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4  APPENDIX

4.1 ADDITIONAL RELATED WORKS

Machine unlearning and memorization. Many unlearning methods are proposed to effectively
erase information of selected samples. Several basic but well-known methods such as random
labeling of forget set (Graves et al., 2020) and explicit gradient ascent on the forget set (Warnecke
et al., 2023) lay foundation for current unlearning methods. More recent works extend on those
works to improve overall performance of unlearning. For example, SCRUB (Kurmanji et al., 2023)
simultaneously perform gradient ascent on forget set and gradient descent in the retain set to better
preserve performance of retain during unlearning. Influence based (Izzo et al., 2021) unlearning
propose idea that takes into account of the Hessian information of datasets to perform update of the
model weights. Saliency Unlearning (Fan et al., 2024) identity weights that react strongly to forget
set through magnitude of gradient and perform unlearning only on those weight to achieve better
performance. There are several theoretical studies about unlearning through the lens of the differential
privacy and provide performance guarantee. For example, Langevin Unlearning Chien et al. (2025)
study unlearning with privacy guarantee through projected noisy gradient descent. Sekhari et al.
(2021) studies unlearning problem and provide performance guarantee and the corresponding sample
complexity. There are also works discussing relationship between memorization and generalization.
Attias et al. (2024) discuss the fundamental trade-off between generalization and memorization under
information theory framework. Carlini et al. (2019) discuss different metrics for identifying sample
of different type (memorized, prototypical and so on). Feldman (2021) provide theoretical and
experimental analysis saying the memorization is necessary to achieve optimal performance. There
are also several works studying memorization with different tasks and model architectures (Biderman
et al. (2023); Li et al. (2025); Prashanth et al. (2025)).

4.2 LEMMAS AND PROOFS

Definition 6 (Full forget Hessian and retain Hessian).

1 1
Hp= =3 Hp Hp=o- > Hy, (13)
" reD, " feDy

Lemma 4.1. [;-ly norm inequality: For any x € R, ||z||o < ||z||1 < Vd||z||2

Lemma 4.2. Binomial coefficient: For all n,k € N such that k < n, the binomial coefficients

satisfy that
n n—1 n—1
()= G20+ () s

Lemma 4.3. For any matrix M € R"*", || M||p < ||M||s, < /n||M||r, where || M]||s, is p norm
of the spectrum of M, and the inequality is obtain through l,-lo norm inequality.

Lemma 4.4. For matrices My ...M;, € R™*™, Tr[M;...My] < ||M;...My||s, (see Bhatia (2013))

Lemma 4.5 (Vershynin (2018)). Consider n random gaussian vectors xi...x,, sampled i.i.d from
N(0,021,), there exist a constant Cy such that with probability 1 — 6,

n 2
; [l < nﬁaw + nC’Ll log(g) forn,d large enough. (15)

Lemma 4.6 (Vershynin (2018)). Consider n random gaussian vectors x1...x,, sampled i.i.d from
N(0, 02Id), there exist a constant C'y such that with probability 1 — 6,

- 44 2
Z l|lz:]|? < no?d + ng2 log(g) Jorn, d large enough. (16)

i=1
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4.3 PROOF OF LEMMA 2.1

Lemma 4.7 (Restated). Consider the unlearning update operator Ji defined in (3). Define a
sequence of PSD matrices { Ny} >0 by No = I and for k > 1:

= Cp Y HiNw1H; + Cp ) HiNi—y Hi, (17)
iEDf €D,

with C,., Cy as given in Definition 2. Also let My, = J?* + Ny. Then:

1. (Lower bound) ETr(J§ -+ JI_Jy_1-++Jo) > Tr(My). Moreover, if Tr(Ny) — oo as
k — oo, then E||wg||? — oo as well.

2. (Upper bound) If at each step Jy, is spectrally bounded as (1 — €)I = J = —(1 — €)I for
some € € (0,1) (i.e. all eigenvalues of J lie in [—(1 —€), 1 — €]), then

k—1
k
ETe(Jg - Jf oy Jeea o) <> <r>(1 —€)2k=1) Tr(N,.).
r=0

If in addition Tr(N,.) < € for all r, then E||w||> — 0 as k — oo (the unlearning update
converges in mean square).

Proof. As we are taking the expectation value over the calculation, we can effectively transform the
J, into following with random variables involved:

Jp = — nl—a Z H—i—na— Z H)= (- n(l—a); ZmrHr—l—na%foHf),

7€D7 k lEka reD, ieDf
(18)

where x,., x are the corresponding Bernoulli random variables with probability P(z, = 1) = £
and P(zy =1) = % and 0 otherwise.

To initiate the first step in characterize the difference between the unlearning and usually learning
process, we first calculate the E[J{ .J;] as follows:

E[JLJ) = E[(I-1(1-a)= Zer —|—7704—Za:fo I-n1l-a)= Zer +na—Z:cfo
TED €Dy ’I"ED i€Dy
1 1
=Bl -1 -a)5 > aH) (I —n(1 - )5 > a.H,)
reD, reD,.

1 1 1
+2(I = n(1 - a) Z o) (na Y apHy) + (g > apHy) (o > wpHp)l,
TGD iEDf ’iGDf iEDf
(19)

Here, we separate the above equation into three part and take the expectation accordingly:

13



Under review as a conference paper at ICLR 2026

BT —n(1—a) g 3 aH)T(T—n(l—a) 5 3 a,H,)

reD, reD,
1 9 5172
= E[(I —2n(1 —Q)E Z . H, +17°(1 - ) B Z x Hy Z x. H
reD, reD,. reD,

1 1
:I—2n(1—a)—ZH—|—E (1-a) (E)QZITHTZQSTH

" D, reD, r€D,

1
:I—Qn(l—a)—ZH—i—E (1—a)? Z ZxT/mTHH

M D, r'eD, reD,

1 1
=I-2m(1-a)— Y H +n*(l-a)? ZH )277_7 > H;

o reD,. 76D T Tor reD,
— 1 —2p(1 - - 2 - .

n(1—a)Hr +n*(1 — a)’Hg +1*(1 — @)® — T - Z
reD,
1
= (I =n(1 = a)HR)’ +7*(1 = 0)* (5 — — Z H.
o reD,
(20)

The random variables z, are independent to each other but not itself and therefore there exist
one additional terms in the final line. Also, Compared to the original sgd there exists additional
multiplication of the (1 — «)2. Next, we move on to the interaction term:

1
E2(I —n(1 - a) Z x,H,) ag > apHp) =2(I —n(1 — a)Hg) (naHr). (31
reD i€Dy

We can directly formulate this as above due to the fact that we assume the sampling process of retain
set and forget set to be independent. Last, the term arising due to the forget set:

1 1 1.1 1. ¥
E[(na= § zHp) T (na— E:a:fo)}zn ?HE +n?a?—(= — —) § H}. (22)
B B nf B nf
fEDf fEDf fEDf

We then integrate the three part and reformulate the Jacobian:

BlJ{ il = (I =n(1 = a)Hg)(I = (1 — a)HR) + 2(1 - 77(1 - Oé)HR)T(naHF) +ifa’ H,

nf
11 1
2 2 2 2 2
SR H 1—a)—(= - —
e L) Y -t - 1) 3
feDy reD,

= —-nl-—a)Hgr +naHp)(I —n(l —a)Hg +naHp)

nf

1.1 1
+n*a’—(5 — —) H7 +n(1—a)**—*
ng B ny f;;f ! ezz;
11 1, < 1,1 1. &
= J? +n’a®— (B——)ZHJ%—H]?(I—a)z———— ) > H?
nf " feDy oD,

(23)

where we define J = I — (1 — a)Hpr + naHp. During the whole work, we will be analyzing on
these terms to characterize the behavior of unlearning process.
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We use inductive proof for both first and second part of the theory and we begin the proof as following:
First part:

Base case: k=1

My = J? + O Z H? +C, ZH2 J? 4+ Ny = E[JT 1], 24)
feDy reD,

where the left term match the equation 23 and therefore the basis case is set. Now we go further
with inductive step.

Inductive step: k-1

E[JE T I g Jk W = E[JE My 1Jk}

1 1
=F[(I—-n(l-a) Z - H, +na— Z xpHp)Mip_1(I —n(1 fa)B Z xTHTJrnaE Z xyHy)l,

’LeDr feDf €D, €Dy
ny Ny
=JMy1J+Cs > HiMy 1Hp+Cp > H.My_1H,,
feDy reD,

N

= J(J2FD 4 Ny)J + C Z Hy (72070 4 Np) Hy +Cp Y Ho(J2E7) 4 Nya) Hy,

feDy reD,
nf nf
=J* 4+ Cp Y HyNyHy +C, Z H,Np_1H, + JNe 1 J+Cp > Hp*®YH, 4 C,
fGDf reD, fGDf

nf Ny
:Mk“V‘JNk;flJ—‘rCf Z HfJ2(k_1)Hf+CT Z I_L"JQ(}’C—I)I_IT7
feDy reD,
= M.
(25)

The last equality is due to the later three terms are both PSD by assumption as they are symmetric in
terms of left and right half of whole multiplication. As we can lower bound through M}, diverging
of Ny, will lead to M}, and cause the whole product to diverge.

Second part:

Base step: k=1.

1
1
EJI N =T +Ni2(1-e’T+Ni =) (T) (1- 7N, (26)
r=0

The J?2 is bounded by (1 — €)?I due to our assumption. Now, we start with the inductive step

15
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Inductive step: k-1.

k—1
-1
BT U T dia Jia] = BT (O (k )(1 — 21N T,
T
r=0
k-1
— - 1— Q(kflfr)NT
1y, )a-o )

ny [ k—1

k—1
+Cr > Hi(;J (k; 1) (1= e?*INGH; + C > Hi(D (k ; 1)(1 — e2=1=N N,

iGDf €D, r=0
k—1 k 1 k—1 k 1 nf o
—J - _\2(k—1—71) - \2(k—1—1) , , , ,
( ( . )(1 €) NT+> L )i=9 (Cy > HiN,H; +C, Y H;N.H,),
r=0 r=0 i€Dy i€D,
k—1 E_1 k—1
- o< T )(1 Q(k ,)N +Z( ) 6)2(k—1_,-)NT+17
k—1 E_1

- (1—6)2No+§(<k;1) + (kD)N + N,

r=1
k—1 k
_ )2
(1—¢) NOJF;(T)NTJFNk,
k
=X (k)(l €)= N,
r=0 r
(27)
O

The first and second inequality is due to the assumption in induction on previous step and we merge
the coefficient in the last step through lemma 4.2. Finally, if we further have that Tr[N,] < e Vr,
then

E[Te[JETE JE T T Tk 1],

¥ (F)a - mim)

N (28)

<
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4.4 PROOF OF THEOREM 2.2

Theorem 4.8 (Restated). Under the setup of Lemma 2.1, the unlearning process will diverge if the
mix-Hessian eigenvalue exceeds a threshold determined by the coherence. In particular, if

V2o
U((l—a)nf\/? + an, \/g) 7

then klim E|wg||* = oo. Equivalently, condition (7) guarantees the unlearning algorithm will
—00

Amax(D) > (29)

escape the original minima (diverge) due to the stochastic dynamics.

Proof. To simplify the notation, we use the following

Ly € {r, f}* (astring of length k over the alphabet {r, f}),

: . . (30)
Li[i] — thei-thsymbol of Ly, 1<i<k.

We know that based on part one lemma 2.1, we can lower bound the Nj to lower bound the
E[Te[JEJL .. JE Ty .. Jk—1Jk]]. First, We can write the overall sum as follows:

TI'[Nk]

Lye{r,f}* ax€DL, (k) ak—1€DL, [k—1] @1E€DL, [

S gFe = el = g > Y )Ti[Ha,...Ha Ha,...

kL U{Lyli)=r b 1{Lili]=f
_ Z CTZ 1 H{Ly[d] }C%: 1 H{Ly[d] }( Z Z Z )”Hakaal”%’

H P

Lye{r,f}* ax€DL, (k) ak—1€DL, (k—1] @1€DL, (1]
1 K {Lili]= Y {Lkli]=
> § oFe MR R M= 3o S Y ) Hay - Ha, |13
Lke{’l‘yf}k akEDLk[k] ak—leDLk[k_l] aleDLk[k]
1 iy UEklil=r} 320, H{Lelil=1}
O - R CUTE SR SRS S
Lke{’l‘;(f}k akEDLk[k] ak—leDLk[k_l] aleDLk[k]

T nyngd
m Lke{rf}" ar€Dyas€Dy

SF L {Leli)=r} ~>F, 1{L[i]=f}
= Z Z Z Cr * Cf ' * Tr[HaLk[k]“'HaLk[llP’

n nf d 5 < .
ar€Dray€Dy Lpe{rf}

SF {Lglil=rr  Th 11{Lku 1}

/ 2
Znnfd > Z (> me ’ Cy Hay g Ha, )

ar€D, afEDf LkE{r,f}’C
SE o {Lgl=ry 2R 1L li=r)

1 i= _
:nnfd SO @l Y O Haye Ha )

ar€Dras€Dy Lye{r,f}*
L 1
1, 1 1 Cc? i
- d Z Z 9k CQ—FCJ‘Q)%(TT[( 1 THa, + — d lHaf)k])2’
n nf ar€D, ayEDy 07"2 +CJ? Crz +Cf2
1 1
11 sz
= ()22 o (CF + ) Tr{(——— Ha, + ——— Ha,)"))?.
neny’ d2 ok a;j a;)f C,? +Cf2 C? —I—C; f
(3D

For the first and second inequality, we use lemma 4.3 and 4.4. For the third inequality, we reduce
the summationto >, ., > ., . As there are terms without D,. or D involved, we divided the
r€Dr Lvay€Dy

whole equation by n sn,. to ensure inequality. For the forth inequality, we use the lemma 4.1.

17
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Before we try to connect the relationship between the quantity to the above, we first reindex the
following:

1 1
1 C? Cy
. ——Ho, + L H,, = ZDT,«_ 32)
NyN a,€D,areD; C? + Cf2 C? + 02 NNy
1
5 2
where D,y = f"z — H,+ 1Cf H y and the subscript indicates that summing over corresponding
CP+C} CQ-s-C2
subset (retain and forget set). Now we proceed to relate different quantities
1 o C}
Tr[( ————Hq, + ———H,, )] = ZDrf
nrnvg aTGD ,ap€Dy C +C2 02 +02 nrnf
)k
= TL n ZZ ZDTfl rfa--Dr g Drpl,
f rfi rf2 rfy
1
ZZ ZHD DrleFHDrfl ng”F ||Drfk r?kaF?
n i rfi vf2 rfk ' (33)
k
= n n ZZ ZSTfk r 190 f1rfa S fror fis
f rfi vfz2 rfk
1
= d(——)"Tx(S"),
Nynyg
1
< d? FAL(S)*.
< @)

Therefore, we say that

1
(D] < d*( =) N ()", (34)
and we can have that
1 1
»ny)® Tr[DF »np)® Tr[DF 2 Cy
(n nf)2 kr[ ]S (n 712f) r[]C ]. max Ay ;C CHit — f _H,)F,
d?c d )\1(5) i€D,jeD; CTQ +C; CTQ +C;
1 N 35)
Cf 5
< Y Y T(——Ha + ——Ha,)"
ar€D, ay€Dy CV’rz +C; CT? +Cf2
Therefore, we can conclude that
11 1, 1 1 (nyns)k Tr[D¥)
T[N, > = —— —(C? 2 \2k NV f) L N2
I‘[ k] - dnfnr ok (O +Cf> ( d2qk ) )
L1 or, (N1 p)* A0 (D)
= F nyn, 2F (02 +C ) o2k ’ (36)
1 1 (nyny)2k N (D)2k
> Cz C o2k \Itritf .
=& ngng, Qk( +C7) o2k

Lastly, we can see that whether the trace diverge or not depend on those term with power of k.
Therefore, by rearranging and plug in the definition of the coefficient into those terms, we can have
that

2 r 1 1\ 1
M(D) > ‘fn“(a—a)nf(%—nuanr(’g— L) (37)
which is the condition for diverging behavior O

18



Under review as a conference paper at ICLR 2026

4.5 PROOF OF THEOREM 2.3

Theorem 4.9 ((Restate) Matching lower bound.). Suppose \nax (D) and o satisfy

20
)\max(D) é " 9
nCp(o+ns (g — 1))
where C|. = /C,/(\/C\ + \/Cy) (with C,.,Cy from Definition 2). Then there exists a choice of
PSD Hessians {H;} for the retain and forget sets such that the unlearning update converges (i.e.
limy, o0 E||wg||? = 0) under those Hessians.

(38)

Proof. We prove by construction in the following manner. We construct the retain set by setting
l

Hi=m-ee] Vi €[Z ] (m = (CL)~ 121 ang 7 =
f C p +Cf2

C'y are mentioned in definition 2.) Otherwise, we set the Hessian to be zero matrix. For the forget

set, we set all matrix to be zero matrix.

+ and the definition of C,. and

We first verify that the eigenvalue of mix-Hessian is indeed the assigned value A1 (D).

D=

LS o+ oHy = 720' -1 AlD)ne

Nynf F Nynyf F W

and we have that the construction indeed have the corresponding mix-Hessian eigenvalue.

ere] = \(D)ejel, (39)

We know verify that the coherence measure is of the assigned value 0. We first note that the element
of the coherence matrix is:

@7 v’f‘,?”l c [i] (40)
o ny

nf

Sy = \/Tr[(C;Hr + C}Hy)(CLH, + CyHyp)) = Com =

elseitis zero. We know that thereis n s - % = o nonzero elements for each row and column. We note

that we will also need to divide the coherence matrix by max, ; D, = max,; C.H, + C’}H =
A1 (D)n,.

n

. Finally, each element is 1 after this division, and we can get the eigenvalue of the matrix
to be o and verify that the construction is valid.

Now, we note that in our construction, we have each step J; to commute to each other since every
matrix involved is diagonal, so we can focus on one step to calculate the condition that lead to
diverging or converging and since we only intentionally set our matrix to be one dimensional, we
can study behavior on only one axis e; by plugging in the above as follows:

61E[J1J1}81—€1[I 277(1—a)HR—|—77 (1—04) HQ—I—?’] ZH2 €1,
=1 291 - )€ (D) + (- () (D) + T o -
41)

As we want to study the converging behavior, we want the above to be smaller than 1 to have repetitive
multiplication lead to converging.

L 2n(1 - 0)(C) " M (D) + 71— @)2(C) (D) + L (21— ) ()
— 2> 5(1—a)(C) MDY+ L (F - 1),
= 2> (1 -a)(@) " M(D)(o +ns(F ~ 1)),

= M) < Zep((1=a)(o+ny (1)),
(42)

19
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4.6 PROOF OF THEOREM 4.6

Theorem 4.10 (Restate). Under the data model of Definition 5 and the two-layer ReLU CNN defined
above, suppose the network is trained to near-zero training loss. Then with probability at least
1 — 80 (over the random draw of the dataset), the largest eigenvalue of the coherence matrix S for
the retain/forget split satisfies

Amax(S) < o(n,. ny do? [( 7+ \/F}V (SNR)? + (C”. + C})D , 43)
max Amax(Dyrf) < O((Cr. 4 C})(do*(SNR)? + 1)), (44)

where C!. and C', are the normalized retainfforget weight fractions as defined in Theorem 2.3.
Consider division of two quantities and we can find that for small SNR limit and large SNR limit:

2,./C.C"
. )\max(s)upper o . )\max(s)upper o T f
N0 maneyy DI — O) ey D = Qs (L)) @9)

Proof. We first calculate the gradient of one sample respective to one of the w; ..

Oly; - (W, 2i) _

J
dw; on Mg >0) Bt Lgw, 60>0y Vit &i)- (46)
1T

There are several index in the above equation (i.e., j and r) which we use to take derivative with
respect to a specific feature weight vector. We will continue to use this notation for future calculation.
Now, we move to calculate the second derivative with respect to two different feature of weights for
data ¢ as follows:

O*U(yi - (W, i) _

Owj rOw;or

i’

G0 Mwsrwemy>0r 8+ Lgw,0>00 i &) (Lt ooy >0y B+ Ly 6> i &

m2

(47)

The above is one block of the Hessian. In the following, we will simplify the notation for indicator
function (derivative of ReLU) to 1,/ ..., and 1;/ ./ ¢ to ease the heavy notation. To calculate the
coherence matrix, we need to calculate trace of Hessian product for different sample,

20
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PU(yi - (W, ) O*Lys - f(W, )
Tl HHi] = Z ol Ow; rOwjr 1 Qw;s prOw; )

7,3’

Gl T

= i D W b+ Lire vk &) Ly 4 Lire, - 4i- &)
Gt

(Lo o+ Ly e, Y &) (L o - 1+ Ly - Uk - &),
é/lf//
( Z Ljrypnly, r,yru)HNHQ) + (Z 1j,r,yk~u1j,r,§k)NT§k+

Jr

Z]‘JTka &) Tt + leT& J?”El)gk&)a (43)
(le vl I2) + (O Ly Livar e 87 €t

j/ 7./
le R SR Te+ le r &Ly ”'aﬁz)gkgl)a

J’r’ J’r’
/1 ot

7l
< 4Ll + T+ 1T + 1676,

4
< ﬁ(HMP + "]+ [BTé] + 1€ )2

We now analyze each term in the coherence matrix.

Sviturraty =\ T(CLHy, + CyHy, ) (CLHy, + CyHy,)),

_ \/Tr[CQ H, H,,) + Tt[CLC} Hy, Hy,) ) + TY[CLCYHy, Hyy) + Te[CRHy Hy .

< VIICPH, ] + [ TCLCHy Hy, ) 4\ THCLC) Hy, Hy) + [ T{CR Hy, H,

(49)
where the C/. and C’} are respectively the normalized coefficient mentioned in the previous section.

As our goat is to estimate the largest eigenvalue of the coherence matrix and its relation between
different variables in the design. To estimate the largest eigenvalue, we incur e-net that is used
random matrix theory

A1 = sup (z,Sz). (50)

llzll=1

For one vector =, we can write the expression as summation:

<‘r) S‘r> = Z STlfll,T‘sz/xf‘lfl/xT‘sz/7

r1f1r,m2 for

< Y (VDOICPH, HT2]+\/TY[C;C}HTIHfQ,]—s-\/Tr[C;C}Hfl,HTz]-i-ﬂTr[C?Hf

r1fir,m2 for

61V

We can estimate the above through the random matrix theory and upper bound the largest eigenvalue
through the elementwise calculation that we set up and use the tail bound for each random variable to
provide relationship between controlled variable and the resulting largest eigenvalue. We first separate
the discussion into several cases. First case, when we have four different samples r1, o, f1, f4, we
can have that

21
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(VIXCPH, Hy] + | TCLCy Hy Hy, ) 4\ [TY(CLCY Hy, He] + T CPHy, o g, g, Ty
2 2
< (OBl + 17 gl + 117 6ral + |ER&n2l) + /OLCY — (IR + 117 €| + |67 7] + ERE 2],

2 2
+ 3/ CLCT — (Il + [ ool + 17 €|+ [€F o) + O — (il + 117 Epor | + I Ep |+ €50 Er2 DT g
< (WOl + 1/ Crlipll + VCEAl + 1/ CHllEr DV Crllpll + 1/ Chllpll + VColI&2ll + 1/ CHlIE 2 Dary £ Tra gy -
(52)

Our aiming in the above is to establish relationship between different variables used in the CNN
network. In the above, we can see that we can upper bound the eigenvalue by the cross product of the

vector vyp = /Ol pl[+ 1/ Chllpll +/CrlI&r [l + 4 /CF €71 || since the coherence matrix is upper

bound elementwise by the vector. (i.e., A1(S) < A1 (vvT) = ||[vTv||?) and this turns the estimation
of the eigenvalue into estimation of the magnitude of the vector.

Now, we analyze the vT,

Vo =3 (VOIpl + \/Chllel + VOl + \/CHIE NG/ Crllaell + 1 /Crllll + V/Crllém | + 1 /ChliEm 1D,

rf

= S (VClull +/ChIu? + 2V/Crllul + /CHIBD/Clgnll +/Clgr 1) + (VCrllgnll +/Chligrr 1),
rf

= neny (VO il + 1 /Crlll)? +2(v/Crllull + \/Chllul) D (VCrlgnl + ﬁII&fyHH

rf
!/
Y (CllEI? + Cllggv 17 +1/CrC% g lllép ).

rf

(53)
We analyze different terms as follows:
/ ! / / —
2(v/Crllall + 4/ CHlul) D (VO +/Crligrll) =
rf
2(/Colll + \/Chlml) (g D VOl + e Y1 /CHlIE ).
r f
(54)

We know that ||&,1]], [|£s1/]| are chi-distribution which is also sub-exponential distribution. We
can utilize the tail bound for summation of the sub-exponential random variables to obtain high
probability bound on the summation. We can have that with probability 24,

2(v/Crllll +/Crllul) D (VCrlnll + \/C>}||ff1’||)7

rf
; ; N2 2 nyo? 2
<2(/Clpll + C’fHuH)(nmf\/C{na\/g+nan/C’fm/ngnf 8 log(5)+nr o log(g)).
1 1
(55
Now, we move to the next chi-square distribution terms C;. 3 (&, [|*, C% X_ [|€[|*. By using the
lemma 4.6, we can have that with probability 1 — §,
roid 2
€ 6P < Chtmpmoo®d-+ gy 22 tog(3)), 56

rf
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and so is the C' Y [|4/1°,

3 Nenll? < Chngn,od +n,
rf

log(g)). (57
The term > . /C1.C%||&1][[|€f1/]| can also be dealt with in the same manner,

VOO Y lnlllién Il < /OO lE Qg I,
rf r f

<\/@(nr\/§ar((;i&/12))/2)+ ”él log(3) (ny V3o ((d(g/;))m)ﬂ/"gjzl e(2)).
(58)

To simplify the analysis, we only keep terms with magnitude at least n¢n,.. We will reach that with
probability 1 — 64

M () < O(ngm (VT + [Pl + VAT + [ Pl (U2
’ 2 2 e T((d+1)/2)
+(CL+ChoPd + 20 m(w) ).

To see how signal noise ratio (SNR = %) interact with the right hand side, we extract a factor o2d
from all terms involved:

(59)

M(8) < O(nsmedl(/5 +JEpsNRy + 227+ Jopr S sy

+(CL+Cp) + % C’;C}(W)z))7

< O(nfnTO'2d(( ClL+ \/E})?(SNR)Q +(CL+ C}))).
(60)

where in the last equation, we omit terms with d in the denominator as it tends to be large when we
consider larger network.

For the second part of the proof, we know that H; have block structures as follows:

Plyi - f(W, i)

Bwj T@wj/m/

O 2 (gm0} * B+ L0} ¥ &) (LG o) >0 B+ Lguyg0) -9 &)
(61)

We can see that the whole H; matrix can be regarded as outer product of vector vv” where we have
v, being

l//
Vi = (1{<wj,r,yi~u>>o} B+ L, e >0) Vi G- (62)

23



Under review as a conference paper at ICLR 2026

We can immediately know that the eigenvalue of the H; will be upper bounded by v” v as follows:

U

5 > (Lo >0y - B+ Ly, e50) - Ui - &)
jr

/
)

/\max(Hi) < UTU =

m

4
5> Ly ey >0y |12 + L, e 501 112,

<2
m -
Jar
" (63)
< 2.5 2 el + D&l
gr
1
<23l + 6,
jr
= C(llpl® + 1€,
where we use C' to encompass all constants.
To bound the max, f Amax(Drf) = Amax(CrH, + C’}Hf), we can use the following:
)\max(Drf) == )\max(C:oHr + C}Hf) S O;Amax(Hr) + C}Amax(Hf)~ (64)

Then for any § € (0, 1), with probability at least 1 — §, we can upper bound the the H, with the
following (||¢;]| is subexponential):

2 12) < 2 2 nr ny
max C(lul? +161°) < € (IlP +0*[a + 2yfarog ™ + 2108 ] ). o

< O(lp]* + o*d).

Similarly, we can have the bound on H ¢ which is of same order and jointly we can have that with
probability 1 — 83

Amax(Drg) < O((Cp. + C)(|ull? + 0°d)) = O((C). + C)o*d(SNR? + 1)) (66)

Last is the division and take the limit and we can have the following:

2,/CLC
Amax(s)upper o . )\max(S)UPper _ rf
S0 e,y DI~ OU) Gl e, ppeer = Qs+ ) (6

O
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