°R3 489-L2R2
K+1 Zk:O]EI:HGSU || ] < 3-0.14942bp2 (K +1) < bpZ(K+1) as stated. O

D CONVERGENCE ANALYSIS OF[VFRBS|FOR (NI): TECHNICAL PROOFS

One key step to analyze the convergence of (VFRBS) is to construct an appropriate potential func-
tion. For this purpose, we introduce the following function:

Ly, = |a* +ym(Ga* =t 4+ 0%) —a*|? + plla® — 2271 4 (Gt NP G0)
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where 1 > 0 is a given parameter and v* € Tz¥ is given. This function is then combined with &
from to establish the convergence of (VFRBS).

Let us first state and prove Lemma[D.T] which provides a key estimate for our convergence analysis

of (VFRBS) in Theorem .1

Lemma D.1. Suppose that Assumption|1.3|holds for (NI). Let {x*} be generated by (VFRBS), Ly,
be defined by (30), and &y, be defined by | -| Then, we have

Ly —Ex[Lry1] = 2(1 — Mn(Ga® +oF a% — %) + (1 + p)(1 — ) (2y — Dn?||GzF + oF||?
+ 1 =y = By = DP| Gt + M2 = (1 + )0’ Ex [[l€”(|] GD
+ 5[0 =201+ )y (L= )L [l — 2k

If, additionally, Assumption[I.4]holds for (NI), then we have

E[&] - E[€ks] 2 30— 201+ py(1 = 7) D2 — 2EEOECEO Rk - gb-1)2]
£l = — u(3y — DIPE[IG + oF]?] (32)

+ (L=n[(1+ p)(2y = 1)y = 2k]E[[|Gz* + oF|]?].

Proof. Let us introduce two notations w" Gm + vF and ¥ := Ga*F ! + vF, where vF € Tk,
We also recall S% := GzF — yGab~? and ¢ i— Sk — gk from . Then, it is obvious that

Sk Sk—|—e = G2k —AGaF1 4 eF.
Now, using S’C Gz — yGz*=1 + €*, it follows from (VFRBS) that

phtl = ok — nglj — Ukt — (2 — D)o
= ok —yn(Ga® +oF ) — (1= )n(Ga® + %) + iy (Ga* 1 +0F) —net (33)

ab — P — (1 — y)pwk + yn® — nek.

Then, using (33) and W**! = Ga* + v**1, we can show that

Ty = [l2FT +an(Gak 4+ o) — 2¥|? = [JaF T — o 4 ekt 2
B Jjak — it — (1= )t 4yt — nek — a* + ikt 2

= 2% — 2% = 201 = y)n(w*, 2* — %) + 2yn(@*, 2% — 2*) + 9 e¥||?
+ (1= )P [wk]]> = 29(1 = )P (w”, &%) ++*n?|[oF||?
= 2n(e¥, 2% — ) + 2(1 — )P (¥, w”) — 2917 (¥, ).

Alternatively, using 1% = Gz*~! + v*, we also have

Ty o= llz* +ym(Ga* =t +0%) — 2*|? = ||2* — 2% + ymi®|?

= [la® —2*||* + 2ym(@®, a® — 2*) + 920?02

Subtracting 7[;) from 7[3}, we can show that

Tia) = [l2" +yn(Ga* =" 4 o%) — 2*|]2 — [Ja* ! 4 yn(Ga* 4 oFH1) — 2*|?
= 2(1 —y)n(wk, z* — 2*) — (1 = 7)*n?[w*||? 4+ 2v(1 — )n* (w, ")
+2n(ek, 2k — o) = 2(1 — )P (eh, wk) 4+ 2y (ek, 0*) —n?|lek|?
= 2(1 = y)n(w*, a* —a*) + (1 = 7)(2y — ) |||
+ (1 = NP = (1 = )0 lw* — @
+ 2n(ek, ab — ) — 2(1 — )0 (e, wF) + 2yn? (eF, ) — n?||e¥||.

(34)
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Next, using again *+! = Ga* 4 v**! and (33)), we have

Ty = [a" T = 2% 4 yn(Gak + oF) |2 = ||l2F 1 — 2 ettt ?
D 21—t — i 4 2
= (=702l [|> = 27(1 = 7)n* (w*, &%) + ~+n?|[0*]?
+2[eM P 4 2(1 = y)nP (e, wb) — 29 (¥, w")
= —(1=9)(2y = Dn?[lw"]® + (27 = Dn?[[@*]|* + v (1 — 7)n?|lw*
+ PR P 4 2(1 = y)mP (e, wh) — 2y (eF, w").

Moreover, by the Cauchy-Schwarz inequality in @ and Young’s inequality in @, we can prove that

_wkHQ

% — 2F = amik |2 = |2k — 2R 7|2 4 2yn(ah, 2F — 2F7T) 4 4702 a2

S e 2vn||u?k||l|a?k A (R Tl
R i
Combining the last two expressions, we can show that
Ty = Il = a*=1 4 m(Gah " + o) |2 = b — 2% 4 yn(Gark + w2
= |l=* - x’“ b |2 — [l — 2f 2

%

Flla? = P12 4 (1= )2y — Dn?[lw®||? — v(3y — 1)n?||oF ||
— (1 =) lwh —@F |2 = n?||eF || — 2(1 — y)n? (e, wh) + 2yn?(eF, ).

Multiplying 7[5 by 1 > 0, and adding the result to (34), and using Ly, from (30), we have

Li = Lrpr = llob +am(Gabt 4+ vk) — 22| — a5+ 4 (G + vFHY) — 22
+ plla? — 2P 4 An(GaF Tt 4 oP)|12 — plab T — 2k 4 an(Gak 4 P |12
> 2(1 = y)np(w”, 2 —2*) + Gk — 2P 112 + (14 p) (1 — )2y — 1)n? (w2

+7[(1 =) = uBy = D]?[|o" || — (1 + p)y(1 — y)n?||wh — &F ||
+ 2n(ek, ah — 2*) — 2(1 4 p) (1 — v)n? (e, w)
+ 2(1 + p)yn? (e, wF) — (14 p)n?|le||.

Taking the conditional expectation Ey, [ . } both sides of this expression, and noting that

Ek[<ek,mk - x*}] = (Eg [ek],xk —z*) =0,
Ey [(e*, w")] = (Ex[e*], w*) =0,
By [(e*, @*)] = (Ex[e*], w") =0,
we obtain
Ly = Ep[Lya] = 2(1 = y)n(w®, 2% —a*) + §lla* — 2" 712 + 1+ ) (1 = ) (27 = D)n?|lw®|?
+ (1 =) = p@y = D @F* — (14 )y (1 = 7)n?|lw* — @F||?
— (L+ wn’Ex[[l€*]?].

Fmally, by the L- Llpschltz continuity of G' from (2] of Assumption we have ||wF — @ ||? =
|GxF — GxF~1||2 < L2||z% — 2%~ || as shown in (24). Using this 1nequa11ty into the last estimate,

we can show that
Ly —Bx[Lrsr] > 2(1 = y)n(w®, a® — 2%) + (1 + p)(1 = 7)(2y = D)n?[Jw”||?
+ 1 =y = p(3y = D]n?[0*)? = (1 + p)n*Ex [[|€*[|?]
+ 5[ =21+ w)y(1 =) L] b — a2,
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which proves by recalling w® := Ga* + v* and W := Gz*~! 4 vF.

Taking the full expectation of and using (Gz* + ¥ 2F — 2*) > —k||Gx* + v*||? from As-

sumption 1.4/ and E;, [||e*||*] < Ay, from (3), we can bound it as

E[Ci] —E[Crs1] = 3[u—2(1+p)y(1 = 1) L] E[|l2* — 2*71?] — (14w’ Ay

[l =y = pBy = DIPE[[|Gz* 1 4087 (35)
+ (1= )01+ @) (2y = 1) — 26]E[[|Ga" + v*||?].

By the third line of (3)) in Definition [2.T]and utilizing again (2), we have

Ar < (1-p)Ag_1 + CLPE[|jz? — 212] + CL2E (|27 — 2F-212].
Rearranging this inequality, we get

Ap < (1*7'3)(4,2_1 — Ay) + L [E[[lz5 — 2F2)12] — B[l — 2%
+ (C+§)L ]E[ka _ xk—luQ]

Substituting this inequality into (33), we can show that

E[Lk] — E[Lri1] > 50— 201+ p)y(1 — ) L2 — ZELOEICEO [k — gb-1)2]
+9[1 =y = pBy = DIPE[|Gak ! + oF||?]
+ (L= [(1 + )2y = ) — 26] E[|Gz* + o]
— L2000 [ [|aht — oh=2|2] — B[k — o+ ]

p
_ 1?1+ (1-p) _
; (Ap—1 — Ag).
Rearranging this inequality and using & from (21)), we obtain (32). O

Now, we are ready to prove our second main result, Theorem[4.1]in the main text.

Proof of Theorem[d.1| Since we fix v € (%,1) and p := ans
Let us denote by M := 442 + 14% . Cié as in Theorem Then, (32) reduces to
(1—y)(1-M-L*n?) k k—
E[&] —E[Ek1] 2 “ g 2E[|1\x — k= 1)?] G6)
+2(1 — y)n[ 182D — K]E[||Gab + oF?].

Let us choose 1 > 0 such that w —k > 0and 1—M - L?n? > 0. These two conditions lead to

(?’(gyi)'; <n< < W as stated in Theorem However, this condition holds if L2k? < %
This condition is equivalent to Lx < § as our condition in Theorem where § := (;ﬁ%
Averaging from k& = 0 to K and noting that E [Ek] > 0 forall £ > 0, we get

T Lo E[IG2" + o*|]?] < ST G TR ETD

CEED S Bl — o ] < TS
Finally, since z—! = 272 =29 we have A_; = A,. However, since 52 =(1- 'y)GxO = S,(;, we

get Ag = ||§g — 59]|* = 0. Using these relations, p € [0,1] and < 1, we can show that

E[£] = E[|a® +ym(Ga® +0°) — a*||?] + LUHIU=2 A
2E[[|2° — 2*|12] + 272n*E[||Ga® + o°||? ] + (37 1)pA0

ZIE[HJ:O — a:*||2] + 272n2E[\\Ga:0 + 0|2 ]

IN

Substituting this upper bound into the above two estimates, we get two lines of (12)). [
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Fmally, we prove Corollaries 4.1 and [4.2]in the main text. Unlike Corollaries [3.1]and [3.2] where we
fix v : here we state these corollaries for any value of v € ( 1)

Proof of Corollary@.1| For the SVRG estimator (L-SVRG), we have p := & € (0,1], C' :=

2 2 A 205 _ 2 .
%, C = %ﬁpﬂ)), and Ag = 0 due to (I7) and 2° = z=' = wO. In this case,
A 205 2y 2 2 .
we have A := CJ;C — 4a+77)@ 3;)1));2(3”” - < 8(;:;’ ) and thus M in Theorem reduces

tOM:=472+1%A§472+%+;2>.

Suppose that bp? < 1. Since A < m and M = 492 + %A < 492+ %;g;) <

4v(8+v+7%) o VI—4Vbp _ ovbp
—)bp? - If we choose 1 = LW then we have n > NI M with
0= S ﬁm’ then it satisfies f}%i)l) <n< L\/M in Theorem (4.1} provided that Lrx < 4.

Note that using 7 > % in of Theorem we obtain the bound (13).

Now, from the first line of (12)), to guarantee %H ZkK o E [I[Gz* + v¥||?] < €%, we need to impose
P2 A~
% < €%, where R? := ||2° — 2*||? + v*n?||Gz® + v°||%. Since n > ”‘pr, the last condition
2 H2
holds if we choose K := LI‘ . prREgJ ,where I' := %.

Finally, at each iteration k£, (VFRBS) requires 3 mini-batches of size b, and occasionally compute
the full Gw*, leading to the cost of np + 3b per iteration. Thus the total complexity is

2 P2 2 P2
T. := K(np + 3b) = *~ If)p(2zr2>+3b) FLezRo (45 + o2)-

2/372pH2
If we choose b := |n?/3| and p := n~'/3, then bp?> = 1 and T, = w. For the SVRG
estimator (L-SVRGJ), one needs to compute Gw®, which requires n evaluations of G;. Hence,

. . arn?/3L2R2 . .
the total evaluations of G, is Tg, = n + LTOJ Moreover, at each iteration, we need
2 H2
one evaluation of J,,7. Therefore, the total evaluations of J,,7 is Ty := K = LI‘ . prTREgJ =
r L2R2 O
L = J

Proof of Corollaryd.2] Since we use the SAGA estimator (SAGA), we have p := = € (0,1],

C = W, and €' := W. In this case, since b > 1, we get A := Cipc =

2 4 4(1+72)(7Z;b)(2n+b) <24 8(1?42)"2. Hence, M in Theorernreduces to

2 2
M =4y + {2 p < 22D | s
Suppose that 1 < b < n?/3. Then, we can show that M < [47(2;”{Y ) 4 3271(1f{7 )]% =
4y(10+y+79%) _ n® ._ T—v : —
TADE T T oT where o := 0T Hence, if we choose n := LW’ then we get

n> % Note that using n > "bm in (12) of Theoremmwe obtain the bound (T4).

Forn := L\}M > g nL > from the first line of (12)), to guarantee K+1 Zk o E [|Ga* 4+ vF|?] < €2

we need to impose < €2, where R? := |20 — x*[|2 + v%1%||Gz® + v°||. Since n > "ffL/z,

OR?2
2(K+1)
the last condition holds if we choose K = LI‘ . %J ,where I' := %.

Finally, at each iteration k, (VFRBS) requires 3 mini-batches of size b, leading to the cost of 3b per
iteration. Thus the total complexity is

T = 3bK = | LRt

B2 2/
If we choose b := |n?/3], then T, = L?’FL?#J For the SAGA estimator (SAGA), one needs
to compute Gw", which requires n evaluations of G;. We conclude that (VERBS) requires 7¢, :=
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3T L2 R2n2/3 . . . . . . .
n + [eifj evaluations of G;. Moreover, since each iteration, it requires one evaluation of
L2R2 .
Jyyr, weneed Tp := K = LI‘ C == "J evaluations of J,. O]

Remark D.1. For the SVRG estimator, if we choose v = %, then we have o := 0.0702. Hence,

we have n > M. However, if we choose v := 0.55, then n > M. If we choose
b= |n?/3] and p = n~1/3, then the latter lower bound becomes 1 > 91027

For the SAGA estimator, if we choose 7 = %, then we have ¢ := 0.0753. Hence, we get n >

3/2 . 3/2
0-0753b"7 " However, if we set v := 0.55, then n > %. If we choose b = |n?/3], then the

nlL
latter lower bound becomes n > 91271,

Note that these lower bounds of 7 can be further improved by refining the related parameters in
Lemma[D.T] and carefully choosing 1 in the proof of Theorem .1}

E DETAILS OF EXPERIMENTS AND ADDITIONAL EXPERIMENTS

Due to space limit, we do not provide the details of experiments in Section[5] In this Supp. Doc., we
provide the details of our implementation and experiments. We also add more examples to illustrate
our algorithms and compare them with existing methods. All algorithms are implemented in Python,
and all the experiments are run on a MacBookPro. 2.8GHz Quad-Core Intel Core 17, 16Gb Memory.

E.1 SYNTHETIC WGAN EXAMPLE

We modify the synthetic example in (Daskalakis et al., 2018)) built up on WGAN from (Arjovsky
et al.| 2017) as our first example. Suppose that the generator is a simple additive model Gy (z) =
6 + z with the noise input z generated from a normal distribution A/(0,T), and the discriminator is
also a linear function Dg(w) = (K, w) for a given matrix K, where § € RP* and § € RP2, and
K € RP1*P2 g a given matrix. The goal of the generator is to find a true distribution § = 6*, leading
to the following loss:

*C(a» ﬁ) = E?LNN(Q*,H) RKﬂv w>] - EZNN(O,H) [<Kﬂ7 0+ Z” :

Suppose that we have n samples for both w and z leading to the following bilinear minimax problem:

> KB wi — 2 —0)] — g(B)}. (37)

i=1

inf sup {£(0,8) = f(0) +

OERPL gcRpo

S|

Here, we add two convex functions f(6) and g(8) to possibly handle constraints or regularizers
associated with 6 and 3, respectively.

If we define z := [0, 8] € RP* P2, Gz = [VoL(0, ), —V3L(0, 8)] := —[KB, = >0 KT (w; —
zi —0)]),and T := [0f(0), Dg(/)], then the optimality condition of this minimax problem becomes
0 € Gz + Tz, which is a special case of with Gz being linear. The model is different from
the one in (Daskalakis et al.,|2018)) at two points:

e [t involves a linear operator K, making it more general than (Daskalakis et al., 2018)).
e It has two additional terms f and g, making it broader to also cover constraints or non-
smooth regularizers.

In our experiments below, we consider two cases:

e Case 1 (Unconstrained setting). We assume that § € RP* and 3 € RP2,
e Case 2 (Constrained setting). Assume that 6 and [ stays in an /,-ball of radius r > 0,
leading to f(0) := 6;_,,,jr1 (0) and g(B) := 6[_ ,jr2 (3), the indicator of the /. -balls.

E.1.1 THE UNCONSTRAINED CASE
(a) Algorithms. We implement three variants of (VFR) to solve (37).

o The first variant is using a double-loop SVRG strategy (called VFR-svrg), where the full
operator Gw?® at a snapshot point w?® is computed at the beginning of each epoch s. Then,
we perform |n/b| iterations k to update z* using , where b is the mini-batch size.
Finally, we set the next snapshot point w*+! := z¥*1 after finishing the inner loop.
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e The second variant is called a loopless one, LVFR-svrg, where we implement exactly the
same scheme (VFR) as in this paper and using the Loopless-SVRG estimator.
e The third variant is VFR-saga, where we use the SAGA estimator in (VFR).

We also compare our methods with the deterministic optimistic gradient (OG) in |Daskalakis et al.
(2018)), the variance-reduced FRBS (VFRBS) in |Alacaoglu et al. (2022), and the variance-reduced
extragradient (VEG) in (Alacaoglu & Malitsky}, 2021)).

(b) Input data. For (NE), we generate a vector §* from the standard normal distribution as our
true mean in RP!. Then, we generate i.i.d. samples w; and z; from normal distribution N (6*,T)
and NV (0, 1), respectively for i = 1,2,--- ,n in RP* and RP2, respectively. We perform two exper-
timents: Experiment 1 with n = 5000 and p; = p» = 100, and Experiment 2 with n = 10000
and p; = p2 = 200. For each experiment, we run 10 times up to 100 epochs, corresponding to 10
problem instances, using the same setting, but different input data (w;, 2;), and then compute the
mean of the relative operator norm ||Gx*||/||Gx°||. This mean is then plotted.

(c) Parameters. For the optimistic gradient algorithm (OG), we choose its learning rate 7 := %,
where L is the Lipschitz constant of G, though its theoretical learning rate is much smaller. For
our methods in (VFR), if n = 5000, and we choose b := |0.5n%/3| = 146, and the probability

p = # = 0.1170, then 1) := L\}M = 01995 However, due to the under estimation of M, we
instead use a larger learning rate n := ﬁ for all three variants, and choose a mini-batch of size

b := [0.5n*/3|, and a probability p := —Lz for the loopless SVRG variant.

For the forward-reflected-backward splitting method with variance reduction (VERBS) in|/Alacaoglu
et al. (2022), we choose its learning rate 7 := % VIZP) 4 suggested by|Alacaoglu et al. (2022).

However, we still choose the probability p = —' and the mini-batch size b = |0.5n%/3] as our
methods. These values are much larger the ones suggested in |Alacaoglu et al. (2022), typically

p=0(1/n).
For the variance reduction extragradient method (VEG) in|Alacaoglu & Malitsky| (2021), we choose

its learning rate n := 0‘9% V1-a for o ;= 1 — p from the paper. However, again, we also choose
p = # and b = LO.SnZ/ 3J in this method, which is the same as ours, though their theoretical

results suggest smaller values of p (e.g.,p = %). Note that if n = 5000, then the batch size b := 150
and the probability p := 0.062, but if n = 10000, then b = 239 and p = 0.0479.

(d) Experiments for X' = [. We perform two experiments: Experiment 1 with (n,p) =
(5000, 200) and Experiment 2 with (n, p) = (10000, 400) as discussed above. We run each experi-
ment with 10 problem instances and compute the mean of the relative residual norm ||Gz* || /|| G ||.
The results of this test are plotted in Figure 3]

Experiment 1: n = 5000 and p = 200 Experiment 2: n = 10000 and p = 400
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Figure 3: Performance of 6 algorithms to solve (37) on 2 experiments when K = I.

For these particular experiments, our methods highly outperform OG, VFRBS, and VEG. It shows
that VFR—-svrg is the best overall, while LVFR-saga and VFR-svrg have a similar performance
in both experiments. Both the competitors: VFRBS and VEG do not perform well in this test and
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they are much slower than ours and also OG. This is perhaps due to a small learning rate of VFRBS
although we choose the same mini-batch size b and the same probability p as ours.

(e) Experiments for X' # [. Now, we test these 6 algorithms for the case K # I in our ex-
tended model , where K is generated randomly from the standard normal distribution. Then, we
normalize K as K /|| K|| to get a unit Lipschitz constant L = 1.

Again, we use the same configuration as in Figure [3]and also run our experiments on 10 problems
and report the mean results. We perform two experiments: Experiment 1 with n = 5000 and
p1 = p2 = p = 100, and Experiment 2 with n = 10000 and p; = p, = p = 200. The results are
reported in Figure ]

Experiment 1: n = 5000 and p = 200 Experiment 2: n = 10000 and p = 400
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Figure 4: Performance of 6 algorithms to solve (37) on 2 experiments when K # L.

We still observe that our algorithms work well and outperform their competitors. However, after
100 epochs, these methods can only reach a 102 accuracy level for an approximate solution.

E.1.2 THE UNCONSTRAINED CASE — VARYING b AND p

We can certainly tune the parameters to make our competitors (VERBS) and (VEG) work better.

However, such parameter configurations are far from satisfying the conditions of their theoretical

results. For example, if we set p = %, then both VFRBS and VEG work better. In particular, if

n = 5000, then we get p = 2—\/% = 0.28, which is several times larger than its suggested value
p=+=2x10""%

Let us further experiment other choices of parameters (i.e. the mini-batch size b and the probability
p of flipping a coin) to observe the performance of these algorithms.

(a) Larger b. Figurereveals the performance of these algorithms when we increase the mini-batch
size b to a larger value b = |0.1n], while keeping the probability p = # unchanged.

Experiment 1: n = 5000 and p = 200 Experiment 2: n = 10000 and p = 400
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Figure 5: Performance of 6 algorithms for a large b = |0.1n] and a unchanged p = #
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Note that for n = 5000, we have b = 500 and p = 0.058, and for n = 10000, we have b = 1000
and p = 0.046. With these large mini-batches, our algorithms still outperform other methods, while
VEFRBS and VEG are significantly slowed down. The double-loop variant of with SVRG
performs best, while LVFR-svrg and VFR-saga have a similar performance.

(b) Medium b and larger p. Next, we set b to a medium size of b = |0.05n] (corresponding to
b = 250 for n = 5000 and b = 500 for n = 10000) and increase p = ﬁ (corresponding to
p = 0.119 for n = 5000 and p = 0.1 for n = 10000). Then, the results are shown in Figure 6]
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Figure 6: Performance of 6 algorithms for a medium b = |0.05n] and larger p = #

Then, we observe that LVFR-svrg and VFR-saga superiorly outperform the others. The perfor-
mance of the double-loop VFR-svrq is still similar to the previous tests since it is not affected by
p. In addition, VEG is now comparable with OG, but VFRBS remains the slowest one.

(c) Large b and small p. To see the effect of p on our competitors: VFRBS and VEG, as suggested
by their theory, we decrease ptop = nl% (corresponding to p = 0.014 for n = 5000 and p = 0.01
for n = 10000) and still set b = |0.1n], and the results are plotted in Figure
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Figure 7: Performance of 6 algorithms for a large b = [0.1n| and a small p = nll/z .

As we can observed from Figure [7] our methods highly outperform VFRBS and VEG, suggesting
that these competitors require a larger probability to select the snap-shot point w* for full-batch
evaluation. This is certainly not suggested in their theoretical results.

E.1.3 'THE CONSTRAINED CASE

Next, we choose f(0) = [, ,j»1 () and g(3) := O[_,j»= () as the indicators of the (..-balls
of radius r = 5, respectively. In this case, we implement three variants of (VFRBS): the double-
loop (VFR-svrq), the loopless (LVFR-svrqg), and the SAGA (VFR-saga) variants to solve
and compare against 3 algorithms as in the unconstrained case. Using the same data generating
procedure as in the unconstrained case, we obtain the results as shown in Figure|§|when K = L.
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Experiment 1: n = 5000 and p = 200 Experiment 2: n = 10000 and p = 400
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Figure 8: Comparison of 6 algorithms to solve constrained instances of on 2 experiments when
K =1 (The average of 10 runs).

We see that the two SVRG variants of our (VFRBS): VFR-svrg and LVFR-svrg, as well as our
VFR-saga variant remain working well compared to other methods. They superiorly outperform
the three competitors.

Finally, we test our methods and their competitors for the case K # I as we done in Figure[4} Our
results are plotted in Figure[9} where we observe a similar behavior as in Figure 4]
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Figure 9: Comparison of 6 algorithms to solve constrained instances of on 2 experiments when
K # I (The average of 10 runs).

E.2 NONCONVEX-NONCONCAVE QUADRATIC MINIMAX PROBLEMS

We extend the nonconvex-nonconcave quadratic minimax optimization problem from the uncon-
strained setting (15) to the following constrained setting:

min max {L(u,v) = f(u)+

ERY1 veirs [ A+ u” Liv =0T Byv -+ b[u— ¢ v] = g(v) }, (38)

n
=1

1
n <

?

where A; € RP1*Pt and B; € RP2*P2 are symmetric matrices, L; € RP1*P2 b, € RPL, ¢; € RP2,
and f =6a, and g = da,, are the indicator of standard simplexes in RP* and RP2, respectively.

Let us first define = := [u,v] € RP as the concatenation of the primal and dual variables v and v,
where p := p1 + p2. Next, we define

Gix =Gz +g;:= + = , and T := /
—L; B;| |v ¢ —L;u+ B;v+ ¢ dg
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yy Iy
Then, we denote G; := L ,and g; 1= ‘. Clearly, G;() is an affine mapping from RP to
i Di Ci
R?, but G is nonsymmetric Let G:c 1 Z? (Giz=(EY" Gz +iY" gi=Gaz+g,
where G = ; =1 Giand g : g;. Then, the optimality condltlon of (38) becomes
0 € Gz+T'z, which is exactly in the form @ Clearly, if A; and/or B; are not positive semidefinite,

then (38) possibly covers nonconvex-nonconcave minimax optimization instances.

E.2.1 THE UNCONSTRAINED CASE

We consider the case f = 0 and g = 0, leading to an unconstrained setting of , ie. T =0as
considered in of the main text. Hence, the optimality condition of reduces to Gz = 0,
which is of the form (NE).

(a) How to generate data? To run our experiments, we generate synthetic data as follows. First,
we fix the dimensions p; and ps and the number of components n. We generate A; = Q;D; Q7 for
a given orthonormal matrix ); and a diagonal matrix D; = diag(D;,--- , D*), where its elements
are generated from standard normal distribution and clipped its negative entries as max{ D7, e} for
j=1,---,p1 and € := —0.1. This choice of A; guarantees that A; is symmetric, but possibly not
positive semidefinite. The matrix B; is also generated by the same way. The pay-off matrix L; is
an p; X po matrix, which is also generated from the standard normal distribution for all i € [n].
The vectors b; and ¢; are generated from the standard normal distribution for ¢ € [n]. With this data
generating procedure, ; is not symmetric and possibly not positive semidefinite.

(b) Algorithms. We again test 6 algorithms: two variants (double-loop SVRG — VFR-svrq)
and (loopless SVRG - LVFR-svrg) of (VFR), our with SAGA estimator (VFR-saga),
VFRBS from|Alacaoglu et al. (2022), VEG from|Alacaoglu & Malitsky|(2021), and OG (the standard
optimistic gradient method), e.g., from Daskalakis et al.|(2018)).

(c) The details of Example 1 in Section[5} First, we provide the details of Example 1 in Section
The purpose of this example is to verify our theoretical results stated in Corollaries[3.1]and 3.2}

For the SVRG estimator, let us first choose v := 0.75, b := an/gj and p := W as suggested

by Corollary [3.1} Then, we can directly compute 7 : 7 F where A := 6'25(2_312“'125"2 and

= 2.375 + S A. Clearly, if n = 5000, then = 2145133 Alternatively, if n = 10000, then
n = 9148934 These learning rates are used in our experlments plotted in Figure I

Similarly, for the SAGA estimator, we also choose v := 0.75 and b := an/ 3J. In this case,
by Corollary we can also directly compute 7 := L\}JT If n = 5000, then y = 9146153,

Alternatlvely, if n = 10000, then n) = 2145693 These learning rates are used in VFR-saga.

Note that since the theoretical value of p in VFRBS and VEG is too small, we instead choose p :=
n1—1/3 and also b := |n?/?] as in our methods. Then, we compute the learning rate 7 of these methods
based on the formula given in|Alacaoglu et al.| (2022) for VFRBS and |Alacaoglu & Malitsky|(2021)
for VEG, respectively.

(d) Results for a different set of parameters. Unlike Example 1 in the main text, we choose the
parameters for these algorithms as in Subsection [E.I| The 6 algorithms are run on 2 experiments.
The first experiment is with n = 5000 and p; = py = 50, while the second one is with n =
10000 and p; = p2 = 100. These experiments are run 10 times, corresponding to 10 problem
instances, and the average results are reported in Figure [I0]in terms of the relative operator norm
|Gz ||/HG£U0 || against the number of epochs.

Clearly, under this configuration, both SVRG variants of our methods work well and significantly
outperform other competitors. The loopless SVRG variant (VFR-svrg) of seems to work
best, while our VFR-saga has a similar performance as VEG. We also see that VERBS has a similar
performance as OG.

To improve the performance of these competitors, especially, VFRBS and VEG, one can tune their
. . oy . . k .

parameters as in Subsection where the probability p of updating the snapshot point w” is

increased. However, with such a choice of p, its value is often greater or equal to 0.5, making

33



Under review as a conference paper at ICLR 2025
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Figure 10: The performance of 6 algorithms to solve the unconstrained case of on 2 experiments
(The average of 10 runs).

these methods to be closed to deterministic variants. Hence, their theoretical complexity bounds are
no longer improved over the deterministic counterparts.

E.2.2 THE CONSTRAINED CASE

We now adding two simplex constraints u € A, and v € A, to B8), where A, := {u € RY :
P _,w; = 1} is the standard simplex in RP. These constraints are common in bilinear games. To

handle these constraints, we set f(u) := da,, (u) and g(v) := da,, (v) as the indicators of A,

and A,,, respectively. Under this setting, the optimality conditions of becomes (NI), where

T := [0f,09] = [Na,, ,Na,,| with Nx being the normal cone of X'. Hence, the resolvent .J.,;r

reduces to the projections on the simplex product Ap, x Ap,.

Again, we run 6 algorithms for solving the constrained case of using the same parameters as
Subsection [E.2.1. We report the relative norm of the FBS residual ||G,z"*|/||G,2°| against the
number of epochs. The results are revealed in Figure |l 1| for two datasets (p,n) = (100, 5000) and
(p,n) = (200, 10000).
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Figure 11: The performance of 6 algorithms to solve the constrained case of on 2 experiments
(The average of 10 runs).

Clearly, with these experiments, both SVRG variants of our method (VFRBS) work well and signif-
icantly outperform other competitors. The loopless SVRG variant (VFR-svrg) of (VFRBS) seems
to work best, while our VFR-saga has a similar performance as VEG. Again, we also see that
VFRBS tends to have a similar performance as OG.

E.3 THE /1-REGULARIZED LOGISTIC REGRESSION WITH AMBIGUOUS FEATURES

This Supp. Doc. provides the details of Example 2 in Section|5]in the main text.

(a) Model. We consider a standard regularized logistic regression model associated with a given
dataset {(X;, )}, where X; is an i.i.d. sample of a feature vector and y; € {0,1} is the
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associated label of X;. Unfortunately, X;is ambiguous, i.e. it belongs to one of m possible examples
{Xi;}72,. Since we do not know X to evaluate the loss, we consider the worst-case loss f;(w) :=
maxi<;j<m £({(Xij, w), y;) computed from m examples, where £(7, s) := log(1 + exp(7)) — s7 is
the standard logistic loss.

Using the fact that maxi<j<m £;(-) = max,ea,, Z;’;l zil;(-), where A,, is the standard simplex
in R™, we can model this regularized logistic regression into the following minimax problem:

min max { £(w,2) = 4 Y, 7 50Xy, w)p0) + TR@w) = 05,(2) . (39)

wERIzER™

where £(7, s) := log(1 + exp(7)) — s is the standard logistic loss, R(w) := ||w]|; is an ¢;-norm
regularizer, 7 > 0 is a regularization parameter, and d, is the indicator of A,, that handles the
constraint z € A,,. This problem is exactly the one stated in of the main text.

First, let us denote x := [w; z] € RP as the concatenation of w and z with p = d + m, and

E;n 1 20 ((Xij, w), yi) Xij
—L((Xi1,w),yi) TOR(w)

da,, (2)

Gix = and Tz :=

)

—(Xim, w), yi)

where ¢/(1,s) = lj_’g’g()ﬂ — s. Then, the optimality condition of can be written as (NI):

0 € Gz + Tz, where Gz := 23" | G,x.

(b) Input data. We test our algorithms and their competitors on two real datasets: a9a (134 features
and 3561 samples) and w8a (311 features and 45546 samples) downloaded from LIBSVM (Chang &
Lin; 2011). For a given nominal dataset {(Xy,yi)},, we first normalize the feature vector X; such
that its column norm is one, and then add a column of all ones to address the bias term. To generate
ambiguous features, we take the nominal feature vector X; and add a random noise generated from
a normal distribution of zero mean and variance of ¢ = 0.5. In our test, we choose 7 := 1073 and
m := 10 for all the experiments.

(c) Algorithms. As before, we implement 3 variants of our method (VERBS): VFR-svrg,
LVFR- svrg, and VFR-saga to solve (39). We also compare them with OG, VFRBS, and VEG. We
choose 2° := 0.5 - ones(p) in all experiments. We run all the algorithms for 100 epochs and report
the relative FBS residual norm G, 2" |/1|G,2°|| against the epochs.

(d) Parameters. Since it is very difficult to estimate the Lipschitz constant L of G, we are unable
to set a correct learning rate 7 in the underlying algorithms. We instead compute an estimation
L= HX ||, and then set 1) := £, by tuning w for each algorithm. More specifically, after tuning, we
obtain the following configuration.

e For the three variants of (VFRBS): VFR-svrg, LVFR-svrg, and VFR-saga, we set
n= 2—; for a9a and ) = 22 for w8a.
e For OG, we setn = % fora9aandn = 100 for w8a.

47.5(1—/1=p) \/7)
21

e For VEG, we select n = 47% V1-% for a9a and n = LVL for w8a witha:=1—-p

(1\/ p)

e For VFRBS, we choose ) = fora9a and n = for w8a.

We still choose the mini-batch size b and the probability p of updating the snapshot point w"
SVRG variants as b = |0.5n%/3| and p = n~'/3, respectively for all the algorithms.
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