
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Supplementary Document:
VARIANCE-REDUCED FORWARD-REFLECTED
ALGORITHMS FOR GENERALIZED EQUATIONS

Due to space limit, some parts of our algorithmic construction and theory are not described in detail
and motivated in the main text. This supplementary document aims at providing more details of
the algorithmic construction, motivation, related work, technical proofs, and additional experiments
related to our methods.

A A FURTHER DISCUSSION OF RELATED WORK

As we already discussed in the introduction of the main text, both standard stochastic approximation
and variance-reduction methods have been broadly studied for (NE) and (NI), including (Juditsky
et al., 2011; Kotsalis et al., 2022; Pethick et al., 2023). In this section, we further discuss some other
related work to (NE) and (NI), their special cases, and equivalent forms.

Beyond monotonicity. Classical methods such as extragradient, prox-mirror, and projective
schemes often relax the monotonicity to star-monotonicity, and other forms such as pseudo-
monotonicity and quasi-monotonicity (Konnov, 2001; Noor, 2003; Noor & Al-Said, 1999; Tu,
2018). These assumptions are certainly weaker than the monotonicity and can cover some wider
classes of problems, including some nonmonotone subclasses. Another extension of monotonicity
is the weak-Minty solution condition in Assumption 1.4, which was proposed in early work, perhaps
Diakonikolas et al. (2021), as an extension of the star-monotonicity and star-weak-monotonicity
assumptions. Other following-up works include Böhm (2022); Gorbunov et al. (2022b); Luo &
Tran-Dinh (2022). A comprehensive survey for extragradient-type methods using the weak-Minty
solution condition can be found in Tran-Dinh (2023). The monotonicity has also been extended to
a weak monotonicity, or related, prox-regularity (Rockafellar & Wets, 1997) (in particular, weak-
convexity). Other types of hypo-monotonicity or co-monotonicity concepts can be found, e.g., in
Bauschke et al. (2020). These concepts have been exploited to develop algorithms for solving (NE)
and (NI) and their special cases. For stochastic methods, extensions beyond monotonicity have been
also extensively explored. For instance, some further structures beyond monotonicity such as weak
solution were exploited for MVIs in Song et al. (2020), a pseudo-monotonicity was used in Boţ
et al. (2021); Kannan & Shanbhag (2019) for stochastic VIPs, a two-sided Polyak-Łojasiewicz con-
dition was extended to VIP in Yang et al. (2020) to tackle a class on nonconvex-nononcave minimax
problems, an expected co-coercivity was used Loizou et al. (2021), and a strongly star-monotone
was further exploited in Gorbunov et al. (2022a). While these structures are occasionally used in
different works, the relation between them is still largely elusive.

Further discussion on stochastic methods. Under the monotonicity, several authors have exploited
the stochastic approximation approach (Robbins & Monro, 1951) to develop stochastic variants for
solving (NE) and (NI) and their special cases. For example, a stochastic Mirror-Prox was proposed
in Juditsky et al. (2011), which has convergence on a gap function, but requires a bounded do-
main assumption. This approach was later extended to the extragradient method under additional
assumptions in Mishchenko et al. (2020). In Hsieh et al. (2019), the authors discussed several meth-
ods for solving MVIs, a special case of (NI), including stochastic methods. They experimented on
numerical examples and showed that the norm of the operator can asymptotically converge for un-
constrained MVIs with a double learning rate. In the last few years, there were many works focusing
on developing stochastic methods for solving (NE) and (NI), and their special cases using different
techniques such as single-call stochastic schemes in (Hsieh et al., 2019), non-accelerated and ac-
celerated variance reduction with Halpern-type iterations in Cai et al. (2023; 2022), co-coercive
structures in Beznosikov et al. (2023), and bilinear game models in Li et al. (2022).

Among many existing works, perhaps, Cai et al. (2023) is one of the most recent works that develops
variance-reduction methods for solving (NI) and achieves the state-of-the-art oracle complexity.
However, Cai et al. (2023) explores a different approach that ours, which relies on some recent
development of the Halpern fixed-point iteration and a biased SARAH estimator. Let us clarify the

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

differences of this work and our paper here. Algorithm 1 in Cai et al. (2023) is a single-loop and
achieves a better oracle complexity. However, it requires a much stronger assumption, Assumption
3, which is a co-coercive condition. Note that this assumption excludes the well-known bilinear
matrix game, or the synthetic WGAN model (37) below. Section 4 of Cai et al. (2023) studies both
the monotone and the co-hypomonotone cases of (NI). The main idea is to reformulate (NI) into a
resolvent equation J⌘(G+T)x = 0 and then apply Algorithm 1 to this equation, where J⌘(G+T) is
co-coercive. However, exactly evaluating J⌘(G+T) is impractical, one needs to approximate it by an
appropriate algorithm. For instance, Cai et al. (2023) suggests to use the variance-reduced FRBS
method in Alacaoglu et al. (2022) to approximate this resolvent, leading to a double loop algorithm.
This approach is not a direct variance-reduced method (i.e., the inner loop can be any algorithm) as
ours or Algorithm 1 of Cai et al. (2023). Moreover, practically implementing as well as rigorously
analyzing an inexact double loop algorithm, when the inner loop is also a stochastic method, is often
very challenging and technical as it is difficult to conduct a stopping criterion of the inner loop, and
to select appropriate parameters. Nevertheless, our algorithms developed in this paper are simple to
implement and applicable to both (NE) and (NI) whose weak-Minty solution exists. These problems
are broader than the ones in Cai et al. (2023).

Randomized coordinate and cyclic coordinate methods for (NE) and (NI). Together with
stochastic algorithms for solving (NE) and (NI) and their special cases, randomized coordinate
methods have also been proposed to solve these problems, including Combettes & Eckstein (2018);
Combettes & Pesquet (2015); Peng et al. (2016). Recent works on randomized coordinate and
cyclic coordinate methods can be found, e.g., in Chakrabarti et al. (2024); Cui & Shanbhag (2021);
Hamedani et al. (2018); Song & Diakonikolas (2023); Tran-Dinh & Luo (2023); Yousefian et al.
(2018). These methods are not directly related to our work, but they can be considered as a dual
form of stochastic methods in certain settings such as convex-concave minimax problems. Study-
ing relations between randomized coordinate methods and stochastic algorithms for (NE) and (NI)
appears to be an interesting research topic.

B THE PROOF OF TECHNICAL RESULTS IN SECTION 2
This supplementary section provides the full proof of Lemma 2.1 and Lemma 2.2.

Further discussion of FR operator. Let us recall our operator Sk
� defined by (FRO) as follows:

Sk
� := Gxk � �Gxk�1. (FRO)

As we mentioned earlier, � plays a crucial role in our methods as � 2
�

1
2 , 1

�
. If � = 1

2 , then
we can write Sk

1/2 = 1
2Gxk + 1

2 (Gxk � Gxk�1) = 1
2 [2Gxk � Gxk�1] used in both the forward-

reflected-backward splitting (FRBS) method (Malitsky & Tam, 2020) and the optimistic gradient
method (Daskalakis et al., 2018).

Note that if we write Gxk � Gxk�1 = ĴG(xk)(xk � xk�1) by the Mean-Value Theorem, where
ĴG(xk) :=

R 1
0 rG(xk�1 + ⌧(xk � xk�1))d⌧ , then Sk

� = (1 � �)G(xk) + �ĴG(xk)(xk � xk�1).
Clearly, if � is small, then Sk

� can be considered as an approximation of Gxk augmented by a second-
order correction term �ĴG(xk)(xk � xk�1) (called Hessian-driven damping term or second-order
dissipative term) widely used in dynamical systems for convex optimization, see, e.g., Adly & At-
touch (2021); Attouch & Cabot (2020). These two viewpoints motivate the use of our new operator
Sk

� , not only in our (VFR) and (VFRBS), but in other methods such as accelerated algorithms. Thus
the results in Section 2 are of independent interest.

Other possible stochastic estimators for Sk
� . One natural idea to construct an unbiased estimator

for Sk is to use an increasing mini-batch stochastic estimator as eSk
� := 1

bk

P
i2Bk

[Gixk��Gixk�1],
where Bk is an increasing mini-batch in [n], with bk := |Bk| � bk�1

1�⇢k
� bk�1, see, e.g., Iusem et al.

(2017). While this idea may work well for the general expectation case Gx = E⇠

⇥
G(x, ⇠)

⇤
, it may

not be an ideal choice for the finite-sum operator (1) as bk  n, which requires to stop increasing
after finite iterations (i.e. O

⇣
ln(n)

� ln(1�⇢)

⌘
iterations). Other stochastic approximations may also fall

into our class in Definition 2.1 such as JacSketch (Gower et al., 2021), SEGA (Hanzely et al., 2018),
and quantized and compressed estimators (see, e.g., Horváth et al. (2023)).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B.1 PROOF OF LEMMA 2.1: LOOPLESS-SVRG ESTIMATOR

Let us further expand Lemma 2.1 in detail as follows and then provide its full proof.

Lemma B.1. Let Sk
� := Gxk � �Gxk�1 be defined by (FRO) and eSk

� be generated by (L-SVRG).
We consider the following quantity:

�k := 1
nb

Pn
i=1 E

⇥
kGixk � �Gixk�1 � (1 � �)Giwkk2

⇤
. (17)

Then, we have

Ek

⇥eSk
�

⇤
= Sk

� ⌘ Gxk � �Gxk�1,

E
⇥
keSk

� � Sk
�k2

⇤
 �k � 1

bE
⇥
kGxk � �Gxk�1 � (1 � �)Gwkk2

⇤
 �k,

�k 
�
1 � p

2

�
�k�1 + (4�6p+3p2)

nbp

Pn
i=1 E

⇥
kGixk � Gixk�1k2

⇤

+ 2�2(2�3p+p2)
nbp

Pn
i=1 E

⇥
kGixk�1 � Gixk�2k2

⇤
.

(18)

Consequently, the SVRG estimator eSk
� constructed by (L-SVRG) satisfies Definition 2.1 with �k in

(17), ⇢ := p
2 2 (0, 1], C := 4�6p+3p2

bp , and Ĉ := 4�2(2�3p+p2)
bp .

Proof. It is well-known, see, e.g., Johnson & Zhang (2013), that eSk
� is an unbiased estimator of Sk

conditioned on Fk, we have Ek

⇥eSk
�

⇤
= Sk

� .

Next, let Xi := Gixk � �Gixk�1 � (1 � �)Giwk for any i 2 [n]. Then, we have Ek

⇥
Xi

⇤
=

Gxk ��Gxk�1 � (1��)Gwk for any i 2 [n]. Since Bk is in Fk, using the property of expectation,
we can derive

Ek

⇥
keSk

� � Sk
�k2

⇤ (L-SVRG)
= Ek

⇥
k 1

b

P
i2Bk

Xi � [Gxk + �Gxk�1 � (1 � �)Gwk]k2
⇤

= Ek

⇥�� 1
b

P
i2Bk

⇥
Xi � Ek

⇥
Xi

⇤⇤��2⇤

1�
= 1

b2Ek

⇥P
i2Bk

kXi � Ek

⇥
Xi

⇤
k2
⇤

2�
= 1

b2Ek

⇥P
i2Bk

kGixk � �Gixk�1 � (1 � �)Giwkk2
⇤
� 1

b

⇥
Ek

⇥
Xi

⇤⇤2

= 1
nb

Pn
i=1 kGixk � �Gixk�1 � (1 � �)Giwkk2 � 1

b

⇥
Ek

⇥
Xi

⇤⇤2
.

Here, 1� holds due to the i.i.d. property of Bk, and 2� holds since Ek

⇥
kXi � Ek

⇥
Xi

⇤
k2
⇤

=

Ek

⇥
kXik2

⇤
�
�
Ek

⇥
Xi

⇤�2. This estimate implies the second line of (18) by taking the total ex-
pectation E

⇥
·
⇤

both sides and the definition of �k from (17).

Now, from (4) and (17), we can show that

�k
(17)
:= 1

nb

Pn
i=1 E

⇥
kGixk � �Gixk�1 � (1 � �)Giwkk2

⇤

(4)
= (1�p)

nb

Pn
i=1 E

⇥
kGixk � �Gixk�1 � (1 � �)Giwk�1k2

⇤

+ p
nb

Pn
i=1 E

⇥
kGixk � �Gixk�1 � (1 � �)Gixk�1k2

⇤

1�
 (1+c)(1�p)

nb

Pn
i=1 E

⇥
kGixk�1 � �Gixk�2 � (1 � �)Giwk�1k2

⇤

+ (1+c)(1�p)
cnb

Pn
i=1 E

⇥
kGixk � �Gixk�1 � [Gixk�1 � �Gixk�2]k2

⇤

+ p
nb

Pn
i=1 E

⇥
kGixk � Gixk�1k2

⇤

2�
 (1+c)(1�p)

nb

Pn
i=1 E

⇥
kGixk�1 � �Gixk�2 � (1 � �)Giwk�1k2

⇤

+ 2(1+c)(1�p)�2

nbc

Pn
i=1 E

⇥
kGixk�1 � Gixk�2k2

⇤

+ 1
nb

⇥
p + 2(1+c)(1�p)

c

⇤Pn
i=1 E

⇥
kGixk � Gixk�1k2

⇤

= (1 + c)(1 � p)�k�1 + 2(1+c)(1�p)�2

nbc

Pn
i=1 E

⇥
kGixk�1 � Gixk�2k2

⇤

+ 1
nb

⇥
p + 2(1+c)(1�p)

c

⇤Pn
i=1 E

⇥
kGixk � Gixk�1k2

⇤
.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Here, in both inequalities 1� and 2�, we have used Young’s inequality twice. If we choose c :=
p

2(1�p) , then (1+c)(1�p) = 1� p
2 , (1+c)(1�p)

c = (1�p)
�
1+ 2(1�p)

p

�
= (2�p)(1�p)

p = 2�3p+p2

p ,

and 2(1+c)(1�p)
c + p = 4�6p+3p2

p . Hence, we obtain

�k 
�
1 � p

2

�
�k�1 + (4�6p+3p2)

nbp

Pn
i=1 E

⇥
kGixk � Gixk�1k2

⇤

+ 2�2(2�3p+p2)
nbp

Pn
i=1 E

⇥
kGixk�1 � Gixk�2k2

⇤
.

This is exactly the last inequality of (18).

B.2 PROOF OF LEMMA 2.2: SAGA ESTIMATOR

Similarly, we also further expand Lemma 2.2 in detail as follows and then provide its full proof.

Lemma B.2. Let Sk
� := Gxk � �Gxk�1 be defined by (FRO) and eSk

� be generated by the SAGA
estimator (SAGA), and ek := eSk

� � Sk
� . We consider the following quantity:

�k := 1
nb

Pn
i=1 E

⇥
kGixk � �Gixk�1 � (1 � �)Ĝk

i k2
⇤
. (19)

Then, we have

Ek

⇥eSk
�

⇤
= Sk

� ⌘ Gxk � �Gxk�1,

E
⇥
keSk

� � Sk
�k2

⇤
 �k � 1

bE
⇥��Gxk � �Gxk�1 � (1��)

n

Pn
i=1 Ĝk

i

��2⇤  �k,

�k 
�
1 � b

2n

�
�k�1 + [2(n�b)(2n+b)+b2]

n2b2
Pn

i=1 E
⇥
kGixk � Gixk�1k2

⇤

+ 2(n�b)(2n+b)�2

n2b2
Pn

i=1 E
⇥
kGixk�1 � Gixk�2k2

⇤
.

(20)

Consequently, the SAGA estimator eSk
� constructed by (SAGA) satisfies Definition 2.1 with �k in

(19), ⇢ := b
2n 2 (0, 1], C := [2(n�b)(2n+b)+b2]

nb2 , and Ĉ := 2(n�b)(2n+b)�2

nb2 .

Proof. It is well-known, see, e.g., Defazio et al. (2014), that eSk
� defined by (SAGA) is an un-

biased estimator of Sk. Indeed, we have Ek

⇥
Ĝk

Bk

⇤
= 1

n

Pn
i=1 Ĝk

i , Ek

⇥
GBkxk

⇤
= Gxk, and

Ek

⇥
GBkxk�1

⇤
= Gxk�1. Using these relations and the definition of eSk, we have

Ek

⇥eSk
⇤

= Ek

⇥ (1��)
n

Pn
i=1 Ĝk

i

⇤
� (1 � �)Ek

⇥
Ĝk

Bk

⇤
+ Ek

⇥
GBkxk

⇤
� �Ek

⇥
GBkxk�1

⇤

= (1��)
n

Pn
i=1 Ĝk

i � (1��)
n

Pn
i=1 Ĝk

i + Gxk � �Gxk�1

= Gxk � �Gxk�1

= Sk.

Hence, eSk is an unbiased estimator of Sk.

Next, let Xi := Gixk � �Gixk�1 � (1 � �)Ĝk
i for any i 2 [n]. Then, we have Ek

⇥
Xi

⇤
=

Gxk � �Gxk�1 � (1��)
n

Pn
i=1 Ĝk

i for any i 2 [n]. Therefore, we can derive

Ek

⇥
keSk

� � Sk
�k2

⇤
= Ek

⇥
k 1

b

P
i2Bk

Xi �
⇥
Gxk + �Gxk�1 � (1��)

n

Pn
i=1 Ĝk

i

⇤
k2
⇤

= Ek

⇥
k 1

b

P
i2Bk

Xi � Ek

⇥
Xi

⇤
]k2

⇤

= 1
b2Ek

⇥P
i2Bk

kXi � Ek

⇥
Xi

⇤
k2
⇤

= 1
b2Ek

⇥P
i2Bk

kGixk � �Gixk�1 � (1 � �)Ĝk
i k2

⇤
� 1

b

⇥
Ek

⇥
Xi

⇤⇤2

= 1
nb

Pn
i=1 kGixk � �Gixk�1 � (1 � �)Ĝk

i k2 � 1
b

⇥
Ek

⇥
Xi

⇤⇤2
.

This implies the second line of (20) by taking the total expectation E
⇥
·
⇤

both sides.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Now, from (5) and (19) and the rule (5), for any c > 0, by Young’s inequality, we can show that

�k
(19)
:= 1

nb

Pn
i=1 E

⇥
kGixk � �Gixk�1 � (1 � �)Ĝk

i k2
⇤

(5)
=

�
1 � b

n

�
1
nb

Pn
i=1 E

⇥
kGixk � �Gixk�1 � (1 � �)Ĝk�1

i k2
⇤

+ b
n · 1

nb

Pn
i=1 E

⇥
kGixk � �Gixk�1 � (1 � �)Gixk�1k2

⇤

 (1+c)
nb

�
1 � b

n

�Pn
i=1 E

⇥
kGixk�1 � �Gixk�2 � (1 � �)Ĝk�1

i k2
⇤

+ (1+c)
cnb

�
1 � b

n

�Pn
i=1 E

⇥
kGixk � �Gixk�1 � (Gixk�1 � �Gixk�2)k2

⇤

+ 1
n2

Pn
i=1 E

⇥
kGixk � Gixk�1k2

⇤

 (1 + c)
�
1 � b

n

�
�k�1 +

⇥
1

n2 +
�
1 � b

n

� 2(1+c)
cnb

⇤Pn
i=1 E

⇥
kGixk � Gixk�1k2

⇤

+ 2(1+c)�2

cnb

�
1 � b

n

�Pn
i=1 E

⇥
kGixk�1 � Gixk�2k2

⇤
.

If we choose c := b
2n 2 (0, 1), then (1 � b

n)(1 + c) = 1 � b
2n � b2

2n2  1 � b
2n . Hence, we can

further upper bound the last inequality as

�k 
�
1 � b

2n

�
�k�1 + [2(n�b)(2n+b)+b2]

n2b2
Pn

i=1 E
⇥
kGixk � Gixk�1k2

⇤

+ 2(n�b)(2n+b)�2

n2b2
Pn

i=1 E
⇥
kGixk�1 � Gixk�2k2

⇤
.

This is exactly the last inequality of (20).

C CONVERGENCE ANALYSIS OF VFR FOR (NE): TECHNICAL PROOFS

To analyze our (VFR) scheme, we introduce the following two functions:

Lk := kxk + �⌘Gxk�1 � x?k2 + µkxk � xk�1k2,

Ek := Lk + ⌘2(1+µ)(1�⇢)
⇢ �k�1 + L2⌘2Ĉ(1+µ)

⇢ kxk�1 � xk�2k2,
(21)

where µ is a given positive parameter, ⇢, C, Ĉ, and �k are given in Definition 2.1, and x�2 =
x�1 = x0. Clearly, we have Lk � 0 and Ek � 0 for all k � 0 a.s.

One key step to analyze the convergence of (VFR) is to prove a descent property of Ek defined by
(21). The following lemma provides such a key estimate to prove the convergence of (VFR).
Lemma C.1. Suppose that Assumptions 1.3 and 1.4 hold for (NE). Let {xk} be generated by (VFR)
and Ek be defined by (21) for any � 2 [0, 1]. Then, with M := �(1+µ��)

µ + (1+µ)(C+Ĉ)
µ⇢ , we have

E
⇥
Ek

⇤
� E

⇥
Ek+1

⇤
� µ

�
1 � M · L2⌘2

�
E
⇥
kxk � xk�1k2

⇤

+ ⌘(1 � �)
⇥
⌘
�
2� � 1 � µ

�
� 2

⇤
E
⇥
kGxkk2

⇤

+ ⌘2�(1 � �)(1 + µ)E
⇥
kGxk�1k2

⇤
.

(22)

Proof. First, using xk+1 := xk � ⌘ eSk
� from (VFR), we can expand

kxk+1 + �⌘Gxk � x?k2 (VFR)
= kxk � x? + �⌘Gxk � ⌘ eSk

�k2

= kxk � x?k2 + 2�⌘hGxk, xk � x?i + �2⌘2kGxkk2

� 2⌘heSk
� , xk � x?i � 2�⌘2hGxk, eSk

� i + ⌘2keSk
�k2.

Second, it is obvious to show that

kxk + �⌘Gxk�1 � x?k2 = kxk � x?k2 + 2�⌘hGxk�1, xk � x?i + �2⌘2kGxk�1k2.

Third, using again xk+1 := xk � ⌘ eSk
� from (VFR), we can show that

kxk+1 � xkk2 = ⌘2keSk
�k2.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Combining three expressions above, and using Lk from (21), we can establish that

Lk � Lk+1 = kxk + �⌘Gxk�1 � x?k2 � kxk+1 + �⌘Gxk � x?k2

+ µkxk � xk�1k2 � µkxk+1 � xkk2

= 2�⌘hGxk�1, xk � x?i � 2�⌘hGxk, xk � x?i + �2⌘2kGxk�1k2

� �2⌘2kGxkk2 + 2⌘heSk
� , xk � x?i + 2�⌘2hGxk, eSk

� i
+ µkxk � xk�1k2 � ⌘2(1 + µ)keSk

�k2.

(23)

Next, since Ek

⇥eSk
�

⇤
= Sk

� ⌘ Gxk � �Gxk�1 as shown in the first line of (3) of Definition 2.1.
Moreover, since eSk

� is conditionally independent of xk � x? and Gxk w.r.t. the �-field Fk, we have

Ek

⇥
heSk

� , xk � x?i
⇤

= hGxk, xk � x?i � �hGxk�1, xk � x?i,
2Ek

⇥
heSk

� , Gxki
⇤

= 2kGxkk2 � 2�hGxk�1, Gxki
= (2 � �)kGxkk2 � �kGxk�1k2 + �kGxk � Gxk�1k2.

Taking the conditional expectation Ek

⇥
·
⇤

both sides of (23) and using the last two expressions, we
can show that

Lk � Ek

⇥
Lk+1

⇤
= 2�⌘hGxk�1, xk � x?i � 2�⌘hGxk, xk � x?i + �2⌘2kGxk�1k2

� �2⌘2kGxkk2 + 2⌘Ek

⇥
heSk

� , xk � x?i
⇤
+ 2�⌘2Ek

⇥
hGxk, eSk

� i
⇤

� ⌘2(1 + µ)Ek

⇥
keSk

�k2
⇤
+ µkxk � xk�1k2

= 2⌘(1 � �)hGxk, xk � x?i + 2�(1 � �)⌘2kGxkk2

+ �2⌘2kGxk � Gxk�1k2 � ⌘2(1 + µ)Ek

⇥
keSk

�k2
⇤
+ µkxk � xk�1k2.

Since eSk
� is an unbiased estimator of Sk

� , if we denote ek := eSk
� � Sk

� , then we have Ek

⇥
ek
⇤

= 0.
Hence, we can show that Ek

⇥
keSk

�k2
⇤

= Ek

⇥
kSk

� +ekk2
⇤

= kSk
�k2 +2Ek

⇥
hek, Sk

� i
⇤
+Ek

⇥
kekk2

⇤
=

Ek

⇥
kekk2

⇤
+ kSk

�k2. Using this relation and Sk
� = Gxk � �Gxk�1, we can show that

Ek

⇥
keSk

�k2
⇤

= kSk
�k2 + Ek

⇥
kekk2

⇤
= kGxk � �Gxk�1k2 + Ek

⇥
kekk2

⇤

= kGxkk2 � 2�hGxk, Gxk�1i + �2kGxk�1k2 + Ek

⇥
kekk2

⇤

= (1 � �)kGxkk2 � �(1 � �)kGxk�1k2 + �kGxk � Gxk�1k2 + Ek

⇥
kekk2

⇤
.

Substituting this expression into the last estimate, we can show that

Lk � Ek

⇥
Lk+1

⇤
= 2⌘(1 � �)hGxk, xk � x?i + ⌘2(1 � �)

�
2� � 1 � µ

�
kGxkk2

+ ⌘2�(1 � �)(1 + µ)kGxk�1k2 � �⌘2(1 + µ � �)kGxk � Gxk�1k2

� ⌘2(1 + µ)Ek

⇥
kekk2

⇤
+ µkxk � xk�1k2.

Taking the total expectation E
⇥
·
⇤

both sides of this expression, we get

E
⇥
Lk

⇤
� E

⇥
Lk+1

⇤
= 2(1 � �)⌘E

⇥
hGxk, xk � x?i

⇤
+ ⌘2�(1 � �)(1 + µ)E

⇥
kGxk�1k2

⇤

+ ⌘2(1 � �)
�
2� � 1 � µ

�
E
⇥
kGxkk2

⇤
+ µE

⇥
kxk � xk�1k2

⇤

� �⌘2(1 + µ � �)E
⇥
kGxk � Gxk�1k2

⇤
� ⌘2(1 + µ)E

⇥
kekk2

⇤
.

By Young’s inequality in 1� and (2) of Assumption 1.3, we have

kGxk � Gxk�1k2 = k 1
n

Pn
i=1[Gixk � Gixi�1]k2

1�
 1

n

Pn
i=1 kGixk � Gixk�1k2

(2)
 L2kxk � xk�1k2.

(24)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Utilizing this inequality, hGxk, xk � x?i � �kGxkk2 from Assumption 1.4 with T = 0, and
E
⇥
kekk2

⇤
 �k from (3), we can bound the last expression as

E
⇥
Lk

⇤
� E

⇥
Lk+1

⇤
�

⇥
µ � L2⌘2�(1 + µ � �)

⇤
E
⇥
kxk � xk�1k2

⇤

+ (1 + µ)�(1 � �)⌘2E
⇥
kGxk�1k2

⇤

+ ⌘(1 � �)
⇥
⌘
�
2� � 1 � µ

�
� 2

⇤
E
⇥
kGxkk2

⇤
� ⌘2(1 + µ)�k.

(25)

By the third line of (3) in Definition 2.1 and again (2), we have

�k  (1 � ⇢)�k�1 + CL2E
⇥
kxk � xk�1k2

⇤
+ ĈL2E

⇥
kxk�1 � xk�2k2

⇤
.

Rearranging this inequality, we get

�k 
� 1�⇢

⇢

��
�k�1 � �k

�
+ ĈL2

⇢

⇥
E
⇥
kxk�1 � xk�2k2

⇤
� E

⇥
kxk � xk�1k2

⇤⇤

+ (C+Ĉ)L2

⇢ E
⇥
kxk � xk�1k2

⇤
.

Substituting this inequality into (25), we can show that

E
⇥
Lk

⇤
� E

⇥
Lk+1

⇤
�

h
µ � L2⌘2�(1 + µ � �) � L2⌘2(1+µ)(C+Ĉ)

⇢

i
E
⇥
kxk � xk�1k2

⇤

+ ⌘(1 � �)
⇥
⌘
�
2� � 1 � µ

�
� 2

⇤
E
⇥
kGxkk2

⇤

+ (1 + µ)�(1 � �)⌘2E
⇥
kGxk�1k2

⇤

� L2⌘2Ĉ(1+µ)
⇢

⇥
E
⇥
kxk�1 � xk�2k2

⇤
� E

⇥
kxk � xk�1k2

⇤⇤

� ⌘2(1+µ)(1�⇢)
⇢

�
�k�1 � �k

�
.

Rearranging this inequality and using Ek from (21), we obtain (22).

Now, we are ready to prove our first main result, Theorem 3.1 in the main text.

Proof of Theorem 3.1. Let us denote by M := �(1+µ��)
µ + (1+µ)(C+Ĉ)

⇢µ . Then, to keep the right-
hand side of (22) positive, we need to choose the parameters such that L2⌘2  1

M and ⌘ � 2
2��1�µ .

These two conditions lead to 4L22

(2��1�µ)2  L2⌘2  1
M .

Now, for a given � 2
�

1
2 , 1

�
, let us choose µ := 3(2��1)

4 > 0. Then, the last condition holds if
L  � := 2��1

8
p

M
as stated in Theorem 3.1. In this case, we have M = �(1+5�)

3(2��1) + 1+6�
3(2��1) · C+Ĉ

⇢ as
stated in (6). Hence, we can choose 8

2��1  ⌘  1
L

p
M

as claimed in Theorem 3.1.

Next, utilizing µ + 1 = 1+6�
2 � 1 and µ = 3(2��1)

4 , (22) reduces to

E
⇥
Ek

⇤
� E

⇥
Ek+1

⇤
� 3(2��1)

4

�
1 � M · L2⌘2

�
E
⇥
kxk � xk�1k2

⇤
+ �(1 � �)⌘2E

⇥
kGxk�1k2

⇤
.

Averaging this inequality from k := 0 to k := K, we obtain
8
<

:

1
K+1

PK
k=0 E

⇥
kGxk�1k2

⇤
 E[E0]

�(1��)⌘2(K+1) ,

(1�ML2⌘2)
K+1

PK
k=0 E

⇥
kxk � xk�1k2

⇤
 4E[E0]

3(2��1)(K+1) .

Finally, since x�1 = x�2 = x0, and eS0
� is chosen as eS0

� := (1 � �)Gx0, we have ��1 = �0 = 0.
Using this fact, Gx? = 0, the Lipschitz continuity of G, ⇢ 2 [0, 1], and � < 1, we can show that

E
⇥
E0

⇤
= E

⇥
kx0 + ⌘�G(x0) � x?k2

⇤
+ ⌘2(1+µ)(1�⇢)

⇢ �0

 2E
⇥
kx0 � x?k2

⇤
+ 2⌘2�2E

⇥
kGx0 � Gx?k2

⇤
+ (1+6�)⌘2

4⇢ �0

 2(1 + L2⌘2�2)E
⇥
kx0 � x?k2

⇤
+ (1+6�)⌘2

4⇢ �0

 2
�
1 + L2⌘2

�
kx0 � x?k2.

Substituting this upper bound into the above estimates, we get the second bound of (7). For the first
bound, we replace k � 1 by k, and K by K + 1, using kGx0k2  2kGx0k2, and then multiplying
both sides of the result by K+2

K+1 to obtain the first line of (7).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Next, we restate Corollary 3.1 for the case � 2
�

1
2 , 1

�
instead of � = 3

4 as in the main text. Then,
we derive the proof of Corollary 3.1 from this result by fixing � = 3

4 .
Corollary C.1. Suppose that Assumptions 1.1, 1.3, and 1.4 hold for (NE) with  � 0 as in Theorem
3.1. Let {xk} be generated by (VFR) using the SVRG estimator (L-SVRG), � 2

�
1
2 , 1

�
, and

⌘ := 1
L

p
M

, where ⇤ := 4(1+�2)(2�3p)+2(3+2�2)p2

bp2 and M := �(1+5�)
3(2��1) + 1+6�

3(2��1) · ⇤. (26)

Then, we have ⌘ � �
p

bp
L for � :=

p
3(2��1)p

8+49�+13�2+48�3
, and the following bound holds:

1
K+1

PK
k=0 E

⇥
kGxkk2

⇤
 2(1+L2⌘2)R2

0
�(1��)⌘2(K+1) , where R0 := kx0 � x?k. (27)

For a given tolerance ✏ > 0, if we choose p := n�1/3 and b := bn2/3c, then (VFR) requires
TGi := n +

⌅ 4�L2R2
0n2/3

✏2

⇧
evaluations of Gi to achieve 1

K+1

PK
k=0 E

⇥
kGxkk2

⇤
 ✏2, where � :=

2(5�2+7��3)(8+49�+13�2+48�3)
3�2(2��1)(1��)(1+5�) .

Proof. For the SVRG estimator (L-SVRG), by Lemma 2.1, we have ⇢ := p
2 2 (0, 1],

C := 4�6p+3p2

bp , and Ĉ := 2�2(2�3p+p2)
bp . Therefore, we can compute ⇤ := C+Ĉ

⇢ =
4(1+�2)(2�3p)+2(3+2�2)p2

bp2  8(1+�2)
bp2 , and M in Theorem 3.1 as M := �(1+5�)

3(2��1) + 1+6�
3(2��1) · ⇤ 

�(1+5�)
3(2��1) + 8(1+6�)(1+�2)

3(2��1)bp2 as stated in (26). The estimate (27) is exactly the first line of (7).

Now, suppose that bp2  1. Then, by (26), we have M  8+49�+13�2+48�3

3(2��1)bp2 . Therefore, if we
choose ⌘ := 1

L
p

M
, then ⌘ satisfies the conditions of Theorem 3.1, provided that L⇢  �. Moreover,

we have ⌘ �
p

3(2��1)
p

bpp
8+49�+13�2+48�3

= �
p

bp
L , where � :=

p
3(2��1)p

8+49�+13�2+48�3
.

From (27), to guarantee 1
K+1

PK
k=0 E

⇥
kGxkk2

⇤
 ✏2, we need to impose 2(1+L2⌘2)R2

0
�(1��)⌘2(K+1)  ✏2,

where R0 := kx0 � x?k. However, since 1 + L2⌘2 = 1 + 1
M  5�2+7��3

�(1+5�) and ⌘ � �
p

bp
L ,

the last condition holds if we choose K :=
j
� · L2R2

0
bp2✏2

k
, where � := 2(5�2+7��3)

�2�2(1��)(1+5�) =

2(5�2+7��3)(8+49�+13�2+48�3)
3�2(2��1)(1��)(1+5�) .

Finally, note that, at each iteration k, (VFR) requires 3 mini-batches of size b, and occasionally
compute the full batch Gwk, leading to the cost of np + 3b. The total complexity is

Tc := K(np + 3b) = �L2R2
0(np+3b)

bp2✏2 = �L2R2
0

✏2

�
n
bp + 3

p2

�
.

If we choose b := bn2/3c and p := n�1/3, then bp2 = 1 and Tc = 4�n2/3L2R2
0

✏2 . For the SVRG
estimator (L-SVRG), one needs to compute Gw0, which requires n evaluations of Gi. Hence, the
total complexity of the algorithm is TGi := n +

j
4�n2/3L2R2

0
✏2

k
as stated.

Proof of Corollary 3.1. Since we fix � := 3
4 , we can easily compute � :=

p
3(2��1)p

8+49�+13�2+48�3
⇡

0.144025 � 0.1440 and � := 2(5�2+7��3)(8+49�+13�2+48�3)
3�2(2��1)(1��)(1+5�) ⇡ 730.736842  731. Therefore, we

obtain ⌘ � 0.1440
p

bp
L and TGi := n +

⌅ 4�n2/3L2R2
0

✏2

⇧
, where � := 731. Moreover, (27) reduces to

1
K+1

PK
k=0 E

⇥
kGxkk2

⇤
 32(1+0.14402)L2R2

0
3·0.14402bp2(K+1)  526·L2R2

0
bp2(K+1) .

Finally, we also restate Corollary 3.2 for the case � 2
�

1
2 , 1

�
and then derive the oracle complexity

of Corollary 3.2 from this result by fixing � := 3
4 .

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Corollary C.2. Suppose that Assumptions 1.1, 1.3, and 1.4 hold for (NE) with  � 0 as in
Theorem 3.1. Let {xk} be generated by (VFR) using the SAGA estimator (SAGA), � 2

�
1
2 , 1

�
, and

⌘ := 1
L

p
M

, where ⇤ := 2
b + 4(1+�2)(n�b)(2n+b)

b3 and M := �(1+5�)
3(2��1) + 1+6�

3(2��1) · ⇤. (28)

Then, we have ⌘ � �b3/2

nL for � :=
p

3(2��1)p
10+61�+13�2+48�3

, and the following bound holds:

1
K+1

PK
k=0 E

⇥
kGxkk2

⇤
 2(1+L2⌘2)R2

0
�(1��)⌘2(K+1) , where R0 := kx0 � x?k. (29)

Moreover, for a given tolerance ✏ > 0, if we choose b := bn2/3c, then (VFR) requires
TGi := n +

⌅ 3�L2R2
0n2/3

"2

⇧
evaluations of Gi to achieve 1

K+1

PK
k=0 E

⇥
kGxkk2

⇤
 ✏2, where

� := 2(7�+5�2�3)(10+61�+13�2+48�3)
3�2(1��)(2��1)(1+5�) .

Proof. Since we use the SAGA estimator (SAGA), we have ⇢ := b
2n 2 (0, 1], C :=

[2(n�b)(2n+b)+b2]
nb2 , and Ĉ := 2(n�b)(2n+b)�2

nb2 . In this case, since b � 1, we can easily show that
⇤ := C+Ĉ

⇢ = 2
b + 4(1+�2)(n�b)(2n+b)

b3  2 + 8(1+�2)n2

b3 . Hence, M in Theorem 3.1 reduces to

M := �(1+5�)
3(2��1) + 1+6�

3(2��1) · ⇤  2+13�+5�2

3(2��1) + 8(1+�2)(1+6�)n2

3(2��1)b3 .

Suppose that 1  b  n2/3. Then, one can prove that M 
h

2+13�+5�2

3(2��1) + 8(1+�2)(1+6�)
3(2��1)

i
n2

b3 =

(10+61�+13�2+48�3)n2

3(2��1)b3 = n2

�2b3 , where � :=
p

3(2��1)p
10+61�+13�2+48�3

. Hence, if we choose ⌘ := 1
L

p
M

,

then we get ⌘ � �b3/2

nL as stated. Moreover, we obtain (27) from the first line of (7) as before.

Now, for ⌘ := 1
L

p
M

� �b3/2

nL , from (27), to guarantee 1
K+1

PK
k=0 E

⇥
kGxkk2

⇤
 ✏2, we need

to impose 2(1+L2⌘2)R2
0

�(1��)⌘2(K+1)  ✏2, where R0 := kx0 � x?k. Since 1 + L2⌘2 = 1 + 1
M 

7�+5�2�3
�(1+5�) and ⌘ � �b3/2

nL , the last condition holds if we choose K :=
j
� · L2R2

0n2

b3✏2

k
, where

� := 2(7�+5�2�3)
�2�2(1��)(1+5�) = 2(7�+5�2�3)(10+61�+13�2+48�3)

3�2(1��)(2��1)(1+5�) .

Finally, at each iteration k, (VFR) requires 3 mini-batches of size b, leading to the cost of 3b per
iteration. Hence, the total complexity is

Tc := 3bK =
⌅ 3�L2R2

0n2

b2✏2

⇧
.

If we choose b := bn2/3c, then Tc =
⌅ 3�L2R2

0n2/3

✏2

⇧
. For the SAGA estimator (SAGA), one needs to

compute Gw0, which requires n evaluations of Gi. Hence, the total complexity of the algorithm is
TGi := n +

⌅ 3�L2R2
0n2/3

✏2

⇧
.

Proof of Corollary 3.2. Since we choose � := 3
4 , we have � :=

p
3(2��1)p

10+61�+13�2+48�3
=

0.14948 � 0.1494 and � := 2(7�+5�2�3)(10+61�+13�2+48�3)
3�2(1��)(2��1)(1+5�) = 2815.8  2816. Applying the

results of Corollary C.2, we obtain our conclusions in Corollary 3.2. Moreover, (29) reduces to
1

K+1

PK
k=0 E

⇥
kGxkk2

⇤
 32(1+0.4942)L2R2

0
3·0.14942bp2(K+1)  489·L2R2

0
bp2(K+1) as stated.

D CONVERGENCE ANALYSIS OF VFRBS FOR (NI): TECHNICAL PROOFS

One key step to analyze the convergence of (VFRBS) is to construct an appropriate potential func-
tion. For this purpose, we introduce the following function:

Lk := kxk + �⌘(Gxk�1 + vk) � x?k2 + µkxk � xk�1 + �⌘(Gxk�1 + vk)k2, (30)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

where µ > 0 is a given parameter and vk 2 Txk is given. This function is then combined with Ek

from (21) to establish the convergence of (VFRBS).

Let us first state and prove Lemma D.1, which provides a key estimate for our convergence analysis
of (VFRBS) in Theorem 4.1.
Lemma D.1. Suppose that Assumption 1.3 holds for (NI). Let {xk} be generated by (VFRBS), Lk

be defined by (30), and Ek be defined by (21). Then, we have

Lk � Ek

⇥
Lk+1

⇤
� 2(1 � �)⌘hGxk + vk, xk � x?i + (1 + µ)(1 � �)(2� � 1)⌘2kGxk + vkk2

+ �[1 � � � µ(3� � 1)]⌘2kGxk�1 + vkk2 � (1 + µ)⌘2Ek

⇥
kekk2

⇤

+ 1
2

⇥
µ � 2(1 + µ)�(1 � �)L2⌘2

⇤
kxk � xk�1k2.

(31)

If, additionally, Assumption 1.4 holds for (NI), then we have

E
⇥
Ek

⇤
� E

⇥
Ek+1

⇤
� 1

2

h
µ � 2(1 + µ)�(1 � �)L2⌘2 � 2L2⌘2(1+µ)(C+Ĉ)

⇢

i
E
⇥
kxk � xk�1k2

⇤

+ �[1 � � � µ(3� � 1)]⌘2E
⇥
kGxk�1 + vkk2

⇤

+ (1 � �)⌘
⇥
(1 + µ)(2� � 1)⌘ � 2

⇤
E
⇥
kGxk + vkk2

⇤
.

(32)

Proof. Let us introduce two notations wk := Gxk + vk and ŵk := Gxk�1 + vk, where vk 2 Txk.
We also recall Sk

� := Gxk � �Gxk�1 and ek := eSk
� � Sk

� from (FRO). Then, it is obvious that
eSk

� = Sk
� + ek = Gxk � �Gxk�1 + ek.

Now, using eSk
� = Gxk � �Gxk�1 + ek, it follows from (VFRBS) that

xk+1 = xk � ⌘ eSk
� � �⌘vk+1 � (2� � 1)⌘vk

= xk � �⌘(Gxk + vk+1) � (1 � �)⌘(Gxk + vk) + ⌘�(Gxk�1 + vk) � ⌘ek

= xk � �⌘ŵk+1 � (1 � �)⌘wk + �⌘ŵk � ⌘ek.

(33)

Then, using (33) and ŵk+1 = Gxk + vk+1, we can show that

T[1] := kxk+1 + �⌘(Gxk + vk+1) � x?k2 = kxk+1 � x? + �⌘ŵk+1k2

(33)
= kxk � �⌘ŵk+1 � (1 � �)⌘wk + �⌘ŵk � ⌘ek � x? + �⌘ŵk+1k2

= kxk � x?k2 � 2(1 � �)⌘hwk, xk � x?i + 2�⌘hŵk, xk � x?i + ⌘2kekk2

+ (1 � �)2⌘2kwkk2 � 2�(1 � �)⌘2hwk, ŵki + �2⌘2kŵkk2

� 2⌘hek, xk � x?i + 2(1 � �)⌘2hek, wki � 2�⌘2hek, ŵki.

Alternatively, using ŵk = Gxk�1 + vk, we also have

T[2] := kxk + �⌘(Gxk�1 + vk) � x?k2 = kxk � x? + �⌘ŵkk2

= kxk � x?k2 + 2�⌘hŵk, xk � x?i + �2⌘2kŵkk2.

Subtracting T[1] from T[2], we can show that

T[3] := kxk + �⌘(Gxk�1 + vk) � x?k2 � kxk+1 + �⌘(Gxk + vk+1) � x?k2

= 2(1 � �)⌘hwk, xk � x?i � (1 � �)2⌘2kwkk2 + 2�(1 � �)⌘2hwk, ŵki
+ 2⌘hek, xk � x?i � 2(1 � �)⌘2hek, wki + 2�⌘2hek, ŵki � ⌘2kekk2

= 2(1 � �)⌘hwk, xk � x?i + (1 � �)(2� � 1)⌘2kwkk2

+ �(1 � �)⌘2kŵkk2 � �(1 � �)⌘2kwk � ŵkk2

+ 2⌘hek, xk � x?i � 2(1 � �)⌘2hek, wki + 2�⌘2hek, ŵki � ⌘2kekk2.

(34)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Next, using again ŵk+1 = Gxk + vk+1 and (33), we have

T[4] := kxk+1 � xk + �⌘(Gxk + vk+1)k2 = kxk+1 � xk + �⌘ŵk+1k2

(33)
= ⌘2k(1 � �)wk � �ŵk + ekk2

= (1 � �)2⌘2kwkk2 � 2�(1 � �)⌘2hwk, ŵki + �2⌘2kŵkk2

+ ⌘2kekk2 + 2(1 � �)⌘2hek, wki � 2�⌘2hek, ŵki
= �(1 � �)(2� � 1)⌘2kwkk2 + �(2� � 1)⌘2kŵkk2 + �(1 � �)⌘2kwk � ŵkk2

+ ⌘2kekk2 + 2(1 � �)⌘2hek, wki � 2�⌘2hek, ŵki.

Moreover, by the Cauchy-Schwarz inequality in 1� and Young’s inequality in 2�, we can prove that

kxk � xk�1 + �⌘ŵkk2 = kxk � xk�1k2 + 2�⌘hŵk, xk � xk�1i + �2⌘2kŵkk2

1�
� kxk � xk�1k2 � 2�⌘kŵkkkxk � xk�1k + �2⌘2kŵkk2

2�
� 1

2kxk � xk�1k2 � �2⌘2kŵkk2.

Combining the last two expressions, we can show that

T[5] := kxk � xk�1 + �⌘(Gxk�1 + vk)k2 � kxk+1 � xk + �⌘(Gxk + vk+1)k2

= kxk � xk�1 + �⌘ŵkk2 � kxk+1 � xk + �⌘ŵk+1k2

� 1
2kxk � xk�1k2 + (1 � �)(2� � 1)⌘2kwkk2 � �(3� � 1)⌘2kŵkk2

� �(1 � �)⌘2kwk � ŵkk2 � ⌘2kekk2 � 2(1 � �)⌘2hek, wki + 2�⌘2hek, ŵki.

Multiplying T[5] by µ > 0, and adding the result to (34), and using Lk from (30), we have

Lk � Lk+1 = kxk + �⌘(Gxk�1 + vk) � x?k2 � kxk+1 + �⌘(Gxk + vk+1) � x?k2

+ µkxk � xk�1 + �⌘(Gxk�1 + vk)k2 � µkxk+1 � xk + �⌘(Gxk + vk+1)k2

� 2(1 � �)⌘hwk, xk � x?i + µ
2 kxk � xk�1k2 + (1 + µ)(1 � �)(2� � 1)⌘2kwkk2

+ �[(1 � �) � µ(3� � 1)]⌘2kŵkk2 � (1 + µ)�(1 � �)⌘2kwk � ŵkk2

+ 2⌘hek, xk � x?i � 2(1 + µ)(1 � �)⌘2hek, wki
+ 2(1 + µ)�⌘2hek, ŵki � (1 + µ)⌘2kekk2.

Taking the conditional expectation Ek

⇥
·
⇤

both sides of this expression, and noting that

Ek

⇥
hek, xk � x?i

⇤
= hEk

⇥
ek
⇤
, xk � x?i = 0,

Ek

⇥
hek, wki

⇤
= hEk

⇥
ek
⇤
, wki = 0,

Ek

⇥
hek, ŵki

⇤
= hEk

⇥
ek
⇤
, ŵki = 0,

we obtain

Lk � Ek

⇥
Lk+1

⇤
� 2(1 � �)⌘hwk, xk � x?i + µ

2 kxk � xk�1k2 + (1 + µ)(1 � �)(2� � 1)⌘2kwkk2

+ �[(1 � �) � µ(3� � 1)]⌘2kŵkk2 � (1 + µ)�(1 � �)⌘2kwk � ŵkk2

� (1 + µ)⌘2Ek

⇥
kekk2

⇤
.

Finally, by the L-Lipschitz continuity of G from (2) of Assumption 1.3, we have kwk � ŵkk2 =
kGxk �Gxk�1k2  L2kxk �xk�1k2 as shown in (24). Using this inequality into the last estimate,
we can show that

Lk � Ek

⇥
Lk+1

⇤
� 2(1 � �)⌘hwk, xk � x?i + (1 + µ)(1 � �)(2� � 1)⌘2kwkk2

+ �[1 � � � µ(3� � 1)]⌘2kŵkk2 � (1 + µ)⌘2Ek

⇥
kekk2

⇤

+ 1
2

⇥
µ � 2(1 + µ)�(1 � �)L2⌘2

⇤
kxk � xk�1k2,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

which proves (31) by recalling wk := Gxk + vk and ŵk := Gxk�1 + vk.

Taking the full expectation of (31) and using hGxk + vk, xk � x?i � �kGxk + vkk2 from As-
sumption 1.4 and Ek

⇥
kekk2

⇤
 �k from (3), we can bound it as

E
⇥
Lk

⇤
� E

⇥
Lk+1

⇤
� 1

2

⇥
µ � 2(1 + µ)�(1 � �)L2⌘2

⇤
E
⇥
kxk � xk�1k2

⇤
� (1 + µ)⌘2�k

+ �[1 � � � µ(3� � 1)]⌘2E
⇥
kGxk�1 + vkk2

⇤

+ (1 � �)⌘
⇥
(1 + µ)(2� � 1)⌘ � 2

⇤
E
⇥
kGxk + vkk2

⇤
.

(35)

By the third line of (3) in Definition 2.1 and utilizing again (2), we have

�k  (1 � ⇢)�k�1 + CL2E
⇥
kxk � xk�1k2

⇤
+ ĈL2E

⇥
kxk�1 � xk�2k2

⇤
.

Rearranging this inequality, we get

�k 
� 1�⇢

⇢

��
�k�1 � �k

�
+ ĈL2

⇢

⇥
E
⇥
kxk�1 � xk�2k2

⇤
� E

⇥
kxk � xk�1k2

⇤⇤

+ (C+Ĉ)L2

⇢ E
⇥
kxk � xk�1k2

⇤
.

Substituting this inequality into (35), we can show that

E
⇥
Lk

⇤
� E

⇥
Lk+1

⇤
� 1

2

h
µ � 2(1 + µ)�(1 � �)L2⌘2 � 2L2⌘2(1+µ)(C+Ĉ)

⇢

i
E
⇥
kxk � xk�1k2

⇤

+ �[1 � � � µ(3� � 1)]⌘2E
⇥
kGxk�1 + vkk2

⇤

+ (1 � �)⌘
⇥
(1 + µ)(2� � 1)⌘ � 2

⇤
E
⇥
kGxk + vkk2

⇤

� L2⌘2Ĉ(1+µ)
⇢

h
E
⇥
kxk�1 � xk�2k2

⇤
� E

⇥
kxk � xk�1k2

⇤i

� ⌘2(1+µ)(1�⇢)
⇢

�
�k�1 � �k

�
.

Rearranging this inequality and using Ek from (21), we obtain (32).

Now, we are ready to prove our second main result, Theorem 4.1 in the main text.

Proof of Theorem 4.1. Since we fix � 2
�

1
2 , 1

�
and µ := 1��

3��1 , we have µ > 0 and 1 + µ = 2�
3��1 .

Let us denote by M := 4�2 + 4�
1�� · C+Ĉ

⇢ as in Theorem 4.1. Then, (32) reduces to

E
⇥
Ek

⇤
� E

⇥
Ek+1

⇤
� (1��)(1�M ·L2⌘2)

2(3��1) E
⇥
kxk � xk�1k2

⇤

+ 2(1 � �)⌘
⇥�(2��1)⌘

3��1 � 
⇤
E
⇥
kGxk + vkk2

⇤
.

(36)

Let us choose ⌘ > 0 such that �(2��1)⌘
3��1 � > 0 and 1�M ·L2⌘2 � 0. These two conditions lead to

(3��1)
�(2��1) < ⌘  1

L
p

M
as stated in Theorem 4.1. However, this condition holds if L22 < �2(2��1)2

M(3��1)2 .

This condition is equivalent to L  � as our condition in Theorem 4.1, where � := �(2��1)

(3��1)
p

M
.

Averaging (36) from k = 0 to K and noting that E
⇥
Ek

⇤
� 0 for all k � 0, we get

1
K+1

PK
k=0 E

⇥
kGxk + vkk2

⇤
 (3��1)·E[E0]

2(1��)[�(2��1)⌘�(3��1)]⌘(K+1) ,

(1�ML2⌘2)
K+1

PK
k=0 E

⇥
kxk � xk�1k2

⇤
 2(3��1)·E[E0]

(1��)(K+1) .

Finally, since x�1 = x�2 = x0, we have ��1 = �0. However, since eS0
� = (1 � �)Gx0 = S0

� , we
get �0 = keS0

� � S0
�k2 = 0. Using these relations, ⇢ 2 [0, 1] and � < 1, we can show that

E
⇥
E0

⇤
= E

⇥
kx0 + �⌘(Gx0 + v0) � x?k2

⇤
+ ⌘2(1+µ)(1�⇢)

⇢ �0

 2E
⇥
kx0 � x?k2

⇤
+ 2�2⌘2E

⇥
kGx0 + v0k2

⇤
+ 2�⌘2

(3��1)⇢�0

= 2E
⇥
kx0 � x?k2

⇤
+ 2�2⌘2E

⇥
kGx0 + v0k2

⇤
.

Substituting this upper bound into the above two estimates, we get two lines of (12).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Finally, we prove Corollaries 4.1 and 4.2 in the main text. Unlike Corollaries 3.1 and 3.2 where we
fix � := 3

4 , here we state these corollaries for any value of � 2
�

1
2 , 1

�
.

Proof of Corollary 4.1. For the SVRG estimator (L-SVRG), we have ⇢ := p
2 2 (0, 1], C :=

4�6p+3p2

bp , Ĉ := 2�2(2�3p+p2)
bp , and �0 = 0 due to (17) and x0 = x�1 = w0. In this case,

we have ⇤ := C+Ĉ
⇢ = 4(1+�2)(2�3p)+2(3+2�2)p2

bp2  8(1+�2)
bp2 , and thus M in Theorem 3.1 reduces

to M := 4�2 + 4�
1�� ⇤  4�2 + 32(1+�2)

bp2 .

Suppose that bp2  1. Since ⇤  8(1+�2)
bp2 and M = 4�2 + 4�

1�� ⇤  4�2 + 32�(1+�2)
(1��)bp2 

4�(8+�+7�2)
(1��)bp2 . If we choose ⌘ := 1

L
p

M
, then we have ⌘ �

p
1��

p
bp

2L
p

�(8+�+7�2)
= �

p
bp

L with

� :=
p

1��

2
p

8+�+7�2
, then it satisfies (3��1)

�(2��1) < ⌘  1
L

p
M

in Theorem 4.1, provided that L  �.

Note that using ⌘ � �
p

bp
L in (12) of Theorem 4.1 we obtain the bound (13).

Now, from the first line of (12), to guarantee 1
K+1

PK
k=0 E

⇥
kGxk + vkk2

⇤
 ✏2, we need to impose

⇥R̂2
0

⌘2(K+1)  ✏2, where R̂2
0 := kx0 � x?k2 + �2⌘2kGx0 + v0k2. Since ⌘ � �

p
bp

L , the last condition

holds if we choose K :=
j
� · L2R̂2

0
bp2✏2

k
, where � := ⇥

�2 .

Finally, at each iteration k, (VFRBS) requires 3 mini-batches of size b, and occasionally compute
the full Gwk, leading to the cost of np + 3b per iteration. Thus the total complexity is

Tc := K(np + 3b) = �L2R̂2
0(np+3b)

bp2✏2 = �L2R̂2
0

✏2

�
n
bp + 3

p2

�
.

If we choose b := bn2/3c and p := n�1/3, then bp2 = 1 and Tc = 4�n2/3L2R̂2
0

✏2 . For the SVRG
estimator (L-SVRG), one needs to compute Gw0, which requires n evaluations of Gi. Hence,
the total evaluations of Gi is TGi = n +

⌅ 4�n2/3L2R̂2
0

✏2

⇧
. Moreover, at each iteration, we need

one evaluation of J�⌘T . Therefore, the total evaluations of J�⌘T is TT := K =
⌅
� · L2R̂2

0
bp2✏2

⇧
=

⌅
� · L2R̂2

0
✏2

⇧
.

Proof of Corollary 4.2. Since we use the SAGA estimator (SAGA), we have ⇢ := b
2n 2 (0, 1],

C := [2(n�b)(2n+b)+b2]
nb2 , and Ĉ := 2(n�b)(2n+b)�2

nb2 . In this case, since b � 1, we get ⇤ := C+Ĉ
⇢ =

2
b + 4(1+�2)(n�b)(2n+b)

b3  2 + 8(1+�2)n2

b3 . Hence, M in Theorem 3.1 reduces to

M := 4�2 + 4�
1�� · ⇤  4�(2+���2)

1�� + 32�(1+�2)n2

(1��)b3

Suppose that 1  b  n2/3. Then, we can show that M 
⇥ 4�(2+���2)

1�� + 32�(1+�2)
1��

⇤
n2

b3 =
4�(10+�+7�2)

(1��)b3 = n2

�2b3 , where � :=
p

1��

2
p

�(10+�+7�2)
. Hence, if we choose ⌘ := 1

L
p

M
, then we get

⌘ � �b3/2

nL . Note that using ⌘ � �b3/2

nL in (12) of Theorem 4.1 we obtain the bound (14).

For ⌘ := 1
L

p
M

� �b3/2

nL , from the first line of (12), to guarantee 1
K+1

PK
k=0 E

⇥
kGxk + vkk2

⇤
 ✏2,

we need to impose ⇥R̂2
0

⌘2(K+1)  ✏2, where R̂2
0 := kx0 � x?k2 + �2⌘2kGx0 + v0k2. Since ⌘ � �b3/2

nL ,

the last condition holds if we choose K :=
⌅
� · L2R̂2

0n2

b3✏2

⇧
, where � := ⇥

�2 .

Finally, at each iteration k, (VFRBS) requires 3 mini-batches of size b, leading to the cost of 3b per
iteration. Thus the total complexity is

Tc := 3bK =
⌅ 3�L2R̂2

0n2

b2✏2

⇧
.

If we choose b := bn2/3c, then Tc =
⌅ 3�L2R̂2

0n2/3

✏2

⇧
. For the SAGA estimator (SAGA), one needs

to compute Gw0, which requires n evaluations of Gi. We conclude that (VFRBS) requires TGi :=

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

n +
⌅ 3�L2R̂2

0n2/3

✏2

⇧
evaluations of Gi. Moreover, since each iteration, it requires one evaluation of

J�⌘T , we need TT := K =
⌅
� · L2R̂2

0
✏2

⇧
evaluations of J�⌘T .

Remark D.1. For the SVRG estimator, if we choose � = 3
4 , then we have � := 0.0702. Hence,

we have ⌘ � 0.0702
p

bp
L . However, if we choose � := 0.55, then ⌘ � 0.1027

p
bp

L . If we choose
b = bn2/3c and p = n�1/3, then the latter lower bound becomes ⌘ � 0.1027

L .

For the SAGA estimator, if we choose � = 3
4 , then we have � := 0.0753. Hence, we get ⌘ �

0.0753b3/2

nL . However, if we set � := 0.55, then ⌘ � 0.1271b3/2

nL . If we choose b = bn2/3c, then the
latter lower bound becomes ⌘ � 0.1271

L .

Note that these lower bounds of ⌘ can be further improved by refining the related parameters in
Lemma D.1, and carefully choosing µ in the proof of Theorem 4.1.

E DETAILS OF EXPERIMENTS AND ADDITIONAL EXPERIMENTS

Due to space limit, we do not provide the details of experiments in Section 5. In this Supp. Doc., we
provide the details of our implementation and experiments. We also add more examples to illustrate
our algorithms and compare them with existing methods. All algorithms are implemented in Python,
and all the experiments are run on a MacBookPro. 2.8GHz Quad-Core Intel Core I7, 16Gb Memory.

E.1 SYNTHETIC WGAN EXAMPLE

We modify the synthetic example in (Daskalakis et al., 2018) built up on WGAN from (Arjovsky
et al., 2017) as our first example. Suppose that the generator is a simple additive model G✓(z) =
✓ + z with the noise input z generated from a normal distribution N (0, I), and the discriminator is
also a linear function D�(w) = hK�, wi for a given matrix K, where ✓ 2 Rp1 and � 2 Rp2 , and
K 2 Rp1⇥p2 is a given matrix. The goal of the generator is to find a true distribution ✓ = ✓⇤, leading
to the following loss:

L(✓,�) := Eu⇠N (✓⇤,I)
⇥
hK�, wi

⇤
� Ez⇠N (0,I)

⇥
hK�, ✓ + zi

⇤
.

Suppose that we have n samples for both w and z leading to the following bilinear minimax problem:

inf
✓2Rp1

sup
�2Rp2

�
L(✓,�) := f(✓) +

1

n

nX

i=1

⇥
hK�, wi � zi � ✓i

⇤
� g(�)

. (37)

Here, we add two convex functions f(✓) and g(�) to possibly handle constraints or regularizers
associated with ✓ and �, respectively.

If we define x := [✓, �] 2 Rp1+p2 , Gx = [r✓L(✓,�), �r�L(✓,�)] := �[K�, 1
n

Pn
i=1 K>(wi �

zi � ✓)], and T := [@f(✓), @g(�)], then the optimality condition of this minimax problem becomes
0 2 Gx+Tx, which is a special case of (NI) with Gx being linear. The model (37) is different from
the one in (Daskalakis et al., 2018) at two points:

• It involves a linear operator K, making it more general than (Daskalakis et al., 2018).
• It has two additional terms f and g, making it broader to also cover constraints or non-

smooth regularizers.

In our experiments below, we consider two cases:

• Case 1 (Unconstrained setting). We assume that ✓ 2 Rp1 and � 2 Rp2 .
• Case 2 (Constrained setting). Assume that ✓ and � stays in an `1-ball of radius r > 0,

leading to f(✓) := �[�r,r]p1 (✓) and g(�) := �[�r,r]p2 (�), the indicator of the `1-balls.

E.1.1 THE UNCONSTRAINED CASE

(a) Algorithms. We implement three variants of (VFR) to solve (37).

• The first variant is using a double-loop SVRG strategy (called VFR-svrg), where the full
operator Gws at a snapshot point ws is computed at the beginning of each epoch s. Then,
we perform bn/bc iterations k to update xk using (VFR), where b is the mini-batch size.
Finally, we set the next snapshot point ws+1 := xk+1 after finishing the inner loop.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

• The second variant is called a loopless one, LVFR-svrg, where we implement exactly the
same scheme (VFR) as in this paper and using the Loopless-SVRG estimator.

• The third variant is VFR-saga, where we use the SAGA estimator in (VFR).

We also compare our methods with the deterministic optimistic gradient (OG) in Daskalakis et al.
(2018), the variance-reduced FRBS (VFRBS) in Alacaoglu et al. (2022), and the variance-reduced
extragradient (VEG) in (Alacaoglu & Malitsky, 2021).

(b) Input data. For (NE), we generate a vector ✓⇤ from the standard normal distribution as our
true mean in Rp1 . Then, we generate i.i.d. samples wi and zi from normal distribution N (✓⇤, I)
and N (0, I), respectively for i = 1, 2, · · · , n in Rp1 and Rp2 , respectively. We perform two exper-
timents: Experiment 1 with n = 5000 and p1 = p2 = 100, and Experiment 2 with n = 10000
and p1 = p2 = 200. For each experiment, we run 10 times up to 100 epochs, corresponding to 10
problem instances, using the same setting, but different input data (wi, zi), and then compute the
mean of the relative operator norm kGxkk/kGx0k. This mean is then plotted.

(c) Parameters. For the optimistic gradient algorithm (OG), we choose its learning rate ⌘ := 1
L ,

where L is the Lipschitz constant of G, though its theoretical learning rate is much smaller. For
our methods in (VFR), if n = 5000, and we choose b := b0.5n2/3c = 146, and the probability
p := 2

n1/3 = 0.1170, then ⌘ := 1
L

p
M

= 0.1905
L . However, due to the under estimation of M , we

instead use a larger learning rate ⌘ := 1
2L for all three variants, and choose a mini-batch of size

b := b0.5n2/3c, and a probability p := 1
n1/3 for the loopless SVRG variant.

For the forward-reflected-backward splitting method with variance reduction (VFRBS) in Alacaoglu
et al. (2022), we choose its learning rate ⌘ := 0.95(1�

p
1�p)

2L as suggested by Alacaoglu et al. (2022).
However, we still choose the probability p = 1

n1/3 and the mini-batch size b = b0.5n2/3c as our
methods. These values are much larger the ones suggested in Alacaoglu et al. (2022), typically
p = O

�
1/n

�
.

For the variance reduction extragradient method (VEG) in Alacaoglu & Malitsky (2021), we choose
its learning rate ⌘ := 0.95

p
1�↵

L for ↵ := 1 � p from the paper. However, again, we also choose
p := 1

n1/3 and b = b0.5n2/3c in this method, which is the same as ours, though their theoretical
results suggest smaller values of p (e.g., p = 1

n). Note that if n = 5000, then the batch size b := 150
and the probability p := 0.062, but if n = 10000, then b = 239 and p = 0.0479.

(d) Experiments for K = I. We perform two experiments: Experiment 1 with (n, p) =
(5000, 200) and Experiment 2 with (n, p) = (10000, 400) as discussed above. We run each experi-
ment with 10 problem instances and compute the mean of the relative residual norm kGxkk/kGx0k.
The results of this test are plotted in Figure 3.

0 20 40 60 80 100
Number of epochs

10�14

10�12

10�10

10�8

10�6

10�4

10�2

100

R
el

at
iv

e
op

er
at

or
no

rm
kG

x
k
k/

kG
x

0
k

Experiment 1: n = 5000 and p = 200

OG

VFR-svrg

LVFR-svrg

VFR-saga

VFRBS

VEG

0 20 40 60 80 100
Number of epochs

10�14

10�12

10�10

10�8

10�6

10�4

10�2

100

R
el

at
iv

e
op

er
at

or
no

rm
kG

x
k
k/

kG
x

0
k

Experiment 2: n = 10000 and p = 400

OG

VFR-svrg

LVFR-svrg

VFR-saga

VFRBS

VEG

Figure 3: Performance of 6 algorithms to solve (37) on 2 experiments when K = I.

For these particular experiments, our methods highly outperform OG, VFRBS, and VEG. It shows
that VFR-svrg is the best overall, while LVFR-saga and VFR-svrg have a similar performance
in both experiments. Both the competitors: VFRBS and VEG do not perform well in this test and

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

they are much slower than ours and also OG. This is perhaps due to a small learning rate of VFRBS
although we choose the same mini-batch size b and the same probability p as ours.

(e) Experiments for K 6= I. Now, we test these 6 algorithms for the case K 6= I in our ex-
tended model (37), where K is generated randomly from the standard normal distribution. Then, we
normalize K as K/kKk to get a unit Lipschitz constant L = 1.

Again, we use the same configuration as in Figure 3 and also run our experiments on 10 problems
and report the mean results. We perform two experiments: Experiment 1 with n = 5000 and
p1 = p2 = p = 100, and Experiment 2 with n = 10000 and p1 = p2 = p = 200. The results are
reported in Figure 4.

0 20 40 60 80 100
Number of epochs

10�1

100

R
el

at
iv

e
op

er
at

or
no

rm
kG

x
k
k/

kG
x

0
k

Experiment 1: n = 5000 and p = 200

OG

VFR-svrg

LVFR-svrg

VFR-saga

VFRBS

VEG

0 20 40 60 80 100
Number of epochs

10�1

100

R
el

at
iv

e
op

er
at

or
no

rm
kG

x
k
k/

kG
x

0
k

Experiment 2: n = 10000 and p = 400

OG

VFR-svrg

LVFR-svrg

VFR-saga

VFRBS

VEG

Figure 4: Performance of 6 algorithms to solve (37) on 2 experiments when K 6= I.

We still observe that our algorithms work well and outperform their competitors. However, after
100 epochs, these methods can only reach a 10�2 accuracy level for an approximate solution.

E.1.2 THE UNCONSTRAINED CASE – VARYING b AND p

We can certainly tune the parameters to make our competitors (VFRBS) and (VEG) work better.
However, such parameter configurations are far from satisfying the conditions of their theoretical
results. For example, if we set p = 20p

n
, then both VFRBS and VEG work better. In particular, if

n = 5000, then we get p = 20p
n

= 0.28, which is several times larger than its suggested value
p = 1

n = 2 ⇥ 10�4.

Let us further experiment other choices of parameters (i.e. the mini-batch size b and the probability
p of flipping a coin) to observe the performance of these algorithms.

(a) Larger b. Figure 5 reveals the performance of these algorithms when we increase the mini-batch
size b to a larger value b = b0.1nc, while keeping the probability p = 1

n1/3 unchanged.

0 20 40 60 80 100
Number of epochs

10�15

10�13

10�11

10�9

10�7

10�5

10�3

10�1

R
el

at
iv

e
op

er
at

or
no

rm
kG

x
k
k/

kG
x

0
k

Experiment 1: n = 5000 and p = 200

OG

VFR-svrg

LVFR-svrg

VFR-saga

VFRBS

VEG

0 20 40 60 80 100
Number of epochs

10�15

10�13

10�11

10�9

10�7

10�5

10�3

10�1

R
el

at
iv

e
op

er
at

or
no

rm
kG

x
k
k/

kG
x

0
k

Experiment 2: n = 10000 and p = 400

OG

VFR-svrg

LVFR-svrg

VFR-saga

VFRBS

VEG

Figure 5: Performance of 6 algorithms for a large b = b0.1nc and a unchanged p = 1
n1/3 .

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Note that for n = 5000, we have b = 500 and p = 0.058, and for n = 10000, we have b = 1000
and p = 0.046. With these large mini-batches, our algorithms still outperform other methods, while
VFRBS and VEG are significantly slowed down. The double-loop variant of (VFR) with SVRG
performs best, while LVFR-svrg and VFR-saga have a similar performance.

(b) Medium b and larger p. Next, we set b to a medium size of b = b0.05nc (corresponding to
b = 250 for n = 5000 and b = 500 for n = 10000) and increase p = 1

n1/4 (corresponding to
p = 0.119 for n = 5000 and p = 0.1 for n = 10000). Then, the results are shown in Figure 6.

0 20 40 60 80 100
Number of epochs

10�15

10�13

10�11

10�9

10�7

10�5

10�3

10�1

R
el

at
iv

e
op

er
at

or
no

rm
kG

x
k
k/

kG
x

0
k

Experiment 1: n = 5000 and p = 200

OG

VFR-svrg

LVFR-svrg

VFR-saga

VFRBS

VEG

0 20 40 60 80 100
Number of epochs

10�15

10�13

10�11

10�9

10�7

10�5

10�3

10�1

R
el

at
iv

e
op

er
at

or
no

rm
kG

x
k
k/

kG
x

0
k

Experiment 2: n = 10000 and p = 400

OG

VFR-svrg

LVFR-svrg

VFR-saga

VFRBS

VEG

Figure 6: Performance of 6 algorithms for a medium b = b0.05nc and larger p = 1
n1/4 .

Then, we observe that LVFR-svrg and VFR-saga superiorly outperform the others. The perfor-
mance of the double-loop VFR-svrg is still similar to the previous tests since it is not affected by
p. In addition, VEG is now comparable with OG, but VFRBS remains the slowest one.

(c) Large b and small p. To see the effect of p on our competitors: VFRBS and VEG, as suggested
by their theory, we decrease p to p = 1

n1/2 (corresponding to p = 0.014 for n = 5000 and p = 0.01
for n = 10000) and still set b = b0.1nc, and the results are plotted in Figure 7.

0 20 40 60 80 100
Number of epochs

10�16

10�14

10�12

10�10

10�8

10�6

10�4

10�2

100

R
el

at
iv

e
op

er
at

or
no

rm
kG

x
k
k/

kG
x

0
k

Experiment 1: n = 5000 and p = 200

OG

VFR-svrg

LVFR-svrg

VFR-saga

VFRBS

VEG

0 20 40 60 80 100
Number of epochs

10�15

10�13

10�11

10�9

10�7

10�5

10�3

10�1

R
el

at
iv

e
op

er
at

or
no

rm
kG

x
k
k/

kG
x

0
k

Experiment 2: n = 10000 and p = 400

OG

VFR-svrg

LVFR-svrg

VFR-saga

VFRBS

VEG

Figure 7: Performance of 6 algorithms for a large b = b0.1nc and a small p = 1
n1/2 .

As we can observed from Figure 7, our methods highly outperform VFRBS and VEG, suggesting
that these competitors require a larger probability to select the snap-shot point wk for full-batch
evaluation. This is certainly not suggested in their theoretical results.

E.1.3 THE CONSTRAINED CASE

Next, we choose f(✓) = �[�r,r]p1 (✓) and g(�) := �[�r,r]p2 (�) as the indicators of the `1-balls
of radius r = 5, respectively. In this case, we implement three variants of (VFRBS): the double-
loop (VFR-svrg), the loopless (LVFR-svrg), and the SAGA (VFR-saga) variants to solve (NI)
and compare against 3 algorithms as in the unconstrained case. Using the same data generating
procedure as in the unconstrained case, we obtain the results as shown in Figure 8 when K = I.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Number of epochs

10�15

10�13

10�11

10�9

10�7

10�5

10�3

10�1

R
el

at
iv

e
op

er
at

or
no

rm
kG

x
k
k/

kG
x

0
k

Experiment 1: n = 5000 and p = 200

OG

VFR-svrg

LVFR-svrg

VFR-saga

VFRBS

VEG

0 20 40 60 80 100
Number of epochs

10�15

10�13

10�11

10�9

10�7

10�5

10�3

10�1

R
el

at
iv

e
op

er
at

or
no

rm
kG

x
k
k/

kG
x

0
k

Experiment 2: n = 10000 and p = 400

OG

VFR-svrg

LVFR-svrg

VFR-saga

VFRBS

VEG

Figure 8: Comparison of 6 algorithms to solve constrained instances of (37) on 2 experiments when
K = I (The average of 10 runs).

We see that the two SVRG variants of our (VFRBS): VFR-svrg and LVFR-svrg, as well as our
VFR-saga variant remain working well compared to other methods. They superiorly outperform
the three competitors.

Finally, we test our methods and their competitors for the case K 6= I as we done in Figure 4. Our
results are plotted in Figure 9, where we observe a similar behavior as in Figure 4.

0 20 40 60 80 100
Number of epochs

10�2

10�1

100

R
el

at
iv

e
op

er
at

or
no

rm
kG

x
k
k/

kG
x

0
k

Experiment 1: n = 5000 and p = 200

OG

VFR-svrg

LVFR-svrg

VFR-saga

VFRBS

VEG

0 20 40 60 80 100
Number of epochs

10�2

10�1

100

R
el

at
iv

e
op

er
at

or
no

rm
kG

x
k
k/

kG
x

0
k

Experiment 2: n = 10000 and p = 400

OG

VFR-svrg

LVFR-svrg

VFR-saga

VFRBS

VEG

Figure 9: Comparison of 6 algorithms to solve constrained instances of (37) on 2 experiments when
K 6= I (The average of 10 runs).

E.2 NONCONVEX-NONCONCAVE QUADRATIC MINIMAX PROBLEMS

We extend the nonconvex-nonconcave quadratic minimax optimization problem from the uncon-
strained setting (15) to the following constrained setting:

min
u2Rp1

max
v2Rp2

n
L(u, v) := f(u) +

1

n

nX

i=1

⇥
uT Aiu + uT Liv � vT Biv + b>

i u � c>
i v

⇤
� g(v)

o
, (38)

where Ai 2 Rp1⇥p1 and Bi 2 Rp2⇥p2 are symmetric matrices, Li 2 Rp1⇥p2 , bi 2 Rp1 , ci 2 Rp2 ,
and f = ��p1

and g = ��p2
are the indicator of standard simplexes in Rp1 and Rp2 , respectively.

Let us first define x := [u, v] 2 Rp as the concatenation of the primal and dual variables u and v,
where p := p1 + p2. Next, we define

Gix = Gix + gi :=

"
Ai Li

�Li Bi

#"
u

v

#
+

"
bi

ci

#
=

"
Aiu + Liv + bi

�Liu + Biv + ci

#
, and T :=

"
@f

@g

#
.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Then, we denote Gi :=

"
Ai Li

�Li Bi

#
, and gi :=

"
bi

ci

#
. Clearly, Gi(·) is an affine mapping from Rp to

Rp, but Gi is nonsymmetric. Let Gx := 1
n

Pn
i=1 Gix =

�
1
n

Pn
i=1 Gi

�
x + 1

n

Pn
i=1 gi = Gx + g,

where G := 1
n

Pn
i=1 Gi and g := 1

n

Pn
i=1 gi. Then, the optimality condition of (38) becomes

0 2 Gx+Tx, which is exactly in the form (NI). Clearly, if Ai and/or Bi are not positive semidefinite,
then (38) possibly covers nonconvex-nonconcave minimax optimization instances.

E.2.1 THE UNCONSTRAINED CASE

We consider the case f = 0 and g = 0, leading to an unconstrained setting of (38), i.e. T = 0 as
considered in (15) of the main text. Hence, the optimality condition of (38) reduces to Gx = 0,
which is of the form (NE).

(a) How to generate data? To run our experiments, we generate synthetic data as follows. First,
we fix the dimensions p1 and p2 and the number of components n. We generate Ai = QiDiQT

i for
a given orthonormal matrix Qi and a diagonal matrix Di = diag(D1

i , · · · , Dp1
i), where its elements

are generated from standard normal distribution and clipped its negative entries as max{Dj
i , "} for

j = 1, · · · , p1 and " := �0.1. This choice of Ai guarantees that Ai is symmetric, but possibly not
positive semidefinite. The matrix Bi is also generated by the same way. The pay-off matrix Li is
an p1 ⇥ p2 matrix, which is also generated from the standard normal distribution for all i 2 [n].
The vectors bi and ci are generated from the standard normal distribution for i 2 [n]. With this data
generating procedure, Gi is not symmetric and possibly not positive semidefinite.

(b) Algorithms. We again test 6 algorithms: two variants (double-loop SVRG – VFR-svrg)
and (loopless SVRG – LVFR-svrg) of (VFR), our (VFR) with SAGA estimator (VFR-saga),
VFRBS from Alacaoglu et al. (2022), VEG from Alacaoglu & Malitsky (2021), and OG (the standard
optimistic gradient method), e.g., from Daskalakis et al. (2018).

(c) The details of Example 1 in Section 5. First, we provide the details of Example 1 in Section 5.
The purpose of this example is to verify our theoretical results stated in Corollaries 3.1 and 3.2.

For the SVRG estimator, let us first choose � := 0.75, b := bn2/3c, and p := 1
n1/3 as suggested

by Corollary 3.1. Then, we can directly compute ⌘ := 1
L

p
M

, where ⇤ := 6.25(2�3p)+4.125p2

bp2 and
M = 2.375 + 11

3 ⇤. Clearly, if n = 5000, then ⌘ = 0.146153
L . Alternatively, if n = 10000, then

⌘ = 0.148934
L . These learning rates are used in our experiments plotted in Figure 1.

Similarly, for the SAGA estimator, we also choose � := 0.75 and b := bn2/3c. In this case,
by Corollary 3.2, we can also directly compute ⌘ := 1

L
p

M
. If n = 5000, then ⌘ = 0.146153

L .
Alternatively, if n = 10000, then ⌘ = 0.145693

L . These learning rates are used in VFR-saga.

Note that since the theoretical value of p in VFRBS and VEG is too small, we instead choose p :=
1

n1/3 and also b := bn2/3c as in our methods. Then, we compute the learning rate ⌘ of these methods
based on the formula given in Alacaoglu et al. (2022) for VFRBS and Alacaoglu & Malitsky (2021)
for VEG, respectively.

(d) Results for a different set of parameters. Unlike Example 1 in the main text, we choose the
parameters for these algorithms as in Subsection E.1. The 6 algorithms are run on 2 experiments.
The first experiment is with n = 5000 and p1 = p2 = 50, while the second one is with n =
10000 and p1 = p2 = 100. These experiments are run 10 times, corresponding to 10 problem
instances, and the average results are reported in Figure 10 in terms of the relative operator norm
kGxkk/kGx0k against the number of epochs.

Clearly, under this configuration, both SVRG variants of our methods work well and significantly
outperform other competitors. The loopless SVRG variant (VFR-svrg) of (VFR) seems to work
best, while our VFR-saga has a similar performance as VEG. We also see that VFRBS has a similar
performance as OG.

To improve the performance of these competitors, especially, VFRBS and VEG, one can tune their
parameters as in Subsection E.1, where the probability p of updating the snapshot point wk is
increased. However, with such a choice of p, its value is often greater or equal to 0.5, making

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

OG

VFR-svrg

LVFR-svrg

VFR-saga

VFRBS

VEG

OG

VFR-svrg

LVFR-svrg

VFR-saga

VFRBS

VEG

Figure 10: The performance of 6 algorithms to solve the unconstrained case of (38) on 2 experiments
(The average of 10 runs).

these methods to be closed to deterministic variants. Hence, their theoretical complexity bounds are
no longer improved over the deterministic counterparts.

E.2.2 THE CONSTRAINED CASE

We now adding two simplex constraints u 2 �p1 and v 2 �p2 to (38), where �p := {u 2 Rp
+ :Pp

i=1 ui = 1} is the standard simplex in Rp. These constraints are common in bilinear games. To
handle these constraints, we set f(u) := ��p1

(u) and g(v) := ��p2
(v) as the indicators of �p1

and �p2 , respectively. Under this setting, the optimality conditions of (38) becomes (NI), where
T := [@f, @g] = [N�p1

, N�p2
] with NX being the normal cone of X . Hence, the resolvent J�⌘T

reduces to the projections on the simplex product �p1 ⇥ �p2 .

Again, we run 6 algorithms for solving the constrained case of (38) using the same parameters as
Subsection E.2.1. We report the relative norm of the FBS residual kG⌘xkk/kG⌘x0k against the
number of epochs. The results are revealed in Figure 11 for two datasets (p, n) = (100, 5000) and
(p, n) = (200, 10000).

OG

VFR-svrg

LVFR-svrg

VFR-saga

VFRBS

VEG

OG

VFR-svrg

LVFR-svrg

VFR-saga

VFRBS

VEG

Figure 11: The performance of 6 algorithms to solve the constrained case of (38) on 2 experiments
(The average of 10 runs).

Clearly, with these experiments, both SVRG variants of our method (VFRBS) work well and signif-
icantly outperform other competitors. The loopless SVRG variant (VFR-svrg) of (VFRBS) seems
to work best, while our VFR-saga has a similar performance as VEG. Again, we also see that
VFRBS tends to have a similar performance as OG.

E.3 THE `1-REGULARIZED LOGISTIC REGRESSION WITH AMBIGUOUS FEATURES

This Supp. Doc. provides the details of Example 2 in Section 5 in the main text.

(a) Model. We consider a standard regularized logistic regression model associated with a given
dataset {(X̂i, yi)}N

i=1, where X̂i is an i.i.d. sample of a feature vector and yi 2 {0, 1} is the

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

associated label of X̂i. Unfortunately, X̂i is ambiguous, i.e. it belongs to one of m possible examples
{Xij}m

j=1. Since we do not know X̂i to evaluate the loss, we consider the worst-case loss fi(w) :=
max1jm `(hXij , wi, yi) computed from m examples, where `(⌧, s) := log(1 + exp(⌧)) � s⌧ is
the standard logistic loss.

Using the fact that max1jm `j(·) = maxz2�m

Pm
j=1 zj`j(·), where �m is the standard simplex

in Rm, we can model this regularized logistic regression into the following minimax problem:

min
w2Rd

max
z2Rm

n
L(w, z) := 1

N

PN
i=1

Pm
j=1 zj`(hXij , wi, yi) + ⌧R(w) � ��m(z)

o
, (39)

where `(⌧, s) := log(1 + exp(⌧)) � s⌧ is the standard logistic loss, R(w) := kwk1 is an `1-norm
regularizer, ⌧ > 0 is a regularization parameter, and ��m is the indicator of �m that handles the
constraint z 2 �m. This problem is exactly the one stated in (16) of the main text.

First, let us denote x := [w; z] 2 Rp as the concatenation of w and z with p = d + m, and

Gix :=

2

666664

Pm
j=1 zj`0(hXij , wi, yi)Xij

�`(hXi1, wi, yi)

· · ·
�`(hXim, wi, yi)

3

777775
and Tx :=

"
⌧@R(w)

@��m(z)

#
,

where `0(⌧, s) = exp(⌧)
1+exp(⌧) � s. Then, the optimality condition of (39) can be written as (NI):

0 2 Gx + Tx, where Gx := 1
n

Pn
i=1 Gix.

(b) Input data. We test our algorithms and their competitors on two real datasets: a9a (134 features
and 3561 samples) and w8a (311 features and 45546 samples) downloaded from LIBSVM (Chang &
Lin, 2011). For a given nominal dataset {(X̂i, yi)}n

i=1, we first normalize the feature vector X̂i such
that its column norm is one, and then add a column of all ones to address the bias term. To generate
ambiguous features, we take the nominal feature vector X̂i and add a random noise generated from
a normal distribution of zero mean and variance of � = 0.5. In our test, we choose ⌧ := 10�3 and
m := 10 for all the experiments.

(c) Algorithms. As before, we implement 3 variants of our method (VFRBS): VFR-svrg,
LVFR-svrg, and VFR-saga to solve (39). We also compare them with OG, VFRBS, and VEG. We
choose x0 := 0.5 · ones(p) in all experiments. We run all the algorithms for 100 epochs and report
the relative FBS residual norm kG⌘xkk/kG⌘x0k against the epochs.

(d) Parameters. Since it is very difficult to estimate the Lipschitz constant L of G, we are unable
to set a correct learning rate ⌘ in the underlying algorithms. We instead compute an estimation
L̂ := kX̂k, and then set ⌘ := !

L , by tuning ! for each algorithm. More specifically, after tuning, we
obtain the following configuration.

• For the three variants of (VFRBS): VFR-svrg, LVFR-svrg, and VFR-saga, we set
⌘ = 25

L̂
for a9a and ⌘ = 50

L̂
for w8a.

• For OG, we set ⌘ = 50
L̂

for a9a and ⌘ = 100
L̂

for w8a.

• For VFRBS, we choose ⌘ = 47.5(1�
p

1�p)

2L̂
for a9a and ⌘ = 95(1�

p
1�p)

2L̂
for w8a.

• For VEG, we select ⌘ = 47.5
p

1�↵
L̂

for a9a and ⌘ = 95
p

1�↵
L̂

for w8a with ↵ := 1 � p.

We still choose the mini-batch size b and the probability p of updating the snapshot point wk in
SVRG variants as b = b0.5n2/3c and p = n�1/3, respectively for all the algorithms.

REFERENCES

S. Adly and H. Attouch. First-order inertial algorithms involving dry friction damping. Math.
Program., pp. 1–41, 2021.

A. Alacaoglu and Y. Malitsky. Stochastic variance reduction for variational inequality methods.
arXiv preprint arXiv:2102.08352, 2021.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

A. Alacaoglu, A. Böhm, and Y. Malitsky. Beyond the golden ratio for variational inequality algo-
rithms. arXiv preprint arXiv:2212.13955, 2022.

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In Interna-
tional Conference on Machine Learning, pp. 214–223, 2017.

H. Attouch and A. Cabot. Convergence of a relaxed inertial proximal algorithm for maximally
monotone operators. Math. Program., 184(1):243–287, 2020.

H. H. Bauschke, W. M. Moursi, and X. Wang. Generalized monotone operators and their averaged
resolvents. Math. Program., pp. 1–20, 2020.

A. Beznosikov, E. Gorbunov, H. Berard, and N. Loizou. Stochastic gradient descent-ascent: Unified
theory and new efficient methods. In International Conference on Artificial Intelligence and
Statistics, pp. 172–235. PMLR, 2023.

A. Böhm. Solving nonconvex-nonconcave min-max problems exhibiting weak Minty solutions.
Transactions on Machine Learning Research, 2022.

R. I. Boţ, P. Mertikopoulos, M. Staudigl, and P. T. Vuong. Minibatch forward-backward-forward
methods for solving stochastic variational inequalities. Stochastic Systems, 11(2):112–139, 2021.

X. Cai, C. Song, C. Guzmán, and J. Diakonikolas. A stochastic halpern iteration with variance
reduction for stochastic monotone inclusion problems. arXiv preprint arXiv:2203.09436, 2022.

X. Cai, A. Alacaoglu, and J. Diakonikolas. Variance reduced Halpern iteration for finite-sum mono-
tone inclusions. arXiv preprint arXiv:2310.02987, 2023.

D. Chakrabarti, J. Diakonikolas, and C. Kroer. Block-coordinate methods and restarting for solving
extensive-form games. Advances in Neural Information Processing Systems, 36, 2024.

C.-C. Chang and C.-J. Lin. LIBSVM: A library for Support Vector Machines. ACM Transactions
on Intelligent Systems and Technology, 2:27:1–27:27, 2011.

P. L. Combettes and J. Eckstein. Asynchronous block-iterative primal-dual decomposition methods
for monotone inclusions. Math. Program., 168(1):645–672, 2018.

P. L. Combettes and J.-C. Pesquet. Stochastic quasi-Fejér block-coordinate fixed point iterations
with random sweeping. SIAM J. Optim., 25(2):1221–1248, 2015.

S. Cui and U.V. Shanbhag. On the analysis of variance-reduced and randomized projection variants
of single projection schemes for monotone stochastic variational inequality problems. Set-Valued
and Variational Analysis, 29(2):453–499, 2021.

C. Daskalakis, A. Ilyas, V. Syrgkanis, and H. Zeng. Training GANs with Optimism. In International
Conference on Learning Representations (ICLR 2018), 2018.

A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient method with support
for non-strongly convex composite objectives. In Advances in Neural Information Processing
Systems (NIPS), pp. 1646–1654, 2014.

J. Diakonikolas, C. Daskalakis, and M. Jordan. Efficient methods for structured nonconvex-
nonconcave min-max optimization. In International Conference on Artificial Intelligence and
Statistics, pp. 2746–2754. PMLR, 2021.

E. Gorbunov, H. Berard, G. Gidel, and N. Loizou. Stochastic extragradient: General analysis and
improved rates. In International Conference on Artificial Intelligence and Statistics, pp. 7865–
7901. PMLR, 2022a.

E. Gorbunov, N. Loizou, and G. Gidel. Extragradient method: O(1/k) last-iterate convergence for
monotone variational inequalities and connections with cocoercivity. In International Conference
on Artificial Intelligence and Statistics, pp. 366–402. PMLR, 2022b.

R. M. Gower, P. Richtárik, and F. Bach. Stochastic quasi-gradient methods: Variance reduction via
Jacobian sketching. Math. Program., 188(1):135–192, 2021.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

E. Y. Hamedani, A. Jalilzadeh, N. S. Aybat, and U. V. Shanbhag. Iteration complexity of
randomized primal-dual methods for convex-concave saddle point problems. arXiv preprint
arXiv:1806.04118, 2018.

F. Hanzely, K. Mishchenko, and P. Richtárik. SEGA: Variance reduction via gradient sketching. In
Advances in Neural Information Processing Systems, pp. 2082–2093, 2018.

S. Horváth, D. Kovalev, K. Mishchenko, P. Richtárik, and S. Stich. Stochastic distributed learning
with gradient quantization and double-variance reduction. Optimization Methods and Software,
38(1):91–106, 2023.

Y.-G. Hsieh, F. Iutzeler, J. Malick, and P. Mertikopoulos. On the convergence of single-call stochas-
tic extra-gradient methods. In Advances in Neural Information Processing Systems, pp. 6938–
6948, 2019.

A. N. Iusem, A. Jofré, R. I. Oliveira, and P. Thompson. Extragradient method with variance reduc-
tion for stochastic variational inequalities. SIAM J. Optim., 27(2):686–724, 2017.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In NIPS, pp. 315–323, 2013.

A. Juditsky, A. Nemirovski, and C. Tauvel. Solving variational inequalities with stochastic mirror-
prox algorithm. Stochastic Systems, 1(1):17–58, 2011.

A. Kannan and U. V. Shanbhag. Optimal stochastic extragradient schemes for pseudomonotone
stochastic variational inequality problems and their variants. Comput. Optim. Appl., 74(3):779–
820, 2019.

I.V. Konnov. Combined relaxation methods for variational inequalities. Springer-Verlag, 2001.

G. Kotsalis, G. Lan, and T. Li. Simple and optimal methods for stochastic variational inequalities, i:
operator extrapolation. SIAM J. Optim., 32(3):2041–2073, 2022.

C. J. Li, Y. Yu, N. Loizou, G. Gidel, Y. Ma, N. Le Roux, and M. Jordan. On the convergence of
stochastic extragradient for bilinear games using restarted iteration averaging. In International
Conference on Artificial Intelligence and Statistics, pp. 9793–9826. PMLR, 2022.

N. Loizou, H. Berard, G. Gidel, I. Mitliagkas, and S. Lacoste-Julien. Stochastic gradient descent-
ascent and consensus optimization for smooth games: Convergence analysis under expected co-
coercivity. Advances in Neural Information Processing Systems, 34:19095–19108, 2021.

Y. Luo and Q. Tran-Dinh. Extragradient-type methods for co-monotone root-finding problems.
(UNC-STOR Technical Report), 2022.

Y. Malitsky and M. K. Tam. A forward-backward splitting method for monotone inclusions without
cocoercivity. SIAM J. Optim., 30(2):1451–1472, 2020.

K. Mishchenko, D. Kovalev, E. Shulgin, P. Richtárik, and Y. Malitsky. Revisiting stochastic ex-
tragradient. In International Conference on Artificial Intelligence and Statistics, pp. 4573–4582.
PMLR, 2020.

M. A. Noor. Extragradient methods for pseudomonotone variational inequalities. J. Optim. Theory
Appl., 117(3):475–488, 2003.

M. A. Noor and E.A. Al-Said. Wiener–Hopf equations technique for quasimonotone variational
inequalities. J. Optim. Theory Appl., 103:705–714, 1999.

Z. Peng, Y. Xu, M. Yan, and W. Yin. ARock: an algorithmic framework for asynchronous parallel
coordinate updates. SIAM J. Scientific Comput., 38(5):2851–2879, 2016.

T. Pethick, O. Fercoq, P. Latafat, P. Patrinos, and V. Cevher. Solving stochastic weak Minty varia-
tional inequalities without increasing batch size. arXiv preprint arXiv:2302.09029, 2023.

H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathematical Statis-
tics, 22(3):400–407, 1951.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

R.T. Rockafellar and R. J-B. Wets. Variational Analysis. Springer-Verlag, 1997.

C. Song and J. Diakonikolas. Cyclic coordinate dual averaging with extrapolation. SIAM J. Optim.,
33(4):2935–2961, 2023.

C. Song, Z. Zhou, Y. Zhou, Y. Jiang, and Y. Ma. Optimistic dual extrapolation for coherent non-
monotone variational inequalities. Advances in Neural Information Processing Systems, 33:
14303–14314, 2020.

Q. Tran-Dinh. Sublinear Convergence Rates of Extragradient-Type Methods: A Survey on Classical
and Recent Developments. arXiv preprint arXiv:2303.17192, 2023.

Q. Tran-Dinh and Y. Luo. Randomized block-coordinate optimistic gradient algorithms for root-
finding problems. arXiv preprint arXiv:2301.03113, 2023.

V. Phan Tu. On the weak convergence of the extragradient method for solving pseudo-monotone
variational inequalities. J. Optim. Theory Appl., 176(2):399–409, 2018.

J. Yang, N. Kiyavash, and N. He. Global convergence and variance-reduced optimization for a class
of nonconvex-nonconcave minimax problems. arXiv preprint arXiv:2002.09621, 2020.

F. Yousefian, A. Nedić, and U. V. Shanbhag. On stochastic mirror-prox algorithms for stochastic
cartesian variational inequalities: Randomized block coordinate and optimal averaging schemes.
Set-Valued and Variational Analysis, 26:789–819, 2018.

38

	Introduction
	Problem statement and motivation
	Basic assumptions
	Contribution and related work

	Forward-Reflected Operator and Its Stochastic Estimators
	Forward-reflected operator
	Stochastic unbiased variance-reduced estimators for FRO

	A Variance-Reduced Forward-Reflected Method for (NE)
	The VFR method and its convergence guarantee
	Oracle Complexity Bounds of VFR using SVRG and SAGA Estimators

	A New Variance-Reduced FRBS Method for (NI)
	The variance-reduced FRBS algorithm and its convergence
	Oracle Complexity Bounds of VFRBS using SVRG and SAGA Estimators

	Numerical Experiments
	Conclusions
	A further discussion of related work
	The Proof of Technical Results in Section 2
	Proof of Lemma 2.1: Loopless-SVRG Estimator
	Proof of Lemma 2.2: SAGA estimator

	Convergence Analysis of VFR for (NE): Technical Proofs
	Convergence Analysis of VFRBS for (NI): Technical Proofs
	Details of Experiments and Additional Experiments
	Synthetic WGAN Example
	The unconstrained case
	The unconstrained case – Varying b and p
	The constrained case

	Nonconvex-Nonconcave Quadratic Minimax Problems
	The unconstrained case
	The constrained case

	The 1-Regularized Logistic Regression with Ambiguous Features

