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Abstract
Recent progress in self-supervised learning has demonstrated promising results in
multiple visual tasks. An important ingredient in high-performing self-supervised
methods is the use of data augmentation by training models to place di�erent
augmented views of the same image nearby in embedding space. However,
commonly used augmentation pipelines treat images holistically, ignoring the
semantic relevance of parts of an image—e.g. a subject vs. a background—which
can lead to the learning of spurious correlations. Our work addresses this problem
by investigating a class of simple, yet highly e�ective “background augmenta-
tions", which encourage models to focus on semantically-relevant content by
discouraging them from focusing on image backgrounds. Through a systematic,
comprehensive investigation, we show that background augmentations lead to
improved generalization with substantial improvements (∼1-2% on ImageNet)
in performance across a spectrum of state-of-the-art self-supervised methods
(MoCo-v2, BYOL, SwAV) on a variety of tasks, even enabling performance on
par with the supervised baseline. We also �nd improved label e�ciency with
even larger performance improvements in limited-labels settings (up to 4.2%).
Further, we �nd improved training e�ciency, attaining a benchmark accuracy
of 74.4%, outperforming many recent self-supervised learning methods trained
for 800-1000 epochs, in only 100 epochs. Importantly, we also demonstrate that
background augmentations boost generalization and robustness to a number of
out-of-distribution settings, including ImageNet-9, natural adversarial examples,
adversarial attacks, ImageNet-Renditions and ImageNet ReaL. We also make
progress in completely unsupervised saliency detection, in the process of
generating saliency masks that we use for background augmentations.

1 Introduction
As we approach “solving" ImageNet [85] in the supervised setting, recent progress in Self-Supervised
Learning (SSL) has demonstrated promising results in multiple visual tasks. SSL methods such as
SimCLR [15], MoCo-v2 [43, 18], BYOL [36], and SwAV [13] have risen to prominence because they
are able to produce high-quality representations that rival supervised representations on vision
tasks. These methods di�er in the details of their approach—e.g. some are instance based (MoCo-v2,
SimCLR) while others are cluster based (SwAV), some explicitly utilize negatives while others do
not (BYOL), and some use a memory bank (MoCo-v2). In fact, competitive performance has recently
been achieved by SimSiam [17] without any of these additions. However, a central ingredient
common to all high performing SSL methods is their reliance on data augmentation as a means of
encoding desired invariances. The choice of data augmentation is critical as augmentations and
the invariances they encourage are the primary teaching signal these methods utilize to create
semantically meaningful representations.
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In fact, Chen et al. [15] explored a large space of standard augmentations and demonstrated that the
choice of these augmentations can have dramatic e�ects on performance. However, this standard
suite of augmentations used in most SSL methods was modi�ed from augmentations designed for
supervised approaches. It may therefore be desirable to design new augmentation schemes for SSL
that speci�cally target semantic focus for this setting.
A parallel line of inquiry has found that supervised models often rely on non-semantic features that
may nonetheless be predictive at test time. Models often overly focus on backgrounds [104, 87, 7],
rely on high-frequency information [57, 53], and texture over shape [28, 29, 49]. Many approaches
have aimed to make representations more semantic, e.g. by increasing robustness to distortions
or adversarial perturbations, by decreasing reliance on backgrounds [104, 121], and by controlling
texture bias [49, 65].
Taking inspiration from these works largely in the supervised setting, our aim in this work is to ex-
plore approaches to enable SSL to focus on semantic content by encouraging background invariance.
To do this, we study a class of augmentations we call background augmentations (BG_Augs). We
conduct a systematic, extensive investigation of BG_Augs across a) a spectrum of high performing
SSL methods, b) training durations, c) 3 variants (BG_RM, BG_Random, BG_Swaps) of BG_Augs, d)
di�erent foreground extraction methods used in BG_Augs, and e) a wide range of downstream tasks.
Improving semantic focus should result in more generalizable and robust representations—thus, a
main focus of our work is evaluating SSL methods (with and without BG_Augs) in these settings and
characterizing improvements. We highlight contributions most relevant to this workshop below:
Improved Generalization, Robustness, Label & Training E�ciency on ImageNet. General-
ization. We show sizeable performance improvements for all view-invariant SSL methods, yielding
consistent improvements of ∼1-2% in linear evaluation on ImageNet; these improvements allow
us to reach an accuracy of 76.1% (63.8%) on ImageNet (ImageNet-v2), on par with the standard
supervised baseline 76.4% (63.8%) for ResNet-50. Robustness. We show that BG_Augs also improve
robustness to adversarial attack.
Training E�ciency. Further, BG_Augs enable us to reach a benchmark accuracy of 74.4%, outper-
forming Barlow Twins [112] trained for 1000 epochs, MoCo-v3 [19] (800 epochs) and BYOL (1000
epochs), recent state-of-the-art SSL methods, in only 100 epochs; this result takes a large step
forward in reducing the amount of training required for competitive performance in SSL. Label
E�ciency. In the limited-labels setting, we show the performance bene�ts are even larger, e.g. in
the 1% label setting, our novel method BG_Swaps confers a 4.0% accuracy gain for MoCo-v2 and in
the 10% label setting BG_Random enables BYOL to reach 72% accuracy using only 10% of labels.
Improved Generalization Beyond ImageNet. We �nd that BG_Augs (especially BG_Swaps)
confer a signi�cant performance boost in distribution-shift settings, including ImageNet-9 (shift
in foreground-background statistics), ImageNet-A (natural adversarial examples), ImageNet-R
(ImageNet-Renditions), against adversarial attacks, and ImageNet ReaL.
Scienti�c Insight. We investigate the impact of BG_Augs in a) the supervised setting and b)
RotNet, an SSL method not based on view-invariance and �nd that BG_Augs do not confer a
performance gain, suggesting that BG_Augs are bene�cial in preventing shortcuts based on
background when there is a similarity comparison between images. Our results suggest there may
be bene�t to designing augmentations tailored to the view-invariant SSL setting. Separately, we
also gain insight into how BG_Augs improve representations via systematically perturbing the
quality of the augmentations as well as by probing the shape-bias of the models.
Improvement in Saliency Detection. To obtain foreground masks used for BG_Augs without
any supervision, we make progress in completely unsupervised saliency detection, matching or
outperforming weakly supervised as well as many supervised saliency detection methods.

2 Methods

Self-Supervised Learning Methods. We consider a diverse test bed of high performing SSL
methods: MoCo-v2 [18], BYOL [36], and SwAV [13] to ensure generality of our results. As in the
respective original works, we use a standard ResNet-50 as the default architecture in all experiments
(SSL and supervised) unless otherwise noted. A small subset of our experiments are based on
RotNet [32], a non view-invariant SSL method, using an AlexNet [60] architecture following the
respective original work. All reported numbers are based on our reproduction unless otherwise
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Figure 1: Schematic of di�erent types of background augmentations. BG_RM (left) replaces back-
grounds with grayscale, e�ectively removing any background information. BG_Random (middle) replaces
backgrounds with random backgrounds, creating a random signal which is uncorrelated with the foreground.
BG_Swaps (right) exploits the structure of contrastive learning to ensure that the query and the positive have
the same foreground but di�erent backgrounds, while the query and one negative have matched backgrounds.
As a result, BG_Swaps makes it so models are penalized for focusing on the background.

Method Epochs ImageNet acc.
Orig. ReaL

Supervised 90 76.4 82.7
PCL [63] 200 67.6 -
CMC [95] 200 66.2 -
SimCLR 200 64.3 -
MoCo 200 60.6 -
SeLa [3] 400 61.5 -
MoCo-v2 200 67.5 -
MoCo-v2 (repro.) 220 67.7 74.7
MoCo-v2 + BG_RM 220 69.1±0.0 (+1.4) 76.2±0.0 (+1.5)
MoCo-v2 + BG_Swaps 220 69.5±0.1 (+1.8) 76.6±0.1 (+1.9)
DiLo (MoCo-v2) [121] 200 67.9 (+0.2) -
BYOL 300 72.5 -
BYOL (repro.) 300 72.7 79.6
BYOL + BG_RM 300 73.3±0.2 (+0.6) 80.4±0.3 (+0.8)
BYOL + BG_Random 300 73.9±0.1 (+1.2) 81.0±0.0 (+1.4)
SwAV 100 72.1 -
SwAV (repro.) 100 72.2 79.1
SwAV + BG_RM 100 73.6±0.1 (+1.4) 80.6±0.1 (+1.5)
SwAV + BG_Random 100 73.4±0.0 (+1.2) 80.4±0.1 (+1.3)

Method Epochs ImageNet acc.
Orig. ReaL

Supervised 90 76.4 82.7
Longer Training

PIRL [71] 800 63.6 -
SimCLR 1000 69.3 -
Barlow Twins [112] 1000 73.2 -
MoCo-v2 800 71.1 -
MoCo-v2 (repro.) 800 71.0 78.0
MoCo-v2 + BG_RM 800 71.9 (+0.9) 78.9 (+0.9)
MoCo-v2 + BG_Swaps 800 72.2 (+1.2) 79.2 (+1.2)
BYOL 1000 74.3 -
BYOL (repro.) 1000 73.8 80.5
BYOL + BG_RM 1000 74.6 (+0.8) 81.3 (+0.8)
BYOL + BG_Random 1000 74.8 (+1.0) 81.7 (+1.2)
SwAV 800 75.3 -
SwAV (repro.) 800 74.9 81.4
SwAV + BG_RM 800 76.1 (+1.2) 82.5 (+1.1)
SwAV + BG_Random 800 76.1 (+1.2) 82.6 (+1.2)

Figure 2: Background augmentations confer large performance bene�ts in linear evaluation on
ImageNet across a spectrum of SSL methods using the original or reassessed labels. For shorter
training, we report metrics averaged over 3 independent runs, re�ecting robust improvements. Number of
training epochs are chosen to be consistent with previously published results. We highlight performance
gains due to background augmentations relative to our reproductions, but also include published baseline
numbers for comparison. Notation: Mean±SEM (Standard Error of the Mean). Best results are in bold.
Note that BG_Swaps does not apply to BYOL and SwAV as they do not use negative instances. In the case
of MoCo-v2, we show BG_Swaps > BG_Random, see Appendix D.3.

stated. Where possible, we follow the protocol from the original works. We show results on
view-invariant SSL methods here, and relegate results on RotNet to Appendix D.10.

Background Augmentations. We apply all background augmentations (BG_RM, BG_Random,
BG_Swaps) after all other augmentations in the respective augmentation pipeline. While we
apply BG_Augs to (views of) images, when it is clear from context, we will refer instead to the
corresponding embeddings q, k+, k−. We apply all BG_Augs probabilistically. BG_Augs are only
applied during self-supervised pre-training and are not applied when training linear classi�cation
layers. We use foreground masks generated via saliency detection for BG_Augs. Importantly,
while high performing saliency detectors are often trained with supervision directly using GT
saliency annotations (e.g. U2Net, Qin et al. [79]) or rely on ImageNet pretrained backbones (e.g.
DeepUSPS, Nguyen et al. [73])—and thereby implicitly on human annotation, we trained our
saliency detector without human annotation at any stage in the pipeline, thus our benchmarks
are truly self-supervised. Moreover, our unsupervised saliency detector performs on par or better
than weakly supervised or even some supervised saliency detectors (see Appendix C). Below, we
describe the details of each of the BG_Augs we study.
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In BG_RM, the background of an image is removed and replaced with a solid grayscale background.
See illustrative examples in Figure 1 (left). In BG_Random, we replace the background with a
background from a di�erent image in the same batch. In BG_Swaps, we generate a negative image
with a background matched to that of the query q. Substantial noise is tolerable in the quality of
the foreground masks (Appendix I). More generally, there is substantial �exibility and tolerance
in instantiating the main ingredients of BG_Augs, which we expand on in Appendix J. We generate
all foreground masks and tiled backgrounds o�ine and cache them to increase throughput at train
time; BG_Augs can be highly e�cient, adding minimal to no overhead, e.g. our implementation
of SwAV+BG_RM is only ∼2% slower than default.

3 Results
Shrinking the Gap Between SSL and Supervised Learning. We �nd that BG_Augs result in
large improvements in performance in linear classi�cation accuracy on ImageNet. Our results
hold across a spectrum of SSL methods, training durations and variants of BG_Augs, see Figure
2. Notably, SwAV+BG_Augs performs on par with the supervised baseline on ImageNet-ReaL
(and on ImageNet-v2, see Appendix E.3). Generally, we �nd that using natural backgrounds for
augmentations is better than using grayscale backgrounds, since the latter are more OOD (detailed
ablations in Appendix D.2, D.4).

Method Epochs Accuracy
Supervised baseline 90 76.4

Fix early opt. issues
SwAV 100 72.6
SwAV + BG_RM 100 74.1 (+1.5)
SwAV + BG_Random 100 74.1 (+1.5)

+Longer Training
SwAV 800 75.0
SwAV + BG_RM 800 76.1 (+1.1)
SwAV + BG_Random 800 76.1 (+1.1)

Method Epochs Accuracy
Supervised baseline 90 76.4
SimCLR† 100 66.5
MoCo-v2† 100 67.4
BYOL† 100 66.5
SwAV† 100 72.1
SwAV (repro.) 100 72.6
SwAV++ (ours) 100 74.4 (+1.8)

Longer Training
Barlow Twins† 1000 73.2
MoCo-v3† 800 73.8
BYOL† 1000 74.3

Figure 3: Improved Training E�ciency. We diagnose a) early optimization issues and b) sub-optimal
interactions between background augmentations and SwAV. Fixing (a) improves performance across the board
(le�). We show the impact of �xing (a) and (b), denoted SwAV++ (right), �nding further improved performance
and training e�ciency, outperforming Barlow Twins, MoCo-v3, BYOL trained for 800-1000 epochs in only
100 epochs. Our results take a large step forward in bringing training e�ciency of SSL methods closer to that
of supervised learning, enabled by BG_Augs. Note that we highlight the (∆) with respective to our SwAV
baseline that is better than the o�cial number. † = from literature.

Improved Training E�ciency. One important limitation of current SSL methods is their training
ine�ciency: it is typical to train for 800-1000 epochs for competitive performance in contrast
with supervised learning (90 epochs). BG_Augs enable markedly improved training e�ciency.
Further, we diagnose early optimization di�culties and sub-optimal interactions of background
augmentations with SwAV and alleviate them (Appendix D.6), resulting in further improved
performance and training e�ciency (denoted SwAV++), see Figure 3. These improvements enable
outperforming many recent state-of-the-art SSL methods (Barlow Twins, MoCo-v3, BYOL) trained
for 800-1000 epochs in only 100 epochs.
Limited-Labels Setting. While linear evaluation using 100% of ImageNet labels is a standard
evaluation metric, it is also somewhat impractical due to the large amount of labels involved—after
all, one of the more important goals of SSL is good performance when labeled data is highly
limited. For 1% and 10% ImageNet labels, in linear evaluation and �netuning settings, we �nd large
performance bene�ts showing improved label e�ciency of representations learned using BG_Augs,
see Figure 4. Note that our results for BYOL already improve upon the published baseline and
BG_Augs further improve performance.
ImageNet for Generalization Beyond ImageNet. BG_Augs enable increased focus on semantic
content and decreased focus on non-robust predictors for classi�cation (e.g., Ilyas et al. [53]), thus,
we expect that this would also lead to improved performance on out-of-distribution downstream
tasks. In particular, we expect gains on those tasks which have proven especially challenging
for supervised networks. Here, we discuss several such tasks, including the ImageNet-9 [104],
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Method 1% Labels 10% Labels

Top-1 Top-5 Top-1 Top-5
Supervised [113] 25.4 48.4 56.4 80.4

Li
ne

ar
Ev

al
.

MoCo-v2 (repro.) 52.0 77.7 63.9 85.8
MoCo-v2 + BG_RM 54.1 (+2.1) 78.6 65.1 (+1.2) 86.2
MoCo-v2 + BG_Swaps 56.0 (+4.0) 79.5 65.9 (+2.0) 86.4

BYOL (repro.) 57.5 80.8 68.6 88.6
BYOL + BG_RM 60.1 (+2.6) 82.7 70.1 (+1.5) 89.2
BYOL + BG_Random 60.9 (+3.4) 83.3 70.4 (+1.8) 89.5

SwAV (repro.) 52.8 78.4 68.3 88.7
SwAV + BG_RM 57.0 (+4.2) 81.3 70.4 (+2.1) 89.8
SwAV + BG_Random 56.4 (+3.6) 81.1 70.2 (+1.9) 89.7

Method 1% Labels 10% Labels

Top-1 Top-5 Top-1 Top-5
Supervised [113] 25.4 48.4 56.4 80.4

Fi
ne

tu
ne

MoCo-v2 (repro.) 54.1 81.3 67.6 89.4
MoCo-v2 + BG_RM 55.2 (+1.1) 81.3 67.8 (+0.2) 89.2
MoCo-v2 + BG_Swaps 57.3 (+3.2) 82.4 68.7 (+1.1) 89.5

BYOL (repro.) 57.3 80.5 70.6 90.0
BYOL + BG_RM 59.9 (+2.6) 82.4 71.7 (+1.1) 90.5
BYOL + BG_Random 60.7 (+3.4) 82.8 72.0 (+1.4) 90.7

SwAV (repro.) 54.0 78.5 70.1 89.9
SwAV + BG_RM 55.2 (+1.2) 79.4 70.8 (+0.7) 90.2
SwAV + BG_Random 55.9 (+1.9) 79.4 71.1 (+1.0) 90.4

Published Baselines

PIRL - 57.2 - 83.8
SimCLR 48.3 75.5 65.6 87.8
SwAV 53.9 78.5 70.2 89.9
BYOL 53.2 78.4 68.8 89.0
Barlow Twins 55.0 79.2 69.7 89.3

Figure 4: Background augmentations improve performance in the limited-labels setting. Linear evalu-
ation using 100% of ImageNet labels though a standard benchmark, is a somewhat unrealistic setting. Evaluation
in the more practical setting of limited labels reveals even larger improvement in performance. We highlight
performance gains due to background augmentations. Best (second best) results are in bold (underlined).

ImageNet-9

Figure 5: Distribution Shifts: illustrative examples from ImageNet-9,-A,-R. Also depicted are classi�-
cation decisions by a supervised ResNet-50 baseline. Example images are from respective original works.

adversarial attacks [33, 61, 69], natural adversarial examples [47], ImageNet-Renditions [48] �nding
improved performance across the board, see Table 1. We show example images from these OOD
datasets in Figure 5. Our results hold across a spectrum of SSL methods and variants of BG_Augs (as
well as across training durations, methods used for foreground extraction, see Appendix). Notably,
BG_Augs enable outperforming the supervised baseline in these challenging settings.

Dataset Supervised MoCo-v2 BYOL SwAV

baseline BG_RM BG_Swaps baseline BG_RM BG_Random baseline BG_RM BG_Random

ImageNet-9
Original 95.6 92.7 93.8 94.2 94.9 95.6 96.0 94.1 95.0 94.9
Only-BG-B ↓ 11.4 6.1 6.1 3.6 5.4 4.9 6.0 10.9 8.8 8.3
Only-BG-T ↓ 16.3 14.8 12.9 9.3 12.7 11.8 11.5 15.8 16.7 17.6
No-FG 45.9 37.8 42.3 39.6 43.9 45.9 46.2 41.3 44.2 45.2
Only-FG ↑ 86.8 74.4 81.9 (+7.5) 86.1 (+11.7) 83.5 88.8 (+5.3) 87.7 (+4.2) 79.4 85.3 (+5.9) 84.3 (+4.9)
Mixed-Same ↑ 86.2 81.8 84.0 (+2.2) 87.9 (+6.1) 86.2 88.6 (+2.4) 90.1 (+3.9) 82.2 86.1 (+3.9) 86.3 (+4.1)
Mixed-Rand ↑ 78.9 70.7 76.3 (+5.6) 84.1 (+13.4) 79.6 83.2 (+3.6) 85.5 (+5.9) 71.3 77.1 (+5.8) 77.0 (+5.7)
Mixed-Next ↑ 77.2 67.0 73.0 (+6.0) 82.2 (+15.2) 77.6 80.7 (+3.1) 84.0 (+6.4) 69.0 74.3 (+5.3) 74.4 (+5.4)

ImageNet-Renditions
ImageNet-R 36.1 30.4 33.4 (+3.0) 33.5 (+3.1) 34.4 40.2 (+5.8) 39.2 (+4.8) 29.4 32.7 (+3.3) 32.5 (+3.1)

ImageNet-A (natural advarsarial examples)
ImageNet-A 0.0 4.2 4.7 (+0.5) 5.3 (+1.1) 5.3 7.2 (+1.9) 7.2 (+1.9) 5.2 6.0 (+0.8) 5.7 (+0.5)

FGSM advarsarial attack
ImageNet - 7.8 10.6 (+2.8) 13.1 (+5.3) 10.4 13.2 (+2.8) 13.4 (+3.0) 9.1 10.1 (+1.0) 10.4 (+1.3)

Table 1: Background augmentations improve robustness and OOD generalization. BG_Augs enable
using ImageNet to better generalize beyond ImageNet. We �nd large improvements on ImageNet-9, ImageNet-
Renditions, ImageNet-A (natural adversarial examples) and improved robustness to adversarial attack. All
numbers are accuracies.
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A Introduction
Learning useful representations in the absence of labels is a critical challenge in machine learning.
Recently, self-supervised (SSL) methods such as SimCLR [15], MoCo-v2 [43, 18], BYOL [36], and
SwAV [13] have risen to prominence because they are able to produce high-quality representations
that rival supervised representations on vision tasks. These methods di�er in the details of their
approach—e.g. some are instance based (MoCo-v2, SimCLR) while others are cluster based (SwAV),
some explicitly utilize negatives while others do not (BYOL), and some use a memory bank (MoCo-
v2). In fact, competitive performance has recently been achieved by SimSiam [17] without any
of these additions. However, a central ingredient common to all high performing SSL methods is
their reliance on data augmentation as a means of encoding desired invariances. Two views of an
image are created via independent samples from the data augmentation pipeline, and the objective
is view-invariance, i.e. the encoder is trained to place them near each other in representational
space. Thus, the choice of data augmentation is critical, as augmentations and the invariances they
encourage are the primary teaching signal these methods utilize to create semantically meaningful
representations.
In fact, Chen et al. [15] explored a large space of standard augmentations and demonstrated that the
choice of these augmentations can have dramatic e�ects on performance. However, this standard
suite of augmentations used in most SSL methods was modi�ed from augmentations designed for
supervised approaches. It may therefore be useful to design new augmentation schemes for SSL
that speci�cally target semantic focus for this setting.
A parallel line of inquiry has found that supervised models often rely on non-semantic features that
may nonetheless be predictive at test time. Models often overly focus on backgrounds [104, 87, 7],
are brittle to distribution shift in foreground-background statistics, and rely on high-frequency
information [57, 53]. Models are also susceptible to adversarial attacks [33, 57], often rely on texture
over shape [28, 29, 49] and are brittle to distribution shift in local texture (e.g. paintings, sculpture,
Hendrycks et al. [48]) as well as to corruptions (e.g. blur, contrast, Hendrycks and Dietterich
[45]). Importantly, the bene�ts or limitations of a modeling choice on robustness are not apparent
from metrics on standard tasks [46]. All of these results showcase the need for comprehensive
model evaluation across diverse data sets and settings. We broadly encompass such comprehensive
evaluation under robustness, e.g. robustness to distribution shifts (e.g. paintings, blurring, di�erent
background statistics), robustness to adversarial attacks, robustness to label scarcity.
While there has been much work investigating robustness properties in the supervised setting, the
self-supervised setting has received relatively less attention. As SSL methods shrink the gap to
their supervised counterparts, it has become increasingly important to characterize their robustness
properties and gain a more holistic understanding. The aim of this work is twofold: characterizing
the robustness of high performing SSL methods and investigating approaches for improved semantic
focus via a class of augmentations called background augmentations.
We conduct a systematic, comprehensive investigation of the robustness properties of SSL methods
as well as the impact of background augmentations in improving semantic focus across a) a
spectrum of high performing SSL methods, b) training durations, c) three variants of background
augmentations, d) di�erent foreground extraction methods used in background augmentations, and
e) a wide range of downstream data sets and tasks, including 17 distribution shift settings.
Speci�cally, we study three classes of approaches: BG_RM, in which a subset of backgrounds are
removed during the augmentation process, BG_Random, in which backgrounds are replaced with
random backgrounds from other images in the mini-batch, and BG_Swaps, in which a selection of
backgrounds are swapped between positive and negative images to match backgrounds across the
query and the negative, thereby explicitly penalizing background focus.
We highlight the following contributions:

• Novel background augmentationmethod. We develop and analyze a novel, highly e�ective
background augmentation method BG_Swaps, which manipulates the backgrounds of positives
and negatives in a structured manner, yielding large performance and robustness bene�ts.

• Sizeable performance bene�ts. We show sizeable performance improvements for all view-
invariant SSL methods, yielding consistent improvements of ∼1-2% in linear evaluation on
ImageNet; these improvements allow us to reach an accuracy of 76.1% (63.8%) on ImageNet
(ImageNet-v2), on par with the standard supervised baseline 76.4% (63.8%) for ResNet-50.
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Further, background augmentations enable us to reach a benchmark accuracy of 74.4%, outper-
forming Barlow Twins [112], MoCo-v3 [19] and BYOL trained for 800-1000 epochs in only 100
epochs; this result takes a large step forward in reducing the amount of training required for
competitive performance in SSL.
In the limited-label setting, we show the performance bene�ts are even larger, e.g. in the 1%
(ImageNet) label setting, BG_Swaps confers a 4.0% accuracy gain for MoCo-v2 and in the 10%
label setting BG_Random enables BYOL to reach 72% accuracy using only 10% of ImageNet
labels.

• Improved robustness. We �nd that background augmentations (especially BG_Swaps) lead to
signi�cantly improved robustness in many settings including ImageNet-9 (shift in foreground-
background statistics), ImageNet-A (natural adversarial examples), ImageNet-R (ImageNet-
Renditions), against adversarial attack, and ImageNet ReaL.

• Scienti�c Insight. We investigate the impact of background augmentations in a) the super-
vised setting and b) RotNet, and �nd that they do not confer a performance gain, giving us
insight into when and how background augmentations work. We also gain further insight by
shape-bias probing as well as by systematically perturbing the quality of the augmentations.

• Improvement in saliency detection. In order to separate foregrounds and backgrounds
without any supervision, we also make progress in completely unsupervised saliency detection,
matching or outperforming weakly supervised as well as many supervised methods.

B Methods
B.1 Self-Supervised Learning Methods
We consider a diverse test bed of high performing self-supervised learning methods: MoCo-v2
[18], BYOL [36], and SwAV [13] to ensure generality of our results. As in the respective original
works, we use a standard ResNet-50 [41] as the default architecture in all experiments (SSL and
supervised) unless otherwise noted. A small subset of our experiments are based on RotNet[32],
using an AlexNet [60] architecture following the respective original work. All reported numbers
are based on our reproduction unless otherwise stated. Where possible, we follow the protocol
from the original works.
Here, we provide a brief overview of MoCo-v2, BYOL and SwAV and some implementation details,
with further details in Appendix H. We defer an overview of RotNet to Section D.10 and relegate
implementation details to Appendix H.

Overview. Broadly, each method uses a pair of Siamese networks [9]—i.e. weight-sharing neural
networks, to encode di�erently augmented “views" of the same image and maximize similarity
between them, thereby encouraging the learning of “desirable" invariances. Concretely, two views
vs, vt of an image x are generated by sampling from a random augmentation pipeline. The student
network fθ is used to encode vs as zs = fθ(vs) and similarly the teacher network1 fξ , is used to
encode vt as zt = fξ(vt). Then, zs is used to predict a target generated from zt; the speci�c form of
this pretext prediction task varies with the SSL method. Learning/“pre-training" is by optimization
of the prediction loss over θ.
MoCo-v2 is an instance of contrastive learning [38], a framework for learning representations from
data that are organized into similar/dissimilar pairs. The prediction task in MoCo-v2 is one of
instance discrimination: a di�erently augmented view of the same image x needs to be discriminated
from a set Q of “distractors"—views of images di�erent from x, in a (|Q|+ 1)-way classi�cation.
Two images form a similar/positive pair if they are views of the same image and otherwise form
a negative pair. MoCo-v2 uses the InfoNCE [75] loss for this task and instantiates Q as a queue
comprised of previous mini-batches of `2 normalized outputs from the teacher. The prediction is z̄s
and the target is z̄t, where z̄ = z/||z||2.
In the terminology of the original work, the prediction z̄s is called the query (denoted q), the target
z̄t is called the positive key (denoted k+) and the distractors (here elements of Q) are known as
negatives keys (denoted Q = {k−}). Thus, the loss encourages similarity between q and k+ and
dissimilarity between q and k−.

1The weight-sharing between the student and teacher may be direct as ξ ← θ (as in SwAV) or indirect as
ξ ← mξ + (1−m)θ, where ξ is an exponential moving average of θ (as in MoCo-v2 and BYOL).
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Figure 6: Schematic of Siamese SSL methods. A simpli�ed schematic of the Siamese SSL methods in our
test bed. Dashed line in MoCo-v2 denotes enqueuing the positives k+ from the previous mini-batch (and
dequeuing the oldest mini-batch).

In BYOL, a prediction Multi-Layer Perceptron (MLP) qθ is used to generate the prediction qθ(zs),
the target is z̄t and the loss used is Mean Squared Error (MSE). In SwAV, the target is generated by
an online-clustering process and z̄s is used to predict the cluster assignment of z̄t; the loss used
is Cross-Entropy (CE). Thus, SwAV is a clustering-based approach, while MoCo-v2 and BYOL are
instance-based approaches. SwAV and BYOL are not explicitly contrastive, since they do use negative
instances.
All methods use 2 “global" views, while SwAV additionally uses L “local" views—low resolution
crops that cover only small parts of the image; by default L = 6. Using global and local views is
known as multi-crop augmentation. Local views are typically only used for prediction and not
used in generating the targets. Intuitively, since local views are expected to be predictive of global
views, models are discouraged from representing only the most discriminative features for solving
the pretext prediction task.
It is typical to use a projection MLP [15] on top of a backbone network and discard the projection
MLP after pre-training (but see Chen et al. [16]). In our notation, f subsumes the backbone g and
the projection MLP h, i.e. f = h ◦ g. At the end of pre-training, only the backbone gθ is kept.
The outputs of gθ are called representations and the corresponding outputs of h are called the
embeddings/projections.
(Abuse of) Notation: For simplicity, we refer to the embedding from the student network as the
query q and the embedding from the teacher corresponding to the same image x as the positive
key k+, across all methods. We also use the terms student (teacher) and query (key) network
interchangeably.

Implementation. MoCo-v2 is trained using SGD and a larger (than the standard 256) batch size
of 1024 (distributed across 32 GPUs) with a 20 epoch linear warmup for 220 (800) epochs in the
medium (full) setting. These settings were chosen to increase training speed while matching the
reported performance at a similar number of epochs in Chen et al. [18].
BYOL and SwAV were trained using LARS [109] using a batch size of 4096, distributed across 64
GPUs with synchronized batch normalization [54] for groups of 8 GPUs. BYOL (SwAV) is trained
for 300 (100) epochs in the medium setting and 1000 (800) epochs in the full setting. See Appendix
H for more details.

B.2 Background Augmentations

We apply all background augmentations (BG_RM, BG_Random, BG_Swaps) after all other augmenta-
tions in the respective augmentation pipeline. However, we note that we observed similar results
applying background augmentations before all other augmentations as well (Appendix J.5). While
we apply background augmentations to (views of) images, when it is clear from context, we will
refer instead to the corresponding embeddings q, k+, k−. Unless otherwise mentioned, background
augmentations are applied independently with a probability ppos to both q and k+ (the positive
teaching pair). When a method has explicit negative instances (MoCo-v2), we denote by pneg the
probability of including a negative whose background matches q; by default, this is independent
of background augmentation in q and k+. Values for ppos and pneg were optimized independently
for each background augmentation. When it is clear from context, we will sometimes drop the
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Figure 7: Schematic of di�erent types of background augmentations. BG_RM (left) replaces back-
grounds with grayscale, e�ectively removing any background information. BG_Random (middle) replaces
backgrounds with random backgrounds, creating a random signal which is uncorrelated with the foreground.
BG_Swaps (right) exploits the structure of contrastive learning to ensure that the query and the positive have
the same foreground but di�erent backgrounds, while the query and one negative have matched backgrounds.
As a result, BG_Swaps makes it so that models are penalized for focusing on the background.

subscript. Note that in MoCo-v2, k+ is placed in the queue Q for use in subsequent batches as a
negative, so that augmentations applied to k+, also indirectly apply to k− viaQ. When multi-crop
augmentation is used (as in SwAV), we apply background augmentations only to the global views.
Background augmentations are only applied during self-supervised pre-training and are not applied
when training linear classi�cation layers for evaluation. Below, we describe the details of each of
the background augmentations we study.
In BG_RM, the background of an image is removed by using a foreground mask (obtained using a
saliency detector, see Section C), and replaced with a solid grayscale background whose intensity is
drawn uniformly from [0, 1], though we note that a solid black background produced similar results.
See illustrative examples in Figure 7, left column.
In BG_Random, we replace the background with a background from a di�erent image in the same
batch. As in Xiao et al. [104], tiled backgrounds corresponding to an image are generated by �lling
in the foreground information using the surrounding background.
In BG_Swaps, we generate a negative image with a background matched to that of the query q. In
practice, we create a background matched negative as mqr + (1−mq)q, where mq is the binary
foreground mask of the query q and r is a random image. We generate all foreground masks and
tiled backgrounds o�ine and cache them to increase throughput at train time. Note that foreground
masks may include multiple foreground objects when they are present (e.g. last row of Figure 8 or
Figure A7). Substantial noise is tolerable in the quality of the foreground masks (see Appendix I).
More generally, there is substantial �exibility and tolerance in instantiating the main ingredients of
background augmentations, which we expand on in Appendix J.

B.3 Supervised Training

We largely follow the protocol from Goyal et al. [35], unless otherwise indicated. We train all
supervised models (with or without background augmentation) with a batch size of 4096 with
a 5 epoch linear warmup due to the large batchsize. Models are trained for 90 epochs, with a
step schedule (30, 60, 80) and a decay factor of 0.1, using SGD with a base learning rate of 0.1
scaled linearly (lr=BatchSize/256×0.1) and momentum of 0.9, and the standard augmentations
RandomResizedCrop and RandomHorizontalFlip. We also exclude bias and batch normalization
parameters from weight decay, which was set to 1 × 10−4. The γ in each residual block’s last
BatchNorm layer is zero initialized. Our supervised baseline for ResNet-50 reaches the standard
baseline [35] performance of ∼76.4% Top-1 accuracy on ImageNet [85].
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Image Ground Truth DeepUSPS DeepUSPS2

Figure 8: Examples of saliency masks generated by DeepUSPS2.

C Saliency Detection

We use saliency detection to generate the foreground masks used in background augmentations
(see methods, Section B.2). However, state-of-the-art saliency detection methods (e.g. U2Net, Qin
et al. [79]) are generally reliant on manually annotated, accurate pixel-level Ground Truth (GT)
saliency labels for training, making their usage inappropriate in a truly self-supervised benchmark.

C.1 Weakly Supervised Saliency Detection

Recent “unsupervised" saliency detection methods [73, 116, 114] demonstrate promising results by
leveraging psuedo-labels generated by hand-crafted saliency methods in lieu of manually annotated
GT saliency labels. Brie�y, noisy psuedo-labels generated by hand-crafted saliency methods are
iteratively re�ned by using them as targets to train a Fully Convolutional Network (FCN) for
saliency detection, and obtaining re�ned pseudo-labels from the denoised predictions. Re�ned
pseudo-labels from multiple hand-crafted methods are then jointly used to train a re-initialized FCN
to obtain the �nal saliency detector. While these methods are “unsupervised" in that they do not use
manually annotated saliency labels, their success implicitly relies on human annotation—the FCN
used is pre-trained in a supervised manner using ImageNet class and CityScapes [20] segmentation
labels. Indeed, we �nd that if we use a randomly initialized FCN instead, the resulting saliency
predictions are worse than the noisy psuedo-labels used as targets. As such, these methods are also
not appropriate to generate foreground masks for our purpose; we thus refer to these methods as
weakly supervised methods in this context.

C.2 Unsupervised Saliency Detection: DeepUSPS2

In order to train a completely unsupervised saliency detector, we build upon DeepUSPS [73], a recent
state-of-the-art weakly supervised saliency detection method. We �rst pre-train a DRN-D-105 [110]
network in a self-supervised manner for 500 epochs on ImageNet, using BYOL. We then use this
pre-trained network to re�ne pseudo-labels and train a saliency detector, which we call DeepUSPS2,
employing a training protocol modi�ed from DeepUSPS (see Appendix H.2); some example saliency
predictions are shown in Figure 8. Training images were 2500 images from the MSRA-B data set
[66].
We �nd that DeepUSPS2 performs better than or on par with DeepUSPS and other recent state-
of-the-art weakly supervised and even some supervised saliency detectors on common saliency
benchmark data sets MSRA-B, ECSSD [107], and DUT [107], yet DeepUSPS2 does not rely on any
human annotation at any stage in the pipeline, see Table 2. For each data set, following common
protocol [73, 1], we report the F-score,

Fβ =
(1 + β2)× precision× recall
β2 × precision + recall ,
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Method MSRA-B ECSSD DUT
F↑ MAE↓ F↑ MAE↓ F↑ MAE↓

Supervised
(GT saliency labels used for training.)

Hou et al. [51] 89.4 4.7 88.0 7.0 72.9 7.6
Luo et al. [68] 89.7 4.8 89.1 6.6 73.6 8.0
Zhang et al. [117] - - 88.3 6.1 69.3 9.8
Zhang et al. [118] - - 85.2 8.0 66.0 13.2
Wang et al. [100] 85.1 6.7 82.6 9.2 67.2 8.5
Li et al. [64] - - 75.9 16.0 60.5 7.6
Wang et al. [98] - - 84.3 9.7 69.2 9.5

Weakly Supervised
(Class labels used in pre-trained backbone, GT saliency labels not used in training.)

SBF [114] - - 78.7 8.5 58.3 13.5
USD [116] 87.7 5.6 87.8 7.0 71.6 8.6
DeepUSPS 90.3 4.0 87.4 6.3 73.6 6.3
DeepUSPS (repro.) 90.5±0.1 3.9±0.0 87.9±0.1 6.3±0.0 72.1±0.2 6.8±0.1

Completely Unsupervised
(No human annotation at any stage in the pipeline.)

DeepUSPS2 (ours) 91.3±0.0 3.6±0.0 90.0±0.0 5.4±0.0 71.1±0.0 6.9±0.0

Table 2: DeepUSPS2 is on par with or outperforms weakly supervised saliency methods and several
recent supervised saliency methods. We report performance across 5 independent runs for DeepUSPS2

(and also for DeepUSPS (repro.)). Notation: Mean±SEM (Standard Error of the Mean). Best results are in bold.

where β2 = 0.3 to weigh precision more than recall and the MAE (Mean Absolute Error) on the
test split.
We use DeepUSPS2 as the default saliency detector to generate foreground masks in our experiments
unless otherwise indicated. To ablate the method of mask generation and for control experiments,
we also use U2Net [79], a state-of-the-art saliency detector that is trained in a supervised manner
on DUTS-TR [99], which contains 10553 pixel-level manual saliency annotations.

D Representation Learning with Background Augmentations

D.1 Do Background Augmentations that Encourage Semantic Focus Increase
Performance?

Deep neural networks often rely on non-semantic, super�cial features and thus may be easily
misled by backgrounds. Nonetheless, these non-semantic features are often predictive at test time
[104, 87, 53], so it is not a priori obvious whether background augmentations that encourage semantic
focus on the foreground will bene�t performance. We investigate this question by exploring the
space of possible background augmentations. First, we study removing backgrounds probabilistically,
where the strength of the augmentation is controlled by a parameter p, which sets the probability
that the background is removed from the query or positive key. See Figure 7, left for an example of
the BG_RM setting.
Across SSL methods, we �nd that BG_RM substantially improves linear classi�cation on ImageNet,
improving performance by∼0.6-1.4% (Table 3). For all methods, we found that a moderate value of p
between 0.1 and 0.3 is generally a good setting. However, despite its improved performance, because
BG_RM introduces images with solid gray backgrounds, it induces a distribution shift between the
unsupervised pre-training phase and the supervised downstream tasks which may limit performance
improvements. Note that DiLo (MoCo-v2) is similar to BG_RM applied MoCo-v2, but results only
in a small gain of +0.2, while we obtain a 7× larger gain (and as we will show later, a 9× gain by
developing an improved background augmentation method BG_Swaps).
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Method Epochs ImageNet acc.
Original ReaL

Supervised 90 76.4 82.7
PCL-v2 [63] 200 67.6 -
CMC [95] 200 66.2 -
SimCLR 200 66.8 -
MoCo 200 60.6 -
SeLa [3] 400 61.5 -
MoCo-v2 200 67.5 -
MoCo-v2 (repro.) 220 67.7 74.7
MoCo-v2 + BG_RM 220 69.1±0.0 (+1.4) 76.2±0.0 (+1.5)
MoCo-v2 + BG_Swaps2 220 69.5±0.1 (+1.8) 76.6±0.1 (+1.9)
DiLo (MoCo-v2) [121] 200 67.9 (+0.2) -
BYOL 300 72.5 -
BYOL (repro.) 300 72.7 79.6
BYOL + BG_RM 300 73.3±0.2 (+0.6) 80.4±0.3 (+0.8)
BYOL + BG_Random 300 73.9±0.1 (+1.2) 81.0±0.0 (+1.4)
SwAV 100 72.1 -
SwAV (repro.) 100 72.2 79.1
SwAV + BG_RM 100 73.6±0.1 (+1.4) 80.6±0.1 (+1.5)
SwAV + BG_Random 100 73.4±0.0 (+1.2) 80.4±0.1 (+1.3)

Longer Training
PIRL [71] 800 63.6 -
SimCLR 1000 69.3 -
Barlow Twins [112] 1000 73.2 -
MoCo-v2 800 71.1 -
MoCo-v2 (repro.) 800 71.0 78.0
MoCo-v2 + BG_RM 800 71.9 (+0.9) 78.9 (+0.9)
MoCo-v2 + BG_Swaps 800 72.2 (+1.2) 79.2 (+1.2)
BYOL 1000 74.3 -
BYOL (repro.) 1000 73.8 80.5
BYOL + BG_RM 1000 74.6 (+0.8) 81.3 (+0.8)
BYOL + BG_Random 1000 74.8 (+1.0) 81.7 (+1.2)
SwAV 800 75.3 -
SwAV (repro.) 800 74.9 81.4
SwAV + BG_RM 800 76.1 (+1.2) 82.5 (+1.1)
SwAV + BG_Random 800 76.1 (+1.2) 82.6 (+1.2)

Table 3: Background augmentations confer large performance bene�ts in linear evaluation on
ImageNet across a spectrum of SSL methods using the original or reassessed labels. For shorter
training, we report metrics averaged over 3 independent runs, re�ecting robust improvements. Number of
training epochs are chosen to be consistent with previously published results. We highlight performance
gains due to background augmentations relative to our reproductions, but also include published baseline
numbers for comparison. Notation: Mean±SEM (Standard Error of the Mean). Best results are in bold.
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Method BG aug. in ImageNet acc.
q k+ k−

(a) baseline 67.7
Control Experiments
(b) BG_RM X 67.8
(c) BG_Random X 68.3
“Full" Augmentations
(d) BG_RM X X X 69.3
(e) BG_Random X X 69.1

Table 4: BG_RM vs. BG_Random. Comparing BG_RM and BG_Random in MoCo-v2 controlling for presence of
negatives in the queue with similar background.

D.2 Can we make Background Augmentations more In-Distribution?
In the previous section, we explored removing backgrounds and replacing them with uniform
grayscale, which results in the data being out-of-distribution (OOD) relative to the downstream
tasks. To mitigate this OOD issue, we instead replace backgrounds with a randomly chosen
background from another instance in the same batch. We term this method BG_Random (Figure 7,
middle). Interestingly, despite the fact that BG_Random is more in-distribution than BG_RM, we found
that performance was similar (e.g. 69.1% for BG_RM (Table 3) vs. 69.2% for BG_Random (Table A6)
with MoCo-v2). However, we note that these two settings are not necessarily directly comparable.
For example, in the case of MoCo-v2, augmented positive keys are added to the queue to be used
as negatives for subsequent mini-batches. As a result, BG_RM might actually penalize background
focus whereas BG_Random may simply result in an uninformative background. This is because
BG_RM features a constant gray background which can be matched between the query and negatives
that were used as positive keys in a previous mini-batch, whereas BG_Random features distinct
backgrounds for each augmented image.
It is therefore unclear whether the similar performance of BG_RM and BG_Random stems from
distributional shift or the matched gray backgrounds which can serve to make negatives more
challenging. To disentangle these two factors, we performed a control experiment in which back-
ground augmented images were only included for the query (with p = 0.1)—and thus not used in
subsequent mini-batches as the positive or the negative. This setting maintains the distribution
shift of BG_RM, but removes the possibility of a teaching signal originating from matched gray
backgrounds across the query and negative. To minimize confound stemming from mask quality,
we use higher quality foreground masks generated by U2Net, a state-of-the-art saliency detector
trained with supervision instead of DeepUSPS2.
This control reveals that, when only applied to the query but not the positive or negative, BG_RM has
similar performance (Table 4b) as no BG_RM (Table 4a), suggesting that BG_RM bene�ts substantially
from the teaching signal of negatives with matching (constant) backgrounds. In contrast, we found
that, when only present in the query, BG_Random still improves performance (Table 4c), but the
improvement is decreased suggesting that having augmented images with randomized backgrounds
in the positive keys provides additional bene�t (Table 4e); here, for an apples-to-apples comparison
with the control experiments (or “partial" augmentations), we also report performance for the “full"
augmentations (Table 4d, e) using U2Net masks and the same augmentation strength.
These analyses demonstrate both the importance of using background augmentations which remain
close to the unaugmented input distribution and highlight the potential for methods which provide
an additional teaching signal via negatives with query-matched backgrounds. Inspired by these
results, we next investigate how to combine these approaches.
D.3 Exploiting the Structure of Contrastive Instance Discrimination via Background

Matched Negatives
Thus far, we have explored two background augmentations—BG_RM and BG_Random—both of
which operate independently on the query and the positive and encourage semantic focus on
foregrounds by simply removing backgrounds altogether or replacing them with randomized
backgrounds so there’s no e�ective signal in the background. This removes the incentive for models
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Method BG aug. in ImageNet acc.
q k+ k−

(a) baseline 67.7
(b) X 68.3
(c) X 68.2
(d) BG_Random X X 69.1
(e) BG_Swaps X X X 69.7

Table 5: Ablations of BG_Swaps for MoCo-v2. Each component confers a performance improvement and
the improvements stack on top of each other.

to focus on background information, but does nothing to directly penalize focus on backgrounds.
However, contrastive instance discrimination (CID) methods (e.g., MoCo, SimCLR), use the query
to discriminate between the positive and negative instances and thus feature structure that we can
exploit to not only remove signal from backgrounds, but go further and provide explicitly misleading
signal in the backgrounds. Note that BYOL and SwAV are not CID methods, since they do not use
negative instances.
We accomplish this through two modi�cations with a method we call BG_Swaps (Figure 7, right).
First, as in BG_Random, we ensure that the query and the positive feature distinct random back-
grounds. Models which focus on backgrounds would therefore place the positive and query further
apart than they should since the semantic content is identical, but the background features di�er.
Second, we modify the negative set to include one additional negative3 whose background matches
the query: a network which focuses on backgrounds would view the background-matched neg-
ative as highly similar to the query and receive strong negative supervision. As with BG_RM and
BG_Random, we introduce the background-matched negative with probability pneg (and include
a randomly selected negative with probability 1 − pneg, so that the total number of negatives is
always |Q|+ 1).
These background matched negatives can be considered an example of “hard negatives", which
have been explored recently in the context of SSL to improve learning [58, 101, 84, 10]. In this vein,
one could consider the positive pair (q and k+) with di�erent backgrounds as “hard positives". For
MoCo-v2, including a background matched negative further increases performance over BG_RM by
an additional 0.4% (Table 3). Consistent with our previous �ndings, we also found that it is important
for the statistics of the augmentations to be similar for the positive and the negatives in order to
achieve the best performance. In general, we found that the probability of an augmentation in the
query and positive, ppos, matching the probability of an augmentation in the negative, pneg, so that
ppos'pneg, gives good performance.

D.4 Ablating BG_Swaps

To characterize which components of the BG_Swaps augmentation matter and how much, we
perform systematic ablations. As shown in Table 5, we found that each independent component
of BG_Swaps leads to a performance improvement (in contrast with BG_RM). In particular, we �nd
bene�ts when employing each of the following: BG_Random in the query (p = 0.1); BG_Random in
the positive key (p = 0.1); background matched negative (p = 0.2). Notably, the improvements from
randomized backgrounds in q and k+ stack superlinearly (Table 5d), suggesting that incorporating
both of these augmentations provides a greater advantage due to their interaction than either does
independently; using background matched negatives further improves performance substantially
(Table 5e). As in the control experiments in Section D.2, to minimize confound stemming from
mask quality, we use higher quality foreground masks generated by U2Net for these ablations.
There is signi�cant design �exibility in how one could implement BG_Swaps. For example, is
it a better teaching signal to have independent or correlated background augmentations in the
query/positive and the negatives? Is it better to have a negative whose background matches the

3We explored using multiple background matched negatives, but found no improvement over a single
matched negative. See Appendix J for details.
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SwAV w/ wider MLP (4096/256)
Epochs baseline BG_RM BG_Random

100 72.6 74.1 74.1
800 75.0 76.1 76.1

augmentation strength (p)

BG_RM BG_Random

Figure 9: Wider projection MLP and warmup alleviates early optimization di�culty. (le�) Wider
projection MLP alleviates early optimization di�culty, improving performance and removes the gap between
BG_RM and BG_Random. Augmentation strength: p = 0.25. (right) The gap between BG_RM and BG_Random in-
creases with stronger augmentation with the default (black dashed lines) MLP capacity. In addition to increasing
MLP capacity, warming up background augmentations further adds stability across a range of augmentation
strengths. Notation: (MLP width/output dimension).

query or the positive? We �nd that BG_Swaps is robust to these speci�c choices (Appendix J),
making it a promising candidate for more general deployment in augmentation pipelines.
D.5 E�ect of Longer Training

We also evaluate the impact of background augmentations on longer training ranging from 800
to 1000 epochs (Table 3). As with the shorter training, we found that background augmentations
consistently increased performance across models, e.g. enabling SwAV to reach 76.1% with a ResNet-
50 on ImageNet, only 0.3% less than the standard supervised baseline. Interestingly, however,
we found that the magnitude of the improvement decreased slightly in the longer training runs,
which may be a saturation e�ect but also raises the more interesting possibility that SSL models
initially learn representations that depend on backgrounds, but eventually learn some background
invariance when trained for long enough. However, we later discuss (Section E.1) evidence that
does not �nd support for the latter possibility.
D.6 Diagnosing and Improving SwAV + Background Augmentations

As previously discussed, due to BG_RM being OOD, we might generally expect BG_Random,
BG_Swaps to be on par or better than BG_RM. Our results in Table 3 show that while this is generally
true across SSL methods and training durations, BG_RM > BG_Random for SwAV trained for a short
duration. Since BG_RM and BG_Random result in the same �nal accuracy upon longer training (Table
3), we hypothesized that there maybe early optimization di�culty arising from an interaction
between SwAV’s objective function and attempting to learning invariance to random natural back-
grounds (in contrast with solid grayscale backgrounds in BG_RM), at a stage in the pre-training
when the representations are still quite poor. Consistent with this hypothesis, when BG_Random is
used, the loss lingers at chance early in pre-training, while the corresponding loss for BG_RM falls
rapidly. We reasoned that further increasing the augmentation strength of BG_Random should
result in higher optimization di�culty and consequently, worse performance. Consistent with this
expectation, the performance of BG_Random rapidly declines past a point, while the performance
of BG_RM remains stable, see Figure 9 (right, black dashed lines).
To alleviate this issue, we propose two solutions: a) increasing the projection MLP capacity and b)
warming up background augmentations. We show results from (a) in Figure 9 (left, Table), �nding
both improved performance (a baseline e�ect) and removing the gap between BG_RM and BG_Random.
Note that the default projection MLP capacity for SwAV is 2048/128. We report the results of (a)
and (b) across a range of augmentation strengths in Figure 9 (right) 4. In addition to increasing
MLP capacity, warming up BG_Random further stabilizes performance when stronger augmentation
is used. More broadly, these analyses show that additional factors such as ease of optimization
play an important role in determining performance apart from whether an augmentation induces a
distribution shift.
Our analyses here have broader implications. For instance, they shed new light on the role of the
projection MLP and may help explain recent puzzling �ndings in literature; speci�cally, Zbontar et al.

4In setting of default MLP capacity (dashed lines), masks from U2Net were used to control for in�uence of
mask quality.
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Method Saliency ImageNet acc.
Method Original ReaL

Top-1 Top-5 Top-1 Top-5
MoCo-v2 (220) 67.7 88.1 74.7 91.7
+ BG_RM DeepUSPS2 69.1±0.0 (+1.4) 88.8±0.0 76.2±0.0 (+1.5) 92.3±0.1

U2Net 69.3±0.1 (+1.6) 88.6±0.1 76.3±0.1 (+1.6) 92.3±0.1

+ BG_Swaps DeepUSPS2 69.5±0.1 (+1.8) 88.9±0.0 76.6±0.1 (+1.9) 92.4±0.1
U2Net 69.7±0.1 (+2.0) 88.9±0.0 76.8±0.1 (+2.1) 92.3±0.1

BYOL (300) 72.7 90.9 79.6 94.0
+ BG_RM DeepUSPS2 73.3±0.2 (+0.6) 91.1±0.1 80.4±0.3 (+0.8) 94.3±0.1

U2Net 73.5±0.1 (+0.8) 91.2±0.1 80.5±0.1 (+0.9) 94.4±0.0

+ BG_Random DeepUSPS2 73.9±0.1 (+1.2) 91.6±0.0 81.0±0.0 (+1.4) 94.6±0.0
U2Net 73.8±0.0 (+1.1) 91.7±0.0 81.0±0.1 (+1.4) 94.7±0.0

SwAV (100) 72.2 91.0 79.1 94.0
+ BG_RM DeepUSPS2 73.6±0.1 (+1.4) 91.6±0.0 80.6±0.1 (+1.5) 94.6±0.0

U2Net 73.7±0.1 (+1.5) 91.6±0.0 80.7±0.1 (+1.6) 94.6±0.0

+ BG_Random DeepUSPS2 73.4±0.0 (+1.2) 91.6±0.0 80.4±0.1 (+1.3) 94.6±0.0
U2Net 73.5±0.1 (+1.3) 91.6±0.0 80.5±0.1 (+1.4) 94.6±0.0

Longer Training
MoCo-v2 (800) 71.0 90.3 78.0 93.4
+ BG_RM DeepUSPS2 71.9 (+0.9) 90.4 78.9 (+0.9) 93.5

U2Net 72.0 (+1.0) 90.4 79.0 (+1.0) 93.6
+ BG_Swaps DeepUSPS2 72.2 (+1.2) 90.4 79.2 (+1.2) 93.6

U2Net 72.2 (+1.2) 90.5 79.0 (+1.0) 93.5

BYOL (1000) 73.8 91.5 80.5 94.3
+ BG_RM DeepUSPS2 74.6 (+0.8) 91.8 81.3 (+0.8) 94.7

U2Net 74.7 (+0.9) 91.9 81.5 (+1.0) 94.7
+ BG_Random DeepUSPS2 74.8 (+1.0) 92.0 81.7 (+1.2) 94.8

U2Net 74.8 (+1.0) 92.1 81.6 (+1.1) 94.8

SwAV (800) 74.9 92.1 81.4 95.1
+ BG_RM DeepUSPS2 76.1 (+1.2) 92.8 82.5 (+1.1) 95.4

U2Net 76.2 (+1.3) 92.8 82.6 (+1.2) 95.4
+ BG_Random DeepUSPS2 76.1 (+1.2) 92.9 82.6 (+1.2) 95.5

U2Net 76.0 (+1.1) 92.9 82.6 (+1.2) 95.5

Table 6: Ablating the impact of the saliency method used for foreground extraction. We �nd nearly
identical performance when we use U2Net, a state-of-the art saliency detector that is trained with supervision.
Foreground extraction using higher quality masks results in slightly better performance when trained for
fewer epochs, but this bene�t disappears with longer training. All numbers are based on our implementation.
Notation: MoCo-v2 (800) indicates that MoCo-v2 was trained for 800 epochs.

[112] observed that their method, Barlow Twins, works best for large dimensionality of the projection
MLP and noted that “This result is quite surprising because the output...acts as a dimensionality
bottleneck in our model and sets the limit of the intrinsic dimensionality of the representation".
Our analyses suggest that it is important for the projection MLP to be of appropriate capacity for
the pretext prediction task—more “di�cult" (e.g. due to stronger augmentation) prediction losses
may bene�t from a higher capacity MLP.
One important limitation of current SSL methods is the long training required for competitive
performance, typically 800-1000 epochs, in contrast with supervised learning. Our results in Figure
9 (left) show that background augmentations enable a step forward in reducing the amount of
training required for competitive performance in SSL. In these results, aside from diagnosing and
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�xing early optimization issues, we simply used the default settings for SwAV. However, there
remains much room for improvement in conjunction with background augmentations. We brie�y
explore one such improvement here.
Recall that SwAV uses multi-crop augmentation, where local crops covering small parts of the
image are expected to be predictive of global crops. Here, we increase the area that the small crops
may cover of the full image 5. While the small crops may feature more of the background with this
change, background augmentations already prevent excessive focus on the background. This simple
change improves the performance of BG_RM (BG_Random) from 74.1% to 74.4% (74.2%). In only
100 epochs, performance exceeds many recent high performing SSL methods trained for 800-1000
epochs, e.g. Barlow Twins (73.2%, 1000 epochs), MoCo-v3 [19] (73.8%, 800 epochs) and BYOL (74.3%,
1000 epochs). In contrast, with the same change, the SwAV baseline fails to train and the loss at
the end of pre-training is at chance. Note that our default setting for SwAV does not include the
modi�cations discussed in this section unless otherwise indicated.

D.7 What is the Impact of Mask Quality?

While DeepUSPS2 is better than or on par with weakly supervised saliency methods and even
some recent supervised saliency methods, state-of-the-art supervised saliency methods like U2Net
achieve better performance on saliency benchmarks. We perform an ablation using foreground
masks generated by U2Net for background augmentations. While the resulting models are not
truly self supervised, they can nevertheless help us understand if using better foreground masks
can lead to larger performance improvements. We report the results of these experiments in Table
6, �nding that performance is nearly identical whether DeepUSPS2 or U2Net are used to extract
foreground masks. Using higher quality masks leads to slightly better performance when trained
for fewer epochs but this gap disappears with longer training. In later sections, we evaluate both
sets of models on a range of downstream tasks to gain further insight.
While these results suggest that there may be diminishing gains to using higher quality masks, some
natural questions arise, e.g. which SSL methods and background augmentations are more robust
to mask quality? How does performance vary as a function of mask quality? We systematically
perturb mask quality in numerous ways (via mask rotation, shearing, translation, �ips and replacing
masks with bounding-box masks) to answer these questions in Appendix I. Overall, we �nd that
there is substantial robustness to mask quality. Of the SSL methods and background augmentations
considered, we �nd that SwAV and BG_Swaps are particularly robust.

D.8 Limited-Label Setting

While linear evaluation using 100% of ImageNet labels is a standard evaluation metric, it is also
somewhat impractical due to the large amount of labels involved - after all, one of the more important
goals of SSL is good performance when labeled data is highly limited. Linear evaluation in limited
label settings reveals a large improvement in performance from background augmentations. For
1% and 10% labels, we use the same �xed splits of ImageNet labeled training data as in Chen
et al. [16]. We similarly �nd large performance bene�ts in semi-supervised evaluation (�ne-tuning
the pre-trained backbone in addition to learning a linear classi�er). We report Top-1 and Top-5
accuracies in Table 7.
Our �rst key �nding is that the improvement in performance in limited label settings, for both
linear and semi-supervised evaluation, is substantially larger than in 100% linear evaluation, with
improvements up to 4.2%. Large gains in linear evaluation especially re�ect a much better learned
representation, since the backbone is frozen. Our second key �nding is that BG_Swaps is especially
e�ective in limited label settings. Indeed, in the 1% setting, the gain from BG_Swaps is nearly 3×
the gain from BG_RM in semi-supervised evaluation and ∼ 2× that of BG_RM in linear evaluation,
demonstrating the e�ectiveness of using negatives matched to the query’s background.
Our third �nding is that it is generally better to use BG_Random or BG_Swaps over BG_RM, consistent
with our previous results. Our �ndings here set new, stronger baselines: 60.9% Top-1 in the 1%
labels setting and 72% Top-1 in the 10% labels setting. It is worth noting that ∼71% is the linear
evaluation baseline for MoCo-v2 using 100% of the labels. Note that our reproduction of BYOL’s

5Since we maintain the same resolution of 96×96 for the smaller crops as in the default setting and simply
modify the max scale in RandomResizedCrop, compute and memory requirements stay identical. Additional
details in Appendix J.
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Method 1% Labels 10% Labels

Top-1 Top-5 Top-1 Top-5
Supervised [113] 25.4 48.4 56.4 80.4

Li
ne

ar
MoCo-v2 (repro.) 52.0 77.7 63.9 85.8
MoCo-v2 + BG_RM 54.1 (+2.1) 78.6 65.1 (+1.2) 86.2
MoCo-v2 + BG_Swaps 56.0 (+4.0) 79.5 65.9 (+2.0) 86.4

BYOL (repro.) 57.5 80.8 68.6 88.6
BYOL + BG_RM 60.1 (+2.6) 82.7 70.1 (+1.5) 89.2
BYOL + BG_Random 60.9 (+3.4) 83.3 70.4 (+1.8) 89.5

SwAV (repro.) 52.8 78.4 68.3 88.7
SwAV + BG_RM 57.0 (+4.2) 81.3 70.4 (+2.1) 89.8
SwAV + BG_Random 56.4 (+3.6) 81.1 70.2 (+1.9) 89.7

Fi
ne

tu
ne

MoCo-v2 (repro.) 54.1 81.3 67.6 89.4
MoCo-v2 + BG_RM 55.2 (+1.1) 81.3 67.8 (+0.2) 89.2
MoCo-v2 + BG_Swaps 57.3 (+3.2) 82.4 68.7 (+1.1) 89.5

BYOL (repro.) 57.3 80.5 70.6 90.0
BYOL + BG_RM 59.9 (+2.6) 82.4 71.7 (+1.1) 90.5
BYOL + BG_Random 60.7 (+3.4) 82.8 72.0 (+1.4) 90.7

SwAV (repro.) 54.0 78.5 70.1 89.9
SwAV + BG_RM 55.2 (+1.2) 79.4 70.8 (+0.7) 90.2
SwAV + BG_Random 55.9 (+1.9) 79.4 71.1 (+1.0) 90.4

Published Baselines

PIRL - 57.2 - 83.8
SimCLR 48.3 75.5 65.6 87.8
SwAV 53.9 78.5 70.2 89.9
BYOL 53.2 78.4 68.8 89.0
Barlow Twins 55.0 79.2 69.7 89.3

Table 7: Limited-Labels Setting. Background augmentations improve performance in the limited-labels
setting. Linear evaluation using 100% of ImageNet labels though a standard benchmark, is a somewhat
unrealistic setting. Evaluation in the more practical setting of limited-labels reveals even larger improvement
in performance. We highlight performance gains due to background augmentations. Best (second best)
results are in bold (underlined).

performance in limited label settings already improves upon the published baseline (by +4.1%, +1.8%
in the 1% and 10% labels settings respectively) by adopting a much smaller learning rate for the
pre-trained backbone than the classi�er head—background augmentations further improve on these
stronger baselines.
Finally, we note that nearly identical �ndings hold when we instead use U2Net for foreground
extraction, see Table A13. All models receive full pre-training.

D.9 Can Background Augmentations Improve Performance in the Supervised Setting?

We have found that background augmentations provide a signi�cant performance boost to a suite
of high-performing SSL methods, and shrink the gap to the supervised baseline down to 0.3%. We
note that most SSL methods utilize an augmentation suite that is inherited from supervised training.
By designing augmentations speci�cally for SSL, we were able to induce a substantial increase in
performance; this raises the question of whether a similar performance boost would be observed
when applying background augmentations to supervised training.
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baseline (p = 0.0): 76.4 p = 0.1 p = 0.2 p = 0.3 p = 0.5

BG_RM 76.6 76.5 76.4 75.9
BG_RM + retrain classi�er 76.5 76.3 76.0 75.1
BG_RM + �netune 76.5 76.6 76.5 76.0
BG_Random 76.4 76.6 76.6 76.0
BG_Random + retrain classi�er 76.4 76.2 75.9 73.5
BG_Random + �netune 76.6 76.6 76.6 76.4

Table 8: Supervised Setting: Background augmentations do not improve over the baseline (76.4 in our
setting).

Method Epochs Accuracy
Supervised baseline 90 76.4
Supervised + BG_RM 90 76.5
Supervised + BG_RM 300 76.5
Supervised + BG_Random 90 76.6
Supervised + BG_Random 300 76.6

Table 9: Supervised Setting: Longer Training. Longer training with background augmentation does not
signi�cantly improve performance in the supervised setting over the baseline. Augmentation strength: p = 0.2.

Interestingly, we �nd that background augmentations do not confer a performance bene�t in the
supervised setting. In Table 8, we report the performance of BG_RM and BG_Random, sweeping over
p, �nding no setting that outperforms the supervised benchmark6.
One may wonder if this lack of improvement is an artifact of the evaluation protocol, which is
di�erent from the SSL setting, where evaluation is either by training a linear classi�er on top of the
frozen trunk or by �ne-tuning the whole network (trunk + linear classi�er) without background
augmentations. We therefore, a) re-train a linear classi�er without background augmentations on
top of the frozen trunk (of the supervised network trained with background augmentations) and
(separately) b) �ne-tune the whole network without background augmentations, once again �nding
no performance bene�t.
In the supervised setting, strong augmentations may require much longer training to be e�ective
(e.g. as in the case of CutMix [111]). To account for a similar possibility in the case of background
augmentations, we include background augmentations in supervised training and follow a much
longer training schedule (see Appendix H for details) for 300 epochs (following CutMix) and �nd
no signi�cant performance bene�ts, see Table 9.

D.10 So,When do Background Augmentations Help?

Our results in the previous section suggest that the utility of background augmentations in SSL
does not generalize to the supervised setting. Given the importance of augmentations to SSL (e.g.,
Chen et al. [15]), these results highlight the need to evaluate and explore augmentations tailor-
made for the SSL setting and are consistent with similar �ndings [15] for color distortion and blur
augmentations. While the test bed of high performing SSL methods we have considered thus far is
diverse, they share a commonality: they all use Siamese networks to compare or contrast views
of images, raising the natural question of whether this is the only SSL setting where background
augmentations confer an advantage.
To investigate this question, we turn to RotNet [32]—a simple, yet surprisingly e�ective SSL method
that is not based on a Siamese architecture nor on comparisons between images. Training a
RotNet involves augmenting the data with rotated images and training a network to categorize
the orientation of an image, thereby forcing the network to learn a meaningful representation
to accomplish this task. We implemented background augmentations in RotNet, i.e. we either

6Note that BG_Swaps is not applicable here since there is no concept of a negative to match.
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baseline (p = 0.0): 36.1 p = 0.1 p = 0.2 p = 0.3 p = 0.5

BG_RM 36.0 35.5 35.5 34.8
BG_Random 36.1 36.0 35.9 35.7

Table 10: RotNet: Background augmentations do not improve over the baseline.

Figure 10: Examples of variations of ImageNet-9. Also shown are classi�cation decisions from the super-
vised baseline. Image from Xiao et al. [104].

perform BG_RM or BG_Random followed by rotating the image (and training the network to classify
the orientation). Interestingly, we found that background augmentations confer no performance
bene�ts, see Table 10. Here, BG_Random and BG_RM decorrelate the foreground and the background,
while BG_RM additionally reduces the incentive to encode background information, since a grayscale
background is not informative for the pretext task of categorizing image orientation. Thus, merely
decorrelating the foreground and background or disincentivizing focus on the background are not
su�cient to improve semantic focus.
Based on our �ndings, we speculate that background augmentations are most helpful when there is
a similarity comparison between images, and can help prevent the model from using the background
as a shortcut to place images nearby (or far away) in embedding space which can hinder learning
about the semantic content present in an image.

E Generality of Representations Induced by Background
Augmentations

If background augmentations lead to increased focus on semantic content and decreased focus on
non-robust predictors for classi�cation (e.g., Ilyas et al. [53]), we expect that these augmentations
would also lead to improved performance on out-of-distribution downstream tasks. In particular, we
expect gains on those tasks which have proven especially challenging for supervised networks. Here,
we discuss several such tasks, including ImageNet-9 [104], adversarial attacks [33, 61, 69], natural
adversarial examples [47], ImageNet-Renditions [48] and ReaL ImageNet [8], �nding improved
performance across the board.
E.1 Improved Robustness to Shift in Foreground-Background Statistics

ImageNet-9 (IN-9), introduced in Xiao et al. [104], consists of out-of-distribution data sets that are
di�erent variations of a 9-class subset of ImageNet. The variants are designed to have di�erent
amounts of foreground and background signal, see Figure 10 for examples. In the Only-BG-B and
Only-BG-T variants, the foreground is removed and replaced either with a black box (Only-BG-B)
or a tiled version of the background (Only-BG-T); No-FG features images with the foreground
shape cut out (and discernible), while Only-FG features the foreground alone on a black background
(similar to our BG_RM); Mixed-Same, Mixed-Rand, and Mixed-Next, feature foregrounds pasted onto
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Data Set Supervised MoCo-v2 BYOL SwAV

baseline BG_RM BG_Swaps baseline BG_RM BG_Random baseline BG_RM BG_Random

Original 95.6 92.7 93.8 94.2 94.9 95.6 96.0 94.1 95.0 94.9
Only-BG-B ↓ 11.4 6.1 6.1 3.6 5.4 4.9 6.0 10.9 8.8 8.3
Only-BG-T ↓ 16.3 14.8 12.9 9.3 12.7 11.8 11.5 15.8 16.7 17.6
No-FG 45.9 37.8 42.3 39.6 43.9 45.9 46.2 41.3 44.2 45.2
Only-FG ↑ 86.8 74.4 81.9 (+7.5) 86.1 (+11.7) 83.5 88.8 (+5.3) 87.7 (+4.2) 79.4 85.3 (+5.9) 84.3 (+4.9)
Mixed-Same ↑ 86.2 81.8 84.0 (+2.2) 87.9 (+6.1) 86.2 88.6 (+2.4) 90.1 (+3.9) 82.2 86.1 (+3.9) 86.3 (+4.1)
Mixed-Rand ↑ 78.9 70.7 76.3 (+5.6) 84.1 (+13.4) 79.6 83.2 (+3.6) 85.5 (+5.9) 71.3 77.1 (+5.8) 77.0 (+5.7)
Mixed-Next ↑ 77.2 67.0 73.0 (+6.0) 82.2 (+15.2) 77.6 80.7 (+3.1) 84.0 (+6.4) 69.0 74.3 (+5.3) 74.4 (+5.4)

Table 11: Robustness: Foreground-Background Shifts. Background augmentations result in large perfor-
mance gains on ImageNet-9 across all SSL methods, with BG_Swaps generally exhibiting similar or better
performance than BG_RM. We highlight the performance bene�t on the variants of ImageNet-9 especially
relevant to our work. All accuracies reported for background augmented SSL methods are averages of 3
independent runs (we exclude SEM to avoid clutter, see Table A14 for an expanded table that includes SEM).
All pre-training durations correspond to respective medium settings. Note that ImageNet-9 uses only 9 classes,
so chance is ∼11.1%.

Pre-Train
Duration MoCo-v2 BYOL SwAV

baseline BG_RM BG_Swaps baseline BG_RM BG_Random baseline BG_RM BG_Random

Med. 11.1 7.7 (-3.4) 3.8 (-7.3) 6.6 5.4 (-1.2) 4.6 (-2.0) 10.9 9.0 (-1.9) 9.3 (-1.6)
Full 10.0 6.8 (-3.2) 4.4 (-5.6) 9.1 5.3 (-3.8) 4.4 (-4.7) 11.4 9.3 (-2.1) 9.0 (-2.4)

Table 12: BG-Gap: Background augmentations decrease BG-Gap of SSL Methods.

backgrounds from di�erent images of the same class (Mixed-Same), random images (Mixed-Rand),
and deterministically from the next class such that backgrounds provide systematically misleading
information (Mixed-Next). If models learn to focus on the semantically meaningful foreground and
ignore the background, we should expect classi�cation performance to decrease for Only-BG-B and
Only-BG-T, and to increase for Only-FG, Mixed-Same, Mixed-Rand, and Mixed-Next7.
We evaluate the baseline SSL methods as well as models with background augmentations on all
variants of IN-9 in Table 11. As in the supervised setting [see 104], we found that models which
perform better on the Original IN-9 also perform better across other IN-9 variants. Critically, we
also found that background augmentations consistently improved performance on IN-9, especially
on the images with misleading backgrounds (Mixed-X), and in some cases, enable outperforming
the supervised baseline. We also found that BG_Swaps consistently improved performance over
BG_RM. For example, on Mixed-Next, the MoCo-v2 baseline has an accuracy of 67.0%, worse than
the supervised baseline’s performance of 77.2%, but incorporating BG_RM and BG_Swaps increases
this to 73.0% and 82.2%, respectively. These results demonstrate that background augmentations do
indeed encourage semantic focus on the foreground, and that explicitly discouraging background
focus (as in BG_Swaps) is bene�cial over simply removing positive signal in the background. We
also note that BG_Random generally confers larger improvements over BG_RM.
To quantify the impact of foreground-background correlations in the learned representations, we
compute the BG-Gap [104] as the di�erence between accuracies in the Mixed-Same and Mixed-
Rand settings and �nd that background augmentations decrease the BG-Gap in the SSL methods
considered, relative to the baselines. For the baselines, we also �nd that the BG-Gap slightly
increases when trained for longer (Table 12) for BYOL and SwAV, while it slightly decreases for
MoCo-v2. We speculate that this is due to the use of a large number (|Q| = 65536) of negative
instances in MoCo-v2—it is possible some of the negative instances have backgrounds similar
to the query q, thereby implicitly discouraging background focus. As such, SSL models do not
seem to learn much background invariance when trained for longer duration. When background
augmentations are used, the BG-Gap is roughly the same for shorter or longer training duration—in
other words, background augmentations do not require long training to be e�ective. Additional
results: Appendix K (Tables A14, A15, A16, A17, A18).

7It is more di�cult to determine whether performance should increase or decrease for the No-FG variant,
since this manipulation leaves a perfectly shaped cutout of the foreground on the background, which provides
substantial information about the structure of the foreground even though it has been removed.
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Pre-Train
Duration MoCo-v2 BYOL SwAV

baseline BG_RM BG_Swaps baseline BG_RM BG_Random baseline BG_RM BG_Random

Med. 54.7 56.7±0.1 (+2.0) 57.2±0.1 (+2.5) 60.7 61.7±0.2 (+1.0) 62.1±0.1 (+1.4) 59.3 61.2±0.3 (+1.9) 60.7±0.0 (+1.4)
Full 58.9 59.6 (+0.7) 60.3 (+1.4) 61.9 63.4 (+1.5) 62.8 (+0.9) 61.7 63.8 (+2.1) 63.4 (+1.7)

Table 13: Robustness: Natural Distribution Shift. Background augmentations improve performance on
ImageNet-v2, a test set for ImageNet. Notably, background augmentations enable SwAV to perform on par
with the standard supervised baseline (63.8%).

Pre-Train
Duration MoCo-v2 BYOL SwAV

baseline BG_RM BG_Swaps baseline BG_RM BG_Random baseline BG_RM BG_Random

Med. 14.4 16.8±0.2 (+2.4) 18.2±0.1 (+3.8) 20.4 22.1±0.3 (+1.7) 22.3±0.1 (+1.9) 16.1 19.3±0.1 (+3.2) 18.1±0.1 (+2.0)
Full 17.4 19.9 (+2.5) 20.8 (+3.4) 20.8 23.9 (+3.1) 23.4 (+2.6) 19.3 21.9 (+2.6) 21.3 (+2.0)

Table 14: Robustness: Rotation, Viewpoint, Background Shift. Background augmentations improve
performance on ObjectNet, a challenging test set that controls object orientation, viewpoint and background.

E.2 ReaL Imagenet Con�rms Improvement of Semantic Focus

Next, we evaluate performance using Reassessed Labels (ReaL, Beyer et al. [8]) for ImageNet, which
relabel ImageNet to better represent the semantic content of the images. Using ReaL, Beyer et al.
[8] found that the gains due to many recent methods were smaller than when the original labels are
used. As with the original ImageNet labels, we found that background augmentations substantially
improve performance on ImageNet ReaL (Table 3), con�rming that background augmentations do
induce increased semantic focus rather than simply facilitating over�tting to the original ImageNet
labels. In fact, the improvement on ReaL is slightly larger when trained for fewer epochs.

E.3 Improvement on ImageNet-v2 and ObjectNet

We next evaluate performance on ImageNet-v2 [81] and ObjectNet [5]. ImageNet-v2 is a test set for
ImageNet and can be considered a “natural" distribution shift setting. ObjectNet is a challenging test
set where the object orientation, viewpoint and background are varied in a controlled manner. We
�nd that background augmentations confer sizeable performance bene�ts in both of these settings,
see Tables 13 and 14.
Notably, on ImageNet-v2, background augmentations enable SwAV to perform on par with the
supervised baselines. Speci�cally, the torchvision ResNet50 baseline has an accuracy of 63.3% on
ImageNet-v2, while our re-implementation of the standard, stronger baseline [35] has an accuracy
of 63.8%. Additional results: Appendix K (Tables A19, A20, A21).

E.4 Natural Adversarial Examples

We next evaluate classi�cation performance on a particularly di�cult distribution shift data set:
ImageNet-A, a data set of natural adversarial examples that were found to be consistently mis-
classi�ed across models. These are extremely challenging for even supervised methods with
ResNet-50 accuracy at only ∼2.2% [47]. As a �rst experiment, we investigate whether the di�culty
of natural adversarial examples partially stems from misleading signal in the background. To test
this, we modify the ImageNet-A data set by removing backgrounds such that only the foreground is
present (Only-FG ImageNet-A). Indeed, we �nd that performance of supervised ResNet-50 improves

Pre-Train
Duration MoCo-v2 BYOL SwAV

baseline BG_RM BG_Swaps baseline BG_RM BG_Random baseline BG_RM BG_Random

Med. 3.1 3.3±0.1 (+0.2) 3.6±0.1 (+0.5) 4.4 5.8±0.3 (+1.4) 6.1±0.1 (+1.7) 3.7 4.2±0.1 (+0.5) 4.1±0.1 (+0.4)
Full 4.2 4.7 (+0.5) 5.3 (+1.1) 5.3 7.2 (+1.9) 7.2 (+1.9) 5.2 6.0 (+0.8) 5.7 (+0.5)

Table 15: Robustness: Natural Adversarial Examples. Background augmentations improve performance
on ImageNet-A, a data set of natural adversarial examples.
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Pre-Train
Duration MoCo-v2 BYOL SwAV

baseline BG_RM BG_Swaps baseline BG_RM BG_Random baseline BG_RM BG_Random

Med. 27.7 31.3±0.0 (+3.6) 32.3±0.1 (+4.6) 36.3 39.4±0.3 (+3.1) 38.4±0.0 (+2.1) 27.9 32.1±0.1 (+4.2) 31.2±0.3 (+3.3)
Full 30.4 33.4 (+3.0) 33.5 (+3.1) 34.4 40.2 (+5.8) 39.2 (+4.8) 29.4 32.7 (+3.3) 32.5 (+3.1)

Table 16: Robustness: Renditions. Background augmentations improve performance on ImageNet-R, a data
set of ImageNet-Renditions (e.g. paintings, sculpture).

Pre-Train
Duration MoCo-v2 BYOL SwAV

baseline BG_RM BG_Swaps baseline BG_RM BG_Random baseline BG_RM BG_Random

Med. 4.5 6.4±0.0 (+1.9) 8.4±0.2 (+3.9) 10.6 11.9±0.4 (+1.3) 11.4±0.1 (+0.8) 6.0 6.6±0.1 (+0.6) 6.7±0.1 (+0.7)
Full 7.8 10.6 (+2.8) 13.1 (+5.3) 10.4 13.2 (+2.8) 13.4 (+3.0) 9.1 10.1 (+1.0) 10.4 (+1.3)

Table 17: Robustness: Adversarial Attack. Background augmentations increase robustness to FGSM
adversarial attacks.

by +2.8%8, suggesting that some amount of the di�culty of natural adversarial examples stems
from misleading information in the background. We note that the magnitude of this number must
be interpreted with some caution, since this data set is also challenging for saliency detection.
We next investigate the performance of standard SSL methods on this task, �nding substantively
improved performance relative to the supervised methods (Table 15). Despite this improvement,
comparing the performance of SSL methods for the unmodi�ed ImageNet-A vs. Only-FG ImageNet-A
(see Appendix K.3) demonstrates that SSL models perform worse on the version of ImageNet-A with
only foregrounds, suggesting that SSL methods still may be overly focused on backgrounds. Together
with the supervised results, this suggests that background augmentations in SSL should prove
helpful. Indeed, we �nd that they are, with all versions of background augmentations resulting in
substantially improved performance on ImageNet-A. In particular, we found BG_Swaps to be more
e�ective than BG_RM, suggesting the importance of using background matched negatives. These
results demonstrate that part of the challenge of ImageNet-A stems from images with misleading
backgrounds and that background augmentations can substantially improve robustness to these
natural adversarial examples. Additional results: Appendix K (Tables A22, A23).

E.5 Improvement on ImageNet-Renditions

We next investigate the performance on ImageNet-R [48], a data set curated to measure general-
ization to various abstract visual renditions (e.g. paintings, embroidery, cartoons etc., see Figure
A2 for examples) of ImageNet classes. This is a challenging OOD data set for classi�ers trained on
ImageNet, since they often rely heavily on natural texture cues. Indeed, the supervised baseline
accuracy for ResNet-50 is only 36.1%. We �nd that background augmentations confer signi�cant
performance bene�ts of ∼2-6%, suggesting that they help with generalizing to abstract visual
renditions. Additional results: Appendix K (Table A24).

E.6 Background Augmentations Improve Robustness to Adversarial Perturbations

Ilyas et al. [53] demonstrated that adversarial examples are partially driven by the learning of
non-robust, high frequency features which can be predictive of ground-truth classi�cation labels,
but which are also highly susceptible to adversarial attacks. Since background augmentations
encourage focus on semantically meaningful content in images, a natural question is whether these
augmentations also confer increased robustness to adversarial perturbations. To test this, we use a
popular adversarial attack: FGSM [33]. We found that background augmentations did indeed result
in increased robustness, with BG_Swaps consistently conferring a greater bene�t than BG_RM (Table
17), once again emphasizing the importance of penalizing focus on backgrounds. Additional results:
Appendix K (Table A25).

8We use the same pre-trained torchvision ResNet-50 model which was used in the construction of the data
set. Since images mis-classi�ed by this particular pre-trained model comprise the data set, the ImageNet-A
(Only-FG ImageNet-A) accuracy for this speci�c model is 0% (2.8%), though a model trained from scratch has
an ImageNet-A accuracy of ∼2.2%.
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E.7 Evaluation on CIFAR-10 and 100

We �nd that the performance bene�ts of including background augmentations extends to CIFAR-10
and 100, see Table 18. All methods used the same protocol to be directly comparable. All models
receive full pre-training. Additional results: Appendix K (Table A26).

Data Set MoCo-v2 BYOL SwAV

baseline BG_RM BG_Swaps baseline BG_RM BG_Random baseline BG_RM BG_Random

CIFAR-10 73.9 80.7 (+6.8) 76.0 (+2.1) 86.7 87.7 (+1.0) 88.1 (+1.4) 92.7 92.7 (+0.0) 92.9 (+0.2)
CIFAR-100 40.8 51.6 (+10.8) 44.9 (+4.1) 67.6 66.5 (-1.1) 67.0 (-0.6) 76.0 76.4 (+0.4) 76.4 (+0.4)

Table 18: CIFAR-10, 100. Background augmentations improve performance on linear evaluation on CIFAR-10
and 100.

E.8 A Limitation of Learning Background Invariance

We have characterized the impact of background augmentations in view-invariant SSL, �nding
improved generalization, robustness, label and training e�ciency. Here, we discuss an important
limitation of our work. As previously discussed, by design SSL augmentations are meant to induce
“desirable" invariances—what is desirable depends on the downstream tasks (e.g. Purushwalkam
and Gupta [78], Xiao et al. [105], Tian et al. [96]). Consequently, when background is informative
to the task at hand, we expect poorer performance. We demonstrate this by linear evaluation on
Places-205, �nding that this is indeed the case, see Table 19. Note that this limitation is not speci�c
to background augmentations. Indeed, “aggressive" cropping is an integral part of the augmentation
pipeline in nearly all high performing SSL methods but can be detrimental [78] like background
augmentations, in similar situations.
This limitation of background augmentations on domains di�erent from intended application may
be overcome by training a multi-head network with a shared backbone (as in Xiao et al. [105]),
so that one head is trained to be background invariant, while one head is not. All models receive
full pre-training; foreground masks used for background augmentations were based on U2Net to
control for mask quality.

E.9 Object Detection and Instance Segmentation

We report evaluation on the downstream tasks of object detection and instance segmentation,
since these are common evaluations for SSL methods. However, a priori we expect background
augmentations to yield only small gains in these tasks, since the models receive extensive supervised
information about object identities and locations during �netuning. Indeed, identity information
alone can induce strong localization ability [91]. Consistent with our expectations, we see only
small gains in these tasks in Table 20. We note that it is possible that background augmentations
may yield larger gains in these tasks with less training or by incorporating the augmentations into
the �netuning pipeline [31]. Additional results: Appendix K (Table A27).

E.10 Background Augmentations Increase the Shape Bias of SSL Methods

Supervised Convolutional Neural Networks (CNNs) have been found to be biased toward texture,
i.e. they tend to classify based on the texture information in an image over shape, whereas humans
are more shape biased; increasing the shape bias of supervised CNNs has been found to increase
accuracy and robustness [28]. Recent work [29] has also found that many SSL methods are heavily
texture biased like their supervised counterparts. We use the shape bias measure [28] to probe
the pre-trained SSL models to gain some insight. The shape bias of a model is computed using
texture-shape cue con�ict stimuli (the shape and texture cues in the image correspond to di�erent

MoCo-v2 BYOL SwAV

baseline BG_RM BG_Swaps baseline BG_RM BG_Random baseline BG_RM BG_Random

28.7 27.3 (-1.4) 25.8 (-2.9) 44.5 40.0 (-4.5) 42.1 (-2.4) 49.6 48.1 (-1.5) 48.1 (-1.5)

Table 19: When background is relevant: Places-205. When background information is important, back-
ground augmentations can reduce downstream performance.
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VOC 07+12 detection COCO detection COCO instance seg.
Method AP50 AP AP75 AP50 AP AP75 APm50 APm APm75

MoCo-v2 (repro.) 82.7±0.0 57.9±0.0 64.5±0.1 61.0 41.1 44.8 57.7 35.8 38.4
MoCo-v2 + BG_RM 82.9±0.1 58.1±0.1 65.2±0.2 61.2 41.2 44.7 58.0 36.0 38.6

MoCo-v2 + BG_Swaps 82.7±0.0 57.5±0.0 63.9±0.1 61.1 41.1 44.3 57.6 35.8 38.3
BYOL (repro.) 82.7±0.1 56.7±0.1 63.0±0.3 61.1 40.9 44.5 57.6 35.5 37.8

BYOL + BG_RM 83.0±0.1 57.0±0.0 64.0±0.1 61.5 41.1 44.4 57.9 35.6 38.0
BYOL + BG_Random 83.1±0.2 57.6±0.1 64.7±0.1 61.7 41.4 44.7 58.4 36.0 38.3

SwAV (repro.) 82.3±0.1 55.6±0.0 61.9±0.2 61.4 40.7 43.7 57.6 35.4 37.4
SwAV + BG_RM 82.4±0.0 55.9±0.1 62.2±0.2 61.2 40.6 44.0 57.6 35.4 37.4

SwAV + BG_Random 82.4±0.1 55.9±0.1 62.4±0.2 61.2 41.4 44.8 58.0 36.0 38.3

Table 20: Detection and Instance Segmentation. Background Augmentations result in small improvements
in detection and instance segmentation tasks, likely due to extensive supervision involved in subsequent
training. All VOC metrics reported are average of 3 independent runs.

Supervised MoCo-v2 BYOL SwAV

baseline BG_RM BG_Swaps baseline BG_RM BG_Random baseline BG_RM BG_Random

22.1 28.8 31.7 33.4 27.6 29.8 31.0 17.0 17.7 19.4

Table 21: Background augmentations increase shape bias. SSL methods considered generally have a
higher shape bias than the supervised baseline. SwAV deviates from this pattern due to multi-crop (SwAV
w/o multi-crop shape bias: 27.4).

ImageNet classes, e.g. see Figure A3) as the fraction of classi�cation decisions that correspond to
shape information.
We �nd that (see Table 21) while the SSL methods considered are heavily texture biased, they are
less so than their supervised counterpart, with the exception of SwAV. However, the default setting
of SwAV uses multi-crop with 2 global views and 6 local views; the local views may be expected
to push the model to be biased toward local texture features. Consistent with this hypothesis,
SwAV trained without multi-crop9 has a shape bias of 27.4. Our second �nding is that across
all SSL methods, background augmentations increase shape bias (Tables 21, A28). We note that
our improvements on the ImageNet-R data set, whose texture cues are OOD relative to ImageNet,
may have been driven in-part by the increased shape bias of the models trained using background
augmentations. Our �ndings raise the intriguing possibility that background augmentations induce
representations that are (slightly) more brain-like. All models receive full pre-training.

F Related Work
Semantic Focus and Robustness. A number of recent works have investigated whether non-
semantic features are exploited by models in supervised learning. We draw heavy inspiration from
this literature, especially Xiao et al. [104], Sehwag et al. [87] and Beery et al. [7] who demonstrate the
importance of backgrounds for image classi�cation. Other works have demonstrated the importance
of high-frequency information for classi�cation, both in traditional image classi�cation [57] and in
the context of adversarial robustness [53]. There have also been a number of works investigating
the importance of shape vs. texture for classi�cation decisions, both in supervised [28, 49] and
self-supervised learning [29]. Similar to the �ndings in the supervised setting in Geirhos et al.
[28]—that increasing the shape-bias increases robustness and accuracy, we found that background
augmentations increase shape-bias and also improve robustness and accuracy.
While there has been much work investigating robustness properties in the supervised setting
(e.g. Xiao et al. [104], Hendrycks et al. [47, 48], Goodfellow et al. [33]), the self-supervised setting
has received relatively less attention. Geirhos et al. [29] characterize the robustness of several
SSL models to low-level noise distortions but do not investigate other aspects of robustness nor

9We evaluated the shape-bias of an o�cial SwAV model trained for 400 epochs without multi-crop from
https://github.com/facebookresearch/swav.
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approaches to improve semantic focus and performance. We evaluate a diverse spectrum of high
performing SSL methods in 17 distribution shift settings, in addition to investigating approaches to
improve robustness. Thus, our work is complementary to existing work.

Self-Supervised Learning. We do not make a formal distinction between self-/un-supervised
learning (but see Jing and Tian [56]) and broadly discuss related work. Generally, representation
learning without human-annotated labels involves solving “pretext" prediction tasks. We coarsely
organize the literature as follows.
Hand-crafted pretext tasks. Early work used hand-crafted pretext tasks such as predicting image
orientation (RotNet, Gidaris et al. [32]), image inpainting [77], solving image jigsaw puzzles [74],
denoising [97] and cross-channel [119, 120] auto-encoding for representation learning. Combining
multiple pretext tasks [21] and using larger networks [59] can improve performance.
Learning view invariance. While hand-crafted pretext tasks have been shown to be useful for learning
representations useful for downstream tasks, their performance has been far from their supervised
counterparts. Learning view-invariant representations has recently been a fruitful direction in SSL;
such approaches date back to Becker and Hinton [6]. We coarsely group such works based on how
trivial representations are avoided.

• Contrastive learning. Contrastive learning [38] is a framework for learning representations
from data organized into similar/dissimilar pairs. Contrastive learning prevents trivial rep-
resentations through use of dissimilar pairs and has been a popular design choice in SSL
[43, 18, 15, 16, 103, 75, 50, 108, 44, 4, 95, 71, 22, 52].

• Clustering. A number of SSL methods have avoided trivial representations through clustering
[3, 11–13, 55]. There has also been work [63, 122] that bridges clustering and contrastive
learning approaches.

• Other. Methods such as BYOL [36], SimSiam [17] and Barlow Twins [112] are not explicitly
contrastive nor based on clustering and prevent trivial representations in other ways.

While we compare performance with respect to numerous SSL methods to situate our work in
literature, we note that we do not propose any new SSL methods. Rather, we improve upon the
core ingredient of the best performing methods: the augmentation pipeline. We choose one SSL
method from each coarse grouping of the literature to form a diverse test bed of SSL methods, so
as to characterize when background augmentations can or cannot confer bene�ts, as well as to
demonstrate the generality of our results. We show that learning background invariance improves
performance, robustness and label e�ciency across a diverse spectrum of high-performing SSL
methods. Importantly, our extensive analyses led to insights that allowed us to improve performance
beyond a plug-and-play approach. While we focus on view-invariant SSL approaches that di�erently
augment the same image to generate views, background augmentations can also be applied to
approaches that use di�erent frames from video to generate views (e.g. Zhuang et al. [123], Sermanet
et al. [90], Gordon et al. [34], Han et al. [39]).

Analyzing and Improving SSLAugmentation Pipelines. The augmentation pipeline for most
high-performing SSL methods is similar. A number of recent studies have focused on analyzing
and improving this pipeline, e.g. Tamkin et al. [94] learn the augmentations jointly with the
contrastive learning objective; Tian et al. [96] use labeled data to learn color spaces which are then
split to generate views and also characterize ImageNet acc. vs. augmentation strength for many
augmentations. Purushwalkam and Gupta [78] investigate invariance to occlusion, viewpoint, and
category instance and show that common SSL pipelines encourage occlusion invariance—a useful
property for object recognition tasks. Tian et al. [96] observe on a synthetic toy dataset that the
background can overwhelm the foreground, but do not investigate further nor propose a solution.
We show that background augmentations improve semantic focus in representations, leading to
better generalization and robustness. Of particular note, Selvaraju et al. [89] also aims to improve
focus on semantically meaningful content in images; they do so by constraining the crops used
in the SSL augmentation pipeline to contain the object of interest as determined by a saliency
method. We also investigate the impact of constraining crops to contain the salient object, and
�nd that it does not improve performance (Appendix J.6) on top of background augmentations.
Critically, in contrast with our work, Selvaraju et al. [89] relies on a saliency detector trained using
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ImageNet class labels making this method not truly self-supervised. Note that Selvaraju et al. [89]
also investigate using an “attention" loss computed using Grad-CAM [88], which we discuss below.

“Copy-Paste" Augmentations. There is a long history of work, largely in the supervised setting,
that has investigated the use of “copy-paste" augmentations in which “copied" foregrounds are
“pasted" onto backgrounds, generally with the aim of generating more labeled data. We draw heavy
inspiration from this literature. Copy-paste has been used for learning optical �ow [23], instance
detection [26], object detection [30, 25], text localization [37] and instance segmentation [82, 27, 31].
In these works, the segmentation masks required for copying are obtained from human annotation
or using networks trained in a supervised manner to generate them. This implicit or explicit reliance
on human annotation has been an obstacle limiting the application of copy-paste outside of the
supervised setting where it is widely used.
Recent work [121] took a �rst step in the SSL setting by using a heuristic saliency method to generate
a mask, and applied a “copy-paste" augmentation similar to BG_RM, �nding improved performance
on ImageNet linear classi�cation accuracy. However, the gain achieved in their best performing
SSL method (MoCo-v2+DiLo-RBD) is only +0.2% (see Table 3). Thus, it remains unclear if such
augmentations can signi�cantly bene�t SSL, especially high performing SSL methods—indeed,
in Zhao et al. [121], the gains rapidly and monotonically decline with the baseline SSL method’s
performance. Thus, not only is it unclear if copy-paste can signi�cantly bene�t SSL, it is unclear
when and how such augmentations confer bene�ts. Further, the impact of such augmentations on
downstream tasks is also unclear, though Zhao et al. [121] report small gains (∼0.4-0.6 AP %) on
object detection and instance segmentation tasks.
In contrast, in our work, a) we develop a completely unsupervised method to generate high quality
masks and demonstrate the utility of background augmentations in conferring large performance
bene�ts (∼1-2%) across a spectrum of high performing SSL methods (e.g. we obtain a 7× larger
gain of +1.4 on MoCo-v2 using BG_RM), b) we systematically characterize when and how back-
ground augmentations confer bene�ts: it is not su�cient to merely decorrelate the foreground
and background nor to disincentive focus on the background; rather, background augmentations
confer bene�ts when there is a similarity comparison between images in view-invariant SSL, where
the background maybe used as a shortcut, c) Contrary to Zhao et al. [121], we show that using
natural random backgrounds (BG_Random) can result in better performance, d) further, our insights
on how background augmentations work enable us to develop a novel, more e�ective background
augmentation method (BG_Swaps), leading to even larger performance gains (+1.8) (a 9× larger
gain on MoCo-v2), e) we show how bene�ts from background augmentations may be hidden by
implementation choices, f ) Perhaps most critically, we focus on generalization in OOD settings,
robustness, label and training e�ciency, g) we also characterize the limitations of background
augmentations.
We note that in our work, we use the term “background augmentation" rather than “copy-paste"
augmentation, since our purpose is to discourage focus on the backgrounds, rather than creating
more labeled data for the foreground (e.g. Ghiasi et al. [31], Dwibedi et al. [26]). However, more
broadly, even in absence of labels our work enables foreground augmentations for SSL, making it
possible to create images with multiple objects in a controlled manner.

Mixing Augmentations. Background augmentations have some resemblance to mixing aug-
mentations used in the supervised setting, e.g. mixup [115], CutMix [111], which mix information
contained in images. In contrast with background augmentations, these methods a) mix images
ignoring the semantic relevance of parts of an image and b) also mix the corresponding labels.
Extending such mixing augmentations to SSL is an orthogonal improvement to our work and may
be a fruitful line of inquiry for future work. Relatedly, but conversely, mixing augmentations that
consider semantic relevance of parts of an image in the supervised setting, could also be a fruitful
direction.

“Attention" Loss. Selvaraju et al. [89] investigate the impact of using an additional “attention"
loss that encourages similarity between the Grad-CAM heatmap of the query and its saliency mask.
The Grad-CAM heatmap is computed by additionally encoding the masked (background removed)
key using the teacher network and computing the spatial regions in the query that the network
relies on to map the masked key to the query, by back-propagation on the activations in the last
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convolutional layer. In contrast, our work, besides not relying on a saliency detector trained using
supervised information, is much simpler—simply adding an augmentation to the data augmentation
pipeline and thereby more agnostic to the speci�c method and yet, is highly e�ective.

“Hard" Instances. Our work is also related to the literature on “hard negatives", which have
been explored recently in the context of contrastive SSL to improve learning [58, 101, 84, 10]. In
this literature, hard negative instances are “mined" using distances in the embedding space. In a
broader sense, creating negatives whose background matches the query (as we do in BG_Swaps)
can also be considered “hard negatives" and in a similar vein, one could consider the positive pair
(q and k+) with di�erent backgrounds as “hard positives". Mining for hard negatives (or even hard
positives) is an orthogonal improvement to our work.

G Discussion
We investigated the potential of background augmentations for self-supervised learning. We
explored several variants of background augmentations, including those with constant gray back-
grounds (BG_RM), randomized natural backgrounds (BG_Random), and a novel method that uses
matched backgrounds between queries and negatives (BG_Swaps). Across view-invariant SSL meth-
ods, we found that background augmentations result in sizeable performance improvements ∼1-2%
on ImageNet linear classi�cation, enabling performance on par with the supervised baseline. In the
limited-labels setting, we found even larger performance bene�ts. Across SSL methods, we found
that BG_Random and BG_Swaps often lead to larger performance improvements than BG_RM due
to being more in-distribution. However, other factors such as ease of optimization (Section D.6)
also play a role. Background augmentations take a large step forward in reducing the amount of
training required for competitive performance in SSL, e.g. enabling performance on par with or
better than many recent SSL methods trained for 800-1000 epochs in only 100 epochs.
Interestingly, we found that background augmentations conferred no bene�t in supervised training
nor in RotNet, an SSL method not based on view-invariance. These results demonstrate the
importance of designing augmentations tailored to the SSL setting, especially view-invariant SSL.
These �ndings are timely and relevant to the community, since view-invariant SSL methods are
currently the best performing methods across a range of architectures and downstream tasks.
As SSL methods shrink the gap to their supervised counterparts, it has become increasingly im-
portant to characterize the limitations of performant SSL methods as well as to understand their
robustness and generalization properties in a more comprehensive manner. Across state-of-the-art
SSL methods, we found that background augmentations enable increased model focus on semanti-
cally meaningful content and lead to improved robustness to numerous distribution shifts including
ImageNet-9, natural adversarial examples, ImageNet-R, adversarial attacks, as well as natural distri-
bution shift. Our analyses revealed an increased shape bias for SSL models trained with background
augmentations, which may have driven some of the improvement, especially on the ImageNet-R
data set where texture cues are OOD relative to ImageNet, requiring representations to better
encode shape cues in an image for improved performance. All of these results raise the intriguing
possibility that background augmentations induce representations that are (slightly) more brain-like.
Future work could investigate this idea further, potentially by comparing representations with
neuronal recordings [106]. Relatedly, neural networks are known to be easily fooled by objects in
unusual poses [2], unlike humans. An interesting line of investigation for future work could be to
learn robustness to unusual poses by foreground augmentations (e.g. using foreground masks to
augment data with rotated objects). Indeed, such approaches have been adopted in the supervised
setting [e.g. 26, 31] when segmentation masks for foreground objects are available. Our work
enables such approaches in the absence of human-annotation, opening up new possibilities beyond
our application here in background augmentations.
It is worth noting that background augmentations as implemented here are speci�c instantiations
of encouraging background invariance—we focused on extensively evaluating simple instantiations.
Speci�cally, using a saliency method to separate foreground and background could be problematic
in more complex scenes. Remarkably, though ImageNet has a large share [e.g. 93, 8] of multi-
object multi-class images, the simple approach we have taken here works well. More sophisticated
approaches hold the potential for further improvement, e.g. one straightforward approach could be
to copy foregrounds from simple images using saliency detection and paste multiple objects into
images to create more complex scenes in controlled manner, either o�ine or on-the-�y.
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There has been increasing recent interest [19, 14, 62] in self-supervised learning for Vision Trans-
formers (ViTs, Dosovitskiy et al. [24]). Future work could investigate whether background (or
foreground) augmentations can bene�t SSL for ViTs. Yet another interesting line of inquiry could
be to investigate the impact of background augmentations in high performing semi-supervised
learning methods (e.g. FixMatch [92]).
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Organization of Supplementary Information. Appendix H contains implementation details
and evaluation protocols. In Appendix I, we characterize the impact of foreground mask quality
by systematically distorting the masks in numerous ways. Appendix J contains additional abla-
tions. Appendix K contains additional results, including characterization of robustness to image
corruptions and evaluations of models where background augmentations used masks generated by
a supervised saliency method, U2Net. Table captions throughout the appendices have additional
redundancy to increase ease of reference.

H Implementation Details
In this Appendix, we discuss pre-training details for each of the SSL methods in our test bed and
the protocols followed for downstream evaluations. We also discuss the implementation details of
the unsupervised saliency detection method, DeepUSPS2.

General Settings. All experiments use the ResNet-50 [41] architecture unless otherwise indicated.
All speci�ed learning rates are base learning rates for a batch size of 256 unless otherwise indicated.
Learning rates are obtained by linearly scaling the base learning rates as base learning rate ×
batch size/256. We closely follow the implementation details of the original works where possible.
Settings not mentioned here are identical to respective original works. All models were implemented
using PyTorch [76], torchvision [70] and NumPy [40]. All cosine schedules [67] are half-period
without restarts. Binary foreground masks used in background augmentations are obtained by
thresholding saliency predictions between 0-1 using a threshold value of 0.9; by default, we use our
unsupervised saliency detector DeepUSPS2.
H.1 Pre-Training of SSL Methods

MoCo-v2. We use a larger (than the standard 256) batch size of 1024 (distributed across 32 GPUs)
with a 20 epoch warmup for 220 (800) epochs in the medium (full) setting. These setting were
chosen to speed up pre-training while matching (or improving upon) the reported performance at a
similar number of epochs in Chen et al. [18].
Background Augmentations. In BG_RM, backgrounds were removed in q and k+ independently
with p = 0.2. In BG_Swaps, ppos = pneg = 0.2 and crops in RandomResizedCrop (RRC) were
constrained to include FGmin = 0.1 fraction of the foreground, by rejection sampling. Concretely,
RRC parameters were sampled up to 10 times to satisfy constraints, defaulting to a CenterCrop if
no satisfactory parameters are sampled. See Appendix J.6 for additional discussion and ablations. In
BG_Swaps, the background matched negatives are batched together with the positive keys during
forward pass through the teacher/key network; only the positives keys are subsequently placed in
the queue Q.

BYOL. We used a batch size of 4096 (distributed across 64 GPUs). Our implementation used
synchronized batch-normalization layers (synced per group of 8 GPUs) using the apex10 library. In
RRC, we used a scale setting of (0.2, 1.0). We obtained similar results in the medium setting (300
epochs) when we instead used a) synchronized batch-normalization layers across all GPUs (global
sync) or b) used a scale setting of (0.08, 1.0) as in [36], but this may be di�erent in the full setting
(1000 epochs), potentially further improving on the performance we obtained in the full setting
using background augmentations.
Background Augmentations. In BG_RM, p = 0.15 and FGmin = 0.05, while in BG_Random,
p = 0.05 and FGmin = 0.05.

SwAV. Pre-training was identical to original implementation [13]. Background Augmentations.
In BG_RM, p = 0.25 and FGmin = 0.15, while in BG_Random, p = 0.2 and FGmin = 0.15. We only
apply background augmentation to the global views in multi-crop.

RotNet. Pre-training procedure was largely similar to the original paper [32]. When background
augmentations were used, BG_RM and BG_Random were applied before the default augmentations of
RandomResizedCrop, RandomHorizontalFlip and Rotation. Models were pre-trained for 30
epochs with a learning rate of 0.01, with a step schedule (10, 20) and a decay factor of 0.1 using
SGD with momentum=0.9, a batchsize of 192 and weight decay of 5× 10−4.

10https://github.com/NVIDIA/apex
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Figure A1: Higher pre-training loss but better generalization. Background augmentations generally lead
to a higher �nal pre-training loss as they make the objective function more “di�cult", but can lead to better
generalization.

Discussion: Loss and Background Augmentations. Background augmentations make the
objective function more “di�cult", leading to a higher �nal pre-training loss but can lead to better
generalization, see Figure A1. This is consonant with previous work [43, 59] �nding that the loss of
the pretext task is not necessarily monotonically related to generalization performance.
H.2 Training DeepUSPS2

We trained a DRN-D-105 [110] network via BYOL for 500 epochs to an accuracy of 73.9% with the
following settings: base learning rate of 0.3, weight decay of 1×10−6 and momentum coe�cient of
0.99 for the teacher network. All other settings use the defaults for training BYOL. We then use this
network as an initialization to train a saliency detector. Note that previous work instead initialized
with a network trained using ImageNet class labels as well as CityScapes [20] segmentation labels.
We train this network following the procedure from DeepUSPS, but in phase 1 of training, we use a
learning rate of 6× 10−6 instead of the default value of 1× 10−6.
H.3 Linear Evaluation on ImageNet

Linear evaluation protocol was largely similar to original work. For MoCo-v2 and SwAV, we evaluate
with a larger batch size to speed up evaluation. We train the linear classi�er for more epochs in the
case of MoCo-v2 and BYOL to reduce variability in the results. Note that warmup is not required,
but for simplicity we opted to keep the training procedure close to standard supervised training.

MoCo-v2. The linear classi�er was trained for 120 epochs, with a step schedule of 60, 80, 100 and
a decay factor of 0.1, with a warmup of 10 epochs, a batch size of 2048 (distributed across 32 GPUs).
Parameters in the backbone were frozen to the pre-trained values.

BYOL. The linear classi�er was trained for 140 epochs, with a step schedule of 80, 100, 120 and a
decay factor of 0.1. We used a base learning rate of 0.2 and a batch size of 1024 distributed across 16
GPUs. Parameters in the backbone were frozen to the pre-trained values.

SwAV. The linear classi�er was trained for 100 epochs with 5 warmup epochs using a batch size
of 2048 (distributed across 32 GPUs) and a cosine schedule. Parameters and bu�ers in the backbone
were frozen to the pre-trained values.

RotNet. The linear evaluation procedure was largely similar to the original paper [32]. A linear
classi�er was trained on top of Conv5 layer using SGD with Nesterov momentum over 35 epochs
using a batchsize of 256 and a momentum of 0.9 with a learning rate of 0.1, a step schedule of (5, 15,
25) and weight decay of 5× 10−4.

General Settings. Following common protocol, pre-processing during training consists
of RandomResizedCrop and RandomHorizontalFlip followed by normalization. The pre-
processing on validation images consists of Resize to size 256 along the shorter edge of the
image, followed by CenterCrop to size 224×224 and normalization.
H.4 Background Augmentations in the Supervised Setting

By default, training followed the settings speci�ed in Methods (Section B). Here, we discuss imple-
mentation details for a) re-training a classi�er without background augmentations and b) �netuning
the whole network without background augmentations and c) longer training.
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Figure A2: Examples from ImageNet-Renditions. Image from Hendrycks et al. [48].

H.4.1 Re-training a linear classi�er w/o background augmentations

We trained a linear classi�er from scratch on top of the frozen trunk without background augmen-
tations using standard pre-processing and data augmentation. We used SGD with momentum of 0.9
, a batchsize of 4096 with a base learning rate of 0.01 and a cosine schedule over 40 epochs and a
weight decay of 1× 10−4.

H.4.2 Finetuning w/o background augmentations

We �netuned the network without background augmentations, using standard preprocessing and
data augmentation. We used SGD with momentum of 0.9 , a batchsize of 4096 with a base learning
rate of 0.0005 and a cosine schedule over 20 epochs and a weight decay of 1× 10−4.

H.4.3 Longer Training

Training followed the settings speci�ed in Methods (section B), with the following changes: follow-
ing CutMix [111], training was for 300 epochs with a step schedule of (75, 150, 225).

H.5 Evaluation in Limited-Labels Setting

For consistency with previous work, we use the same �xed splits11 as in Chen et al. [16] for the 1%
and 10% labels settings of ImageNet training data.

H.5.1 Linear Evaluation

For simplicity, we train a linear classi�er using the same settings as in the corresponding 100%
labels linear evaluation, except that we use the training data from the corresponding split (1% or
10%).

H.5.2 Semi-Supervised Evaluation

MoCo-v2/BYOL: We �netuned the network for 50 epochs with a step schedule (30, 40) with a decay
factor of 0.1, with a batch size of 256 and no weight decay. For MoCo-v2, in the 1% (10%) label
setting, we used a learning rate of 1.0 (0.3) for the classi�er head and a learning rate of 1× 10−4

(1× 10−4) for the trunk. For BYOL, in the 1% (10%) label setting, we used a learning rate of 1.0 (0.1)
for the classi�er head and a learning rate of 1× 10−3 (1× 10−3) for the trunk. SwAV: we use the
same settings as in the original implementation [13].

H.6 Robustness Evaluations

Robustness evaluations do not involve any additional training—they use the same network (backbone
and linear classi�er) used for linear evaluation on ImageNet in the 100% labels setting. Note
that it is common for robustness benchmarks to use the pre-trained model from torchvision12

as the supervised baseline. We additionally report metrics using our re-implementation of the
standard, stronger supervised baseline in Goyal et al. [35]. We follow the pre-processing protocols
from respective original works; unless otherwise mentioned, this is simply the standard way that
ImageNet validation images are pre-processed (Appendix H.3).

11https://github.com/google-research/simclr/tree/master/imagenet_subsets
12https://github.com/pytorch/vision/tree/master/torchvision/models
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Figure A3: Examples with and without texture-shape cue con�ict.

ImageNet-9. ImageNet-9 [104] (IN-9) consists of data sets with varying amount of foreground-
background signal. Variations of IN-9 (excluding the “Original") involve a distribution shift in
foreground-background statistics. We use the data and code 13 from the original work for evaluation.

ImageNet-ReaL. Beyer et al. [8] relabel the ImageNet validation images to better represent
the semantic content present in the images; we use the Reassessed Labels14 (ReaL) to evaluate
ImageNet-ReaL accuracy. Our supervised (torchvision) baseline has an ImageNet-ReaL accuracy of
82.7% (82.9%).

ImageNet-v2. ImageNet-v2 [81] consists of three test data sets for ImageNet, with 10,000 images
each. The three variations are a) MatchedFrequency, b) Threshold0.7 and c) TopImages. Accuracies
reported in the main text (Section E.3) correspond to MatchedFrequency. Accuracies for other
variations are reported in Appendix K.2.

ObjectNet. ObjectNet [5] is a test data set that controls for rotation, background, and viewpoint.
It contains 50,000 images with 313 object classes. 113 of ObjectNet’s classes overlap with ImageNet—
we evaluate on this subset15. Following the original work16, after removing the one-pixel red
border, images are resized to size 224 along the shorter edge, followed by pre-processing steps of
CenterCrop and normalization as in Appendix H.3). Our supervised (torchvision) baseline has an
ObjectNet accuracy of 24.4% (24.7%).

ImageNet-A. ImageNet-A [47] is a data set of “natural" adversarial examples—images obtained
by a process of adversarial �ltering of natural images. It consists of 7,500 images mis-classi�ed by
the torchvision ResNet-50 pre-trained model17. Hendrycks et al. [47] report that a corresponding
model re-trained from scratch has an accuracy of 2.2%; our supervised baseline has an accuracy of
2.4%.

ImageNet-R. ImageNet-R is a data set curated to measure generalization to various abstract
visual renditions (e.g. paintings, embroidery, cartoons etc., see Figure A2 for examples) of ImageNet
classes. ImageNet-R involves a shift in texture statistics and contains 30,000 images. Our supervised
(torchvision) baseline has an ImageNet-R accuracy of 36.0% (36.1%).

Adversarial Attack. We used foolbox [80] for `∞ FGSM adversarial attack with ε = 8/255
applied to ImageNet validation images.

ImageNet-C. ImageNet-C [45] consists of 75 test data sets; 15 types of corruptions from four
main categories (noise, blur, weather, digital) are applied to ImageNet validation images to generate
the test images. Each corruption type has �ve levels of severity. We report the average performance
on the four main categories of corruptions in Appendix K.4. Pre-processing steps are CenterCrop
and normalization as in Appendix H.3.

13https://github.com/MadryLab/backgrounds_challenge
14https://github.com/google-research/reassessed-imagenet
15We used code from https://github.com/lucaslie/torchprune to map images to ImageNet classes.
16https://github.com/abarbu/objectnet-template-pytorch
17See Hendrycks et al. [47] for additional �ltering criteria used.
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H.7 Shape-Bias Evaluation

The shape-bias [28] of a model is computed using texture-shape cue con�ict stimuli18 (the shape
and texture cues in the image correspond to di�erent ImageNet classes, e.g. see Figure A3) as
the fraction of classi�cation decisions that correspond to shape information; this computation
only considers the subset of “correctly" classi�ed images—either the shape or texture category are
correctly classi�ed. Images are pre-processed as in Appendix H.3.

H.8 Linear Evaluation on CIFAR-10, 100

All methods were evaluated using the same protocol for fair comparison. A linear classi�er was
trained with SGD with momentum 0.9 for 100 epochs with a base learning rate of 0.08, a batch size
of 32 and a cosine learning rate schedule.

H.9 Linear Evaluation on Places-205

All methods were evaluated using the same protocol for fair comparison. A linear classi�er was
trained with SGD with momentum 0.9 for 28 epochs with a base learning rate of 1.0, a batch size of
256 and a step schedule of 7, 14, 21 and a decay factor of 0.1. Weight decay was set to 0.0001.

H.10 Object Detection and Instance Segmentation

We follow standard protocol across all SSL methods: a) VOC detection: We �netuned a Faster
R-CNN [83] in VOC 2007 + 2012 trainval for 24k iterations and evaluated in VOC 2007 test, b)
COCO detection and COCO instance segmentation: We �ne-tuned a Mask R-CNN [42] (2× schedule)
in COCO 2017 train, evaluated in COCO 2017 val. All Faster/Mask R-CNN models are with the
C4-backbone. We use Detectron2 [102] for all experiments19.
VOC: For MoCo-v2 and SwAV, we followed the settings from their corresponding original papers. In
the case of BYOL, we followed the settings of MoCo-v2 with one deviation: we used a base learning
rate of 0.08. COCO: we used the default settings of MoCo-v2 for all methods.

I Characterizing the Impact of Mask Quality
While the results in Section D.7 show that there may be diminishing gains to using higher quality
masks than those provided by DeepUSPS2, it does not give us a clear picture of the impact of mask
quality. For example, one may wonder,

• How does performance vary as a function of mask quality?
• Which SSL methods and background augmentations are more robust to mask quality?

To answer these questions, and in an attempt to gain further insight into the mechanism by which
background augmentations improve representations, we systematically perturb the quality of the
foreground masks. In these experiments, we use U2Net to generate the initial foreground masks
(that we then perturb) to minimize the possibility of starting with a poor mask and maintain greater
control over the quality of a perturbed mask.
We perturb the masks in numerous ways across a range of distortion strengths/levels. The distortions
we consider are: a) rotation (see Figure A4 for examples), b) shearing (Figure A5), c) translation
(Figure A6), d) horizontal �ips and e) using bounding-box masks instead of the original mask (Figure
A7). We expect mask translation and using bounding-box masks to be particularly challenging.
We characterize the dependence on mask quality for BG_RM across all the view-invariant SSL
methods in our test bed; in the case of MoCo-v2, we additionally include BG_Swaps. We apply
the respective distortion to each mask, every time it is used in a background augmentation. All
experiments are in the respective medium duration settings; we report ImageNet accuracy. We
make the following observations:

Low quality masks can still be bene�cial. Overall, we �nd that there is substantial robustness
to mask quality. In many instances, only a little of the foreground remains in view, yet background
augmentations maintain improved performance over the baseline. We �nd that mask translation

18We use the cue con�ict stimuli released at https://github.com/rgeirhos/texture-vs-shape.
19We use the code provided at https://github.com/facebookresearch/moco/tree/main/

detection.
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Figure A4: Mask Distortion: Rotation. Examples of varying distortion strength.

MoCo-v2 BYOL SwAV
Max

Rotation baseline BG_RM BG_Swaps baseline BG_RM baseline BG_RM

0◦ 67.7 69.3 (+1.6) 69.7 (+2.0) 72.7 73.5 (+0.8) 72.2 73.7 (+1.5)
5◦ - 69.3 (+1.6) 69.3 (+1.6) - 73.1 (+0.4) - 73.7 (+1.5)
10◦ - 69.0 (+1.3) 69.3 (+1.6) - 73.3 (+0.6) - 73.6 (+1.4)
15◦ - 68.7 (+1.0) 69.4 (+1.7) - 73.3 (+0.6) - 73.3 (+1.1)
20◦ - 68.7 (+1.0) 69.1 (+1.4) - 73.1 (+0.4) - 73.5 (+1.3)
25◦ - 68.4 (+0.7) 69.0 (+1.3) - 73.1 (+0.4) - 73.5 (+1.3)

Table A1: Mask Distortion: Rotation. Background augmentations are robust to substantial mask
noise induced via rotations of the foreground mask. Of note, BG_Swaps maintains a large performance
bene�t even for strong distortions. We highlight the ∆ relative to the baselines with no background augmen-
tations.

and using bounding-box masks are particularly challenging distortions as expected—surprisingly,
some performance bene�ts persist (but quickly disappear with higher distortion strength).

SwAV and BG_Swaps are quite robust to mask quality. We �nd that BG_Swaps is far more
robust to mask quality compared to BG_RM across all variants and degrees of distortions, showcasing
the robustness of this augmentation method. For example, across rotation, shearing, translation
and �ip distortions, the improvement due to BG_Swaps is ∼2-3× the improvement due to BG_RM in
the respective strongest distortion levels; further, when the foreground mask is replaced with a
bounding-box mask, the bene�t due to BG_RM disappears, while BG_Swaps retains a signi�cant
performance bene�t.
Among the SSL methods in our test bed, SwAV appears to be most robust to mask quality, managing
to maintain signi�cant performance bene�ts even with strong mask distortion. We speculate that
this may be linked to use of multi-crop augmentation wherein local crops are expected to be
predictive of global crops. When background augmentations are applied using distorted masks, only
a small part of the foreground may be featured in a view—much like a local crop in multi-crop
augmentation.
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Figure A5: Mask Distortion: Shearing. Examples of varying distortion strength.

MoCo-v2 BYOL SwAV
Max
Shear baseline BG_RM BG_Swaps baseline BG_RM baseline BG_RM

0◦ 67.7 69.3 (+1.6) 69.7 (+2.0) 72.7 73.5 (+0.8) 72.2 73.7 (+1.5)
5◦ - 69.2 (+1.5) 69.3 (+1.6) - 73.2 (+0.5) - 73.5 (+1.3)
10◦ - 68.8 (+1.1) 69.2 (+1.5) - 73.5 (+0.8) - 73.6 (+1.4)
15◦ - 68.6 (+0.9) 69.4 (+1.7) - 73.0 (+0.3) - 73.5 (+1.3)
20◦ - 68.3 (+0.6) 69.0 (+1.3) - 73.2 (+0.5) - 73.4 (+1.2)
25◦ - 68.1 (+0.4) 68.9 (+1.2) - 72.9 (+0.2) - 73.5 (+1.3)

Table A2: Mask Distortion: Shearing. Background augmentations are robust to substantial mask
noise induced via shearing of the foreground mask. Of note, BG_Swaps maintains a large performance
bene�t even for strong distortions. We highlight the ∆ relative to the baselines with no background augmen-
tations.

I.1 Implementation Details.

Every mask was perturbed prior to background augmentations in every epoch. Rotation. Each mask
was subject to random rotation sampled between (−max rot.,+max rot.). Shearing. Each mask
was subject to shearing independently along x and y coordinates with a value uniformly sampled
from (−max shear,+max shear). Translation. Each mask was subject to translation independently
along the width and height with values uniformly sampled from (−max trans.,+max trans.) ×
max FG width and (−max trans.,+max trans.)×max FG height respectively. Horizontal Flip. Each
mask was horizontally �ipped with a probability 0.5 (on each use of the mask). Bounding-Box Masks.
Binary foreground masks were used to generate rectangular bounding-box masks of size max FG
width × max FG height.
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Figure A6: Mask Distortion: Translation. Examples of varying distortion strength.

MoCo-v2 BYOL SwAV
Max

Translation baseline BG_RM BG_Swaps baseline BG_RM baseline BG_RM

0% 67.7 69.3 (+1.6) 69.7 (+2.0) 72.7 73.5 (+0.8) 72.2 73.7 (+1.5)
5% - 68.9 (+1.2) 69.5 (+1.8) - 73.3 (+0.6) - 73.3 (+1.1)
10% - 68.7 (+1.0) 69.2 (+1.5) - 73.3 (+0.6) - 73.5 (+1.3)
15% - 68.2 (+0.5) 68.7 (+1.0) - 73.1 (+0.4) - 73.2 (+1.0)
20% - 68.0 (+0.3) 68.7 (+1.0) - 73.1 (+0.4) - 73.3 (+1.1)
25% - 67.9 (+0.2) 68.3 (+0.6) - 72.9 (+0.2) - 73.0 (+0.8)

Table A3: Mask Distortion: Translation. Background augmentations are robust to substantial mask
noise induced via translation of the foreground mask. Of note, BG_Swaps maintains a large perfor-
mance bene�t even for strong distortions. We highlight the ∆ relative to the baselines with no background
augmentations.

MoCo-v2 BYOL SwAV
Random

Horizontal Flip baseline BG_RM BG_Swaps baseline BG_RM baseline BG_RM

7 67.7 69.3 (+1.6) 69.7 (+2.0) 72.7 73.5 (+0.8) 72.2 73.7 (+1.5)
X - 68.7 (+1.0) 69.4 (+1.7) - 73.3 (+0.6) - 73.5 (+1.3)

Table A4: Mask Distortion: Horizontal Flip. Background augmentations are robust to substantial
mask noise induced via horizontal flip of the foreground mask. Of note, BG_Swaps maintains a large
performance bene�t even for strong distortions. We highlight the ∆ relative to the baselines with no background
augmentations.

MoCo-v2 BYOL SwAV

baseline BG_RM BG_Swaps baseline BG_RM baseline BG_RM

Saliency mask 67.7 69.3 (+1.6) 69.7 (+2.0) 72.7 73.5 (+0.8) 72.2 73.7 (+1.5)
Bounding-box mask - 67.8 (+0.1) 68.7 (+1.0) - 73.0 (+0.3) - 73.0 (+0.8)

Table A5: MaskDistortion: Bounding-BoxMask. BG_Swaps is robust even to replacing themaskwith
a bounding-box mask. Notably, SwAV also manages to retain some performance bene�t even in this extreme
setting.
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Figure A7: Mask Distortion: Bounding-Box Mask. An example of a bounding-box mask.
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Baseline (67.7) p = 0.1 p = 0.2 p = 0.3 p = 0.4 p = 0.5

BG_RM 69.3 69.3 69.3 68.8 68.4
BG_Random 69.1 69.2 68.6 67.8 66.8

Table A6: MoCo-v2: Ablating the strength of background augmentations BG_RM and BG_Random.

Baseline (67.7) pneg = 0.1 pneg = 0.2 pneg = 0.3 pneg = 0.4 pneg = 0.5

ppos = 0.1 69.2 69.6 69.7 69.6 69.7
ppos = 0.2 69.5 69.7 69.5 69.5 69.7
ppos = 0.3 68.9 69.3 69.3 69.0 69.3

Table A7: MoCo-v2: Ablating the strength of background augmentation BG_Swaps.

J Ablations
Here, we report additional ablations of design choices and hyperparameter settings. We also provide
additional information regarding ablations in the main text. To control for mask quality, we use
U2Net to generate foreground masks unless otherwise indicated. We report ImageNet accuracy.
J.1 Augmentation Strength

We ablate the strength of background augmentations and �nd that p ∈ [0.1, 0.3] is generally a good
setting. For MoCo-v2, as previously discussed, though BG_RM is more (Out-of-Distribution) OOD
than BG_Random, the presence of negatives in the queue Q with (gray) backgrounds similar to q
o�sets this and results in better performance than BG_Random across all augmentation strengths,
see Table A6.
As discussed in Section D.4, BG_Swaps overcomes the OOD issue of BG_RM by using cached random
natural backgrounds in q and k+ with a probability ppos and additionally includes an extra negative
whose background matches q with a probability pneg. As can be seen in Table A7, this results in
substantially improved performance at each level of ppos over the corresponding level of BG_Random.
Performance is more sensitive to ppos than to pneg and ppos'pneg is generally a reasonable setting.
Performance as a function of augmentation strength for BYOL and SwAV are shown in Tables A8
and A9. In all of the above ablations, FGmin = 0, i.e. no constraints were imposed on RRC regarding
the foreground.
J.2 Do Multiple Matched Negatives Help?

We investigated using multiple background matched negatives in BG_Swaps but found that it did
not confer further improvements in performance. We obtained 68.9% ImageNet accuracy using 5
matched negatives vs. 68.8% using 1 matched negative, suggesting that there may be little bene�t
to increasing the number of background matched negatives. In these experiments, there were no
background augmentations in q, only in k+ and k−; ppos = pneg = 0.2 and background augmented
negatives matched the background of k+.
J.3 Is it a Better Teaching Signal for Background Augmentations in the Positive and

Negative to be Independent or Coupled?

To answer this question, we contrasted independent background augmentations in BG_Swaps in k+
and k− with coupled background augmentations in k+ and k−. We observed identical performance
of 68.8% in each case. Other experiment settings as in J.2.
J.4 Is it Better for a Negative’s Background to Match q or k+?

We observed similar results in both cases a) background matches q (68.9%) and b) background
matches k+ (68.8%). Other experiment settings as in J.2.
J.5 Order of Augmentations

As noted in Section B.2, by default, we apply background augmentations after all other augmen-
tations in the respective pipeline. Here, we show that background augmentation before all other
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Baseline (72.7) p = 0.05 p = 0.1 p = 0.15 p = 0.2 p = 0.25

BG_RM 73.7 73.6 73.8 73.5 73.1
BG_Random 73.7 73.9 73.5 73.4 72.7

Table A8: BYOL: Ablating the strength of background augmentations BG_RM and BG_Random.

Baseline (72.2) p = 0.05 p = 0.1 p = 0.15 p = 0.2 p = 0.25 p = 0.3

BG_RM 73.1 73.5 73.5 73.5 73.6 73.7
BG_Random 73.0 73.2 73.2 73.7 70.9 67.2

Table A9: SwAV: Ablating the strength of background augmentations BG_RM and BG_Random.

augmentations produces similar results. We apply BG_Random in SwAV with p = 0.1 and �nd cor-
responding accuracies of 73.4% (before) vs. 73.2% (after). Similarly, applying BG_RM with p = 0.1 in
MoCo-v2, we �nd corresponding accuracies of 69.6% (before) vs. 69.3% (after).

J.6 In�uence of Random Crop

RandomResizedCrop (RRC) is a critical part of current SSL pipelines. Indeed, replacing RRC with
CenterCrop results in very poor accuracy, 26.8% for MoCo-v2, see Table A10 (b). Concretely,
instead of RRC, we �rst Resize to size 256 along the shorter edge of the image, followed by a
CenterCrop to size 224×224. Interestingly, using BG_Swaps with CenterCrop can substantially
improve performance (c) over CenterCrop alone, though the performance is still far reduced from
using RRC. This raises an intriguing possibility: perhaps one role of RRC is to bootstrap learning
background invariance. Future work could potentially investigate this hypothesis.
One e�ect of RRC is that only a little of the foreground may be present in a view. We investigate
the e�ect of including a lower bound on the amount of foreground included in a view. Concretely,
we generate the parameters for RRC imposing one additional constraint: that FGmin fraction of the
foreground be present in the resulting crop. The foreground area is obtained from the corresponding
binary foreground mask. Thus, no constraint corresponds to FGmin = 0. Too large a value of FGmin
can be expected to hurt performance, since it overly constrains RRC which is useful for inducing
desirable invariances (e.g. occlusion or scale invariance). Crop parameters are sampled in the
standard way, defaulting to a CenterCrop if the sampled RRC parameters are rejected 10 times.
We �nd that this strategy of imposing a foreground constraint can help when the setting of
background augmentation strength is lower than optimal, but it adds little bene�t (if any) on top of
optimal settings, see Table A11. As another example, consider SwAV, where BG_RM (BG_Random)
results in an accuracy of 73.6% (73.7%) with FGmin = 0, see Table A9. We �nd no bene�t when we
impose a constraint of FGmin = 0.15, with corresponding accuracies for BG_RM (BG_Random) of
73.7% (73.5%), see Table 6.

J.7 Sensitivity of SwAV

Ease of Optimization. We observe that SwAV is more sensitive to high amount of background
augmentations when using using BG_Random, with performance degrading less gracefully than

RRC CenterCrop BG_Swaps ImageNet acc.
baseline X 67.7
(a) X X 69.2
(b) X 26.8
(c) X X 49.6

Table A10: Impact of RandomResizedCrop. RRC is critical for good performance in current SSL pipelines. In
MoCo-v2, replacing RRC with CenterCrop signi�cantly hurts performance, but application of BG_Swaps some-
what helps compensate. Aug. Strength of BG_Swaps: ppos = pneg = 0.1.
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Baseline (67.7) FGmin = 0 FGmin = 0.1 FGmin = 0.2

ppos = pneg = 0.1 69.2 69.7 69.4
ppos = pneg = 0.2 69.7 69.8 69.5

Table A11: Impact of including more foreground in views. Constraining RRC to include more of the
foreground in MoCo-v2, we see that it can be bene�cial when the setting of background augmentation
(BG_Swaps) strength is lower than optimal, but confers little (if any) bene�t on top of the optimal setting of
background augmentation strength.

BYOL or MoCo-v2 when the strength of background augmentation is high. We linked this behavior
to the di�culty of the optimization task of learning invariance to random natural backgrounds in
conjunction with SwAV’s objective function. As discussed in Section D.6, this can be alleviated by
increasing the capacity of the projection MLP or by warming up the background augmentations,
resulting in stable performance even at very strong augmentation strength, see Figure 9. We linearly
warmed up background augmentation strength over 10 epochs.

Crop Scale Ablation. Parametrizing the scale setting for local and global crops as (0.05, s) and
(s, 1), the default setting uses s = 0.14. As discussed in Section D.6, we �nd that increasing s
can help improve performance when used in conjunction with background augmentations. For
BG_RM (BG_Random), we used s = 0.26 (s = 0.2). We used a 5 epoch linear warmup of background
augmentation strength. We found that increasing s to 0.2 for the SwAV baseline, i.e. without
background augmentations, results in failure—the loss at the end of pre-training is at chance. The
projection MLP capacity was set to 4096/256 in all cases.

Temperature Sensitivity. We also note that we observed high sensitivity to the temperature
setting in SwAV, in contrast with MoCo-v2. Future work could investigate the source of this
sensitivity, potentially further improving performance.

General Settings. All ablations discussed here (Appendix J.7, Section D.6) use defaults for re-
maining settings except the experiments with the default projection MLP capacity (2048/128)—these
numbers are from the ablation of augmentation strength in Appendix J.1.

J.8 Does BN Adaptation Help?

Due to strong augmentation during SSL pre-training, the statistics of images during pre-training may
be di�erent from those in downstream application, e.g. linear evaluation on ImageNet. Intuitively,
one might expect that adapting BN statistics might result in improved performance. Indeed, in the
supervised setting, it has been shown [86, 72] that adapting the batch normalization (BN) statistics
under distribution shift can result in improved performance. Here, we consider linear evaluation on
ImageNet with and without adaptation of BN statistics in the backbone. Speci�cally, for adaptation
(no adaptation), we use train (eval) mode for BN layers while training the linear classi�er and eval
(eval) model during evaluation. Intriguingly, we �nd that adaptation does not necessarily result in
improved performance.
Note that no supervised information is used for BN adaptation. All parameters in the backbone
remain frozen to their pre-trained values. All models received full pre-training. Background
augmentations used DeepUSPS2.

J.9 Additional Information for Ablations in Main Text

Ablations in Tables 4, 5 follow the settings in Appendix J.1 and use FGmin = 0.

K Additional Results

Here we report additional results, including downstream evaluations of corresponding models
which used U2Net for generating foreground masks—evaluations of these models are consistent
with evaluations of corresponding DeepUSPS2 models; we therefore skip detailed discussions of
these speci�c results.
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Method ImageNet acc.
w/o adapt. w/ adapt.

MoCo-v2 (repro.) 71.0 71.0
MoCo-v2 + BG_RM 71.9 71.9
MoCo-v2 + BG_Swaps 72.1 72.2
BYOL (repro.) 74.1 73.8
BYOL + BG_RM 75.1 74.6
BYOL + BG_Random 75.2 74.8
SwAV (repro.) 74.9 74.7
SwAV + BG_RM 76.1 75.1
SwAV + BG_Random 76.1 75.1

Table A12: Impact of Adapting BN Statistics. Adaptation does not necessarily result in improved perfor-
mance.

K.1 ImageNet-9

We expand on results in Table 11 in Table A14 to include SEM, which was excluded in the main
text to avoid clutter. These results correspond to medium duration pre-trained models. We report
corresponding results for the full duration pre-trained models in Table A15. Corresponding tables
for U2Net are Tables A16 and A17; for convenience, we report also report corresponding BG-Gap
in Table A18.

K.2 ImageNet-v2

Here, we report evaluation on all variants of ImageNet-v2: MatchedFrequency (MF), Threshold0.7
(T0.7) and TopImages (TI). Background augmentations result in large performance gains across all
variants. Corresponding results for U2Net are shown in Table A20.

K.3 ImageNet-A

We expand on results in Table 15 in Table A22 to include evaluation on Only-FG ImageNet-A. While
we report these numbers for completeness, as discussed in Section E.4, evaluation on Only-FG
ImageNet-A must be interpreted with caution, since this data set is also challenging for saliency
detection. Corresponding results for U2Net are shown in Table A23.

K.4 ImageNet-C

On ImageNet-C, we report the average performance on the four main categories of corruptions:
noise, blur, weather and digital, see Table A29. While background augmentations generally result
in improved robustness, they appear to decrease robustness to noise corruptions; this may be due
to di�culty discerning between the foreground and background due to the high frequency noise
added throughout the image.
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Method 1% Labels 10% Labels

Top-1 Top-5 Top-1 Top-5
Supervised 25.4 48.4 56.4 80.4

Li
ne

ar
MoCo-v2 (repro.) 52.0 77.7 63.9 85.8
MoCo-v2 + BG_RM 54.4 (+2.4) 78.7 65.2 (+1.3) 86.3
MoCo-v2 + BG_Swaps 56.4 (+4.4) 79.8 65.8 (+1.9) 86.5

BYOL (repro.) 57.5 80.8 68.6 88.6
BYOL + BG_RM 60.8 (+3.3) 82.9 70.2 (+1.6) 89.3
BYOL + BG_Random 61.0 (+3.5) 83.5 70.6 (+2.0) 89.6

SwAV (repro.) 52.8 78.4 68.3 88.7
SwAV + BG_RM 57.6 (+4.8) 81.8 70.3 (+2.0) 89.8
SwAV + BG_Random 56.4 (+3.6) 80.8 70.3 (+2.0) 89.8

Fi
ne

tu
ne

MoCo-v2 (repro.) 54.1 81.3 67.6 89.4
MoCo-v2 + BG_RM 55.3 (+1.2) 81.4 68.0 (+0.4) 89.3
MoCo-v2 + BG_Swaps 57.7 (+3.6) 82.7 68.8 (+1.2) 89.6

BYOL (repro.) 57.3 80.5 70.6 90.0
BYOL + BG_RM 60.5 (+3.2) 82.6 71.7 (+1.1) 90.6
BYOL + BG_Random 60.7 (+3.4) 83.1 71.9 (+1.3) 90.8

SwAV (repro.) 54.0 78.5 70.1 89.9
SwAV + BG_RM 54.7 (+0.7) 78.9 70.7 (+0.6) 90.2
SwAV + BG_Random 55.7 (+1.7) 79.3 70.8 (+0.7) 90.2

Table A13: Limited-Labels Setting. Background augmentations improve performance in the limited-labels
setting. Linear evaluation using 100% of ImageNet labels though a standard benchmark, is a somewhat
unrealistic setting. Evaluation in the more practical setting of limited-labels reveals even larger improvement
in performance. We highlight performance gains due to background augmentations. Similar to Table 7, but
U2Net was used for foreground extraction. Best (second best) results are in bold (underlined).

Data Set Supervised MoCo-v2 BYOL SwAV

baseline BG_RM BG_Swaps baseline BG_RM BG_Random baseline BG_RM BG_Random

Original 95.6 92.7 93.8 94.2 94.9 95.6 96.0 94.1 95.0 94.9
Only-BG-B ↓ 11.4 6.1 6.1 3.6 5.4 4.9 6.0 10.9 8.8 8.3
Only-BG-T ↓ 16.3 14.8 12.9 9.3 12.7 11.8 11.5 15.8 16.7 17.6
No-FG 45.9 37.8 42.3 39.6 43.9 45.9 46.2 41.3 44.2 45.2
Only-FG ↑ 86.8 74.4 81.9±0.1 (+7.5) 86.1±0.4 (+11.7) 83.5 88.8±0.1 (+5.3) 87.7±0.6 (+4.2) 79.4 85.3±0.1 (+5.9) 84.3±0.2 (+4.9)
Mixed-Same ↑ 86.2 81.8 84.0±0.1 (+2.2) 87.9±0.3 (+6.1) 86.2 88.6±0.2 (+2.4) 90.1±0.1 (+3.9) 82.2 86.1±0.3 (+3.9) 86.3±0.2 (+4.1)
Mixed-Rand ↑ 78.9 70.7 76.3±0.2 (+5.6) 84.1±0.3 (+13.4) 79.6 83.2±0.1 (+3.6) 85.5±0.3 (+5.9) 71.3 77.1±0.3 (+5.8) 77.0±0.3 (+5.7)
Mixed-Next ↑ 77.2 67.0 73.0±0.1 (+6.0) 82.2±0.4 (+15.2) 77.6 80.7±0.1 (+3.1) 84.0±0.1 (+6.4) 69.0 74.3±0.2 (+5.3) 74.4±0.2 (+5.4)

Table A14: Robustness: Foreground-Background Shifts. Background augmentations result in large per-
formance gains on ImageNet-9 (IN-9) across all SSL methods, with BG_Swaps generally exhibiting similar
or better performance than BG_RM. We highlight the performance bene�t on the variants of IN-9 especially
relevant to our work. All pre-training durations correspond to respective medium settings. Note that IN-9
uses only 9 classes, so chance is ∼11.1%. This table is an expanded version of Table 11, to include SEM which
were excluded in the main text to avoid clutter.

51



Data Set Supervised MoCo-v2 BYOL SwAV

baseline BG_RM BG_Swaps baseline BG_RM BG_Random baseline BG_RM BG_Random

Original 95.6 94.7 94.9 95.3 95.2 95.8 95.7 94.6 95.4 95.1
Only-BG-B ↓ 11.4 7.9 6.3 5.1 7.1 5.8 6.0 11.4 10.5 10.9
Only-BG-T ↓ 16.3 14.7 13.9 11.1 16.5 13.0 14.1 19.2 18.3 18.0
No-FG 45.9 42.3 43.5 42.6 42.7 46.5 47.5 46.0 47.4 43.5
Only-FG ↑ 86.8 79.7 85.2 (+5.5) 86.9 (+7.2) 81.4 88.5 (+7.1) 87.3 (+5.9) 81.9 84.1 (+2.2) 83.2 (+1.3)
Mixed-Same ↑ 86.2 84.9 85.8 (+0.9) 89.7 (+4.8) 86.7 89.2 (+2.5) 90.2 (+3.5) 84.3 86.0 (+1.7) 85.5 (+1.2)
Mixed-Rand ↑ 78.9 74.9 79.0 (+4.1) 85.3 (+10.4) 77.6 83.9 (+6.3) 85.8 (+8.2) 72.9 76.7 (+3.8) 76.5 (+3.9)
Mixed-Next ↑ 77.2 72.9 76.0 (+3.1) 82.7 (+9.8) 75.7 82.0 (+6.3) 84.1 (+8.4) 70.2 74.5 (+4.3) 73.1 (+2.9)

Table A15: Robustness: Foreground-Background Shifts. Background augmentations result in large per-
formance gains on ImageNet-9 (IN-9) across all SSL methods, with BG_Swaps generally exhibiting similar
or better performance than BG_RM. We highlight the performance bene�t on the variants of IN-9 especially
relevant to our work. All pre-training durations correspond to respective full settings. Note that IN-9 uses
only 9 classes, so chance is ∼11.1%.

Data Set Supervised MoCo-v2 BYOL SwAV

baseline BG_RM BG_Swaps baseline BG_RM BG_Random baseline BG_RM BG_Random

Original 95.6 92.7 94.1 94.4 94.9 95.8 95.9 94.1 94.8 94.7
Only-BG-B ↓ 11.4 6.1 7.2 4.2 5.4 4.9 5.8 10.9 8.5 8.7
Only-BG-T ↓ 16.3 14.8 13.8 10.7 12.7 12.0 12.2 15.8 16.6 17.2
No-FG 45.9 37.8 43.5 41.7 43.9 46.5 46.2 41.3 46.1 45.3
Only-FG ↑ 86.8 74.4 83.6±0.3 (+9.2) 85.4±0.1 (+11) 83.5 89.3±0.5 (+5.8) 87.6±0.4 (+4.1) 79.4 85.4±0.2 (+6.0) 85.3±0.2 (+5.9)
Mixed-Same ↑ 86.2 81.8 85.6±0.2 (+3.8) 88.2±0.2 (+6.4) 86.2 89.0±0.3 (+2.8) 90.4±0.3 (+4.2) 82.2 86.0±0.4 (+3.8) 86.1±0.1 (+3.9)
Mixed-Rand ↑ 78.9 70.7 78.2±0.2 (+7.5) 83.6±0.2 (+12.9) 79.6 83.8±0.1 (+4.2) 85.3±0.2 (+5.7) 71.3 76.7±0.1 (+5.4) 76.8±0.3 (+5.5)
Mixed-Next ↑ 77.2 67.0 75.2±0.1 (+8.2) 81.2±0.2 (+14.2) 77.6 81.7±0.1 (+4.1) 83.5±0.3 (+5.9) 69.0 73.8±0.4 (+4.8) 74.1±0.2 (+5.1)

Table A16: Robustness: Foreground-Background Shifts. Background augmentations result in large per-
formance gains on ImageNet-9 (IN-9) across all SSL methods, with BG_Swaps generally exhibiting similar
or better performance than BG_RM. We highlight the performance bene�t on the variants of IN-9 especially
relevant to our work. All pre-training durations correspond to respective medium settings. Note that IN-9
uses only 9 classes, so chance is ∼11.1%. Similar to Table A14, but U2Net was used for FG extraction.

Data Set Supervised MoCo-v2 BYOL SwAV

baseline BG_RM BG_Swaps baseline BG_RM BG_Random baseline BG_RM BG_Random

Original 95.6 94.7 94.8 95.2 95.2 96.1 96.1 94.6 95.3 95.4
Only-BG-B ↓ 11.4 7.9 8.1 3.4 7.1 4.8 6.2 11.4 10.3 13.6
Only-BG-T ↓ 16.3 14.7 14.2 11.4 16.5 13.8 12.9 19.2 18.2 18.6
No-FG 45.9 42.3 45.5 43.0 42.7 47.9 48.1 46.0 46.8 44.9
Only-FG ↑ 86.8 79.7 87.1 (+7.4) 87.5 (+7.8) 81.4 89.1 (+7.7) 88.3 (+6.9) 81.9 86.8 (+4.9) 83.8 (+1.9)
Mixed-Same ↑ 86.2 84.9 87.1 (+2.2) 89.6 (+4.7) 86.7 89.5 (+2.8) 90.2 (+3.5) 84.3 87.0 (+2.7) 86.9 (+2.6)
Mixed-Rand ↑ 78.9 74.9 80.7 (+5.8) 85.2 (+10.3) 77.6 84.2 (+6.6) 85.2 (+7.6) 72.9 77.1 (+4.2) 76.6 (+3.7)
Mixed-Next ↑ 77.2 72.9 78.1 (+5.2) 83.2 (+10.3) 75.7 81.7 (+6.0) 83.8 (+8.1) 70.2 75.6 (+5.4) 74.3 (+4.1)

Table A17: Robustness: Foreground-Background Shifts. Background augmentations result in large per-
formance gains on ImageNet-9 (IN-9) across all SSL methods, with BG_Swaps generally exhibiting similar
or better performance than BG_RM. We highlight the performance bene�t on the variants of IN-9 especially
relevant to our work. All pre-training durations correspond to respective full settings. Note that IN-9 uses
only 9 classes, so chance is ∼11.1%. Similar to Table A15, but U2Net was used for FG extraction.

Pre-Train
Duration MoCo-v2 BYOL SwAV

baseline BG_RM BG_Swaps baseline BG_RM BG_Random baseline BG_RM BG_Random

Med. 11.1 7.4 (-3.7) 4.6 (-6.5) 6.6 5.2 (-1.4) 5.1 (-1.5) 10.9 9.3 (-1.6) 9.3 (-1.6)
Full 10.0 6.4 (-3.6) 4.4 (-5.6) 9.1 5.3 (-3.8) 5.0 (-4.1) 11.4 9.9 (-1.5) 10.3 (-1.1)

Table A18: BG-Gap: Background augmentations decrease BG-Gap of SSL Methods. Similar to Table 12, but
U2Net was used for FG extraction.

52



Method ImageNet-v2 acc.
MF T0.7 TI

Supervised 63.8 72.6 77.7
Pre-Train Duration: Medium

MoCo-v2 (repro.) 54.7 63.6 69.6
MoCo-v2 + BG_RM 56.7±0.1 (+2.0) 65.7±0.1 (+2.1) 71.5±0.1 (+1.9)
MoCo-v2 + BG_Swaps 57.2±0.1 (+2.5) 66.3±0.1 (+2.7) 72.0±0.2 (+2.4)
BYOL (repro.) 60.7 70.2 75.6
BYOL + BG_RM 61.7±0.2 (+1.0) 71.0±0.2 (+0.8) 76.3±0.2 (+0.7)
BYOL + BG_Random 62.1±0.1 (+1.4) 71.5±0.0 (+1.3) 76.7±0.1 (+1.1)
SwAV (repro.) 59.3 68.5 73.9
SwAV + BG_RM 61.2±0.3 (+1.9) 70.3±0.1 (+1.8) 75.6±0.1 (+1.7)
SwAV + BG_Random 60.7±0.0 (+1.4) 70.0±0.2 (+1.5) 75.3±0.1 (+1.4)

Pre-Train Duration: Full
MoCo-v2 (repro.) 58.9 67.4 73.1
MoCo-v2 + BG_RM 59.6 (+0.7) 68.7 (+1.3) 74.2 (+1.1)
MoCo-v2 + BG_Swaps 60.3 (+1.4) 68.8 (+1.4) 74.9 (+1.8)
BYOL (repro.) 61.9 71.2 76.2
BYOL + BG_RM 63.4 (+1.5) 72.4 (+1.2) 77.7 (+1.5)
BYOL + BG_Random 62.8 (+0.9) 72.4 (+1.2) 77.2 (+1.0)
SwAV (repro.) 61.7 70.8 76.4
SwAV + BG_RM 63.8 (+2.1) 72.8 (+2.0) 77.9 (+1.5)
SwAV + BG_Random 63.4 (+1.7) 72.3 (+1.5) 77.9 (+1.5)

Table A19: Robustness: Natural Distribution Shift. Expanded version of Table 13. Background aug-
mentations improve performance on all variants of ImageNet-v2. Notably, background augmentations en-
able SwAV to perform on par with the standard supervised baseline. Best results are in bold. Notation:
MF=MatchedFrequency, T0.7=Threshold0.7, TI=TopImages. Results in Table 13 correspond to MF and are
included here for completeness.
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Method ImageNet-v2 acc.
MF T0.7 TI

Supervised 63.8 72.6 77.7
Pre-Train Duration: Medium

MoCo-v2 (repro.) 54.7 63.6 69.6
MoCo-v2 + BG_RM 57.0±0.1 (+2.3) 66.2±0.2 (+2.6) 71.8±0.1 (+2.2)
MoCo-v2 + BG_Swaps 57.6±0.0 (+2.9) 66.5±0.2 (+2.9) 72.3±0.1 (+2.7)
BYOL (repro.) 60.7 70.2 75.6
BYOL + BG_RM 62.2±0.2 (+1.5) 71.3±0.1 (+1.1) 76.5±0.1 (+0.9)
BYOL + BG_Random 62.2±0.4 (+1.5) 71.5±0.1 (+1.3) 76.6±0.2 (+1.0)
SwAV (repro.) 59.3 68.5 73.9
SwAV + BG_RM 61.2±0.1 (+1.9) 70.2±0.2 (+1.7) 75.4±0.1 (+1.5)
SwAV + BG_Random 61.0±0.3 (+1.7) 69.9±0.2 (+1.4) 75.4±0.1 (+1.5)

Pre-Train Duration: Full
MoCo-v2 (repro.) 58.9 67.4 73.1
MoCo-v2 + BG_RM 60.2 (+1.3) 69.2 (+1.8) 74.6 (+1.5)
MoCo-v2 + BG_Swaps 60.5 (+1.6) 69.3 (+1.9) 75.1 (+2.0)
BYOL (repro.) 61.9 71.2 76.2
BYOL + BG_RM 62.9 (+1.0) 72.2 (+1.0) 77.5 (+1.3)
BYOL + BG_Random 63.2 (+1.3) 71.9 (+0.7) 77.1 (+0.9)
SwAV (repro.) 61.7 70.8 76.4
SwAV + BG_RM 63.7 (+2.0) 73.1 (+2.3) 78.2 (+1.8)
SwAV + BG_Random 63.5 (+1.8) 72.4 (+1.6) 77.7 (+1.3)

Table A20: Robustness: Natural Distribution Shift. Background augmentations improve performance on
all variants of ImageNet-v2. Notably, background augmentations enable SwAV to perform on par with the
standard supervised baseline. Best results are in bold. Notation: MF=MatchedFrequency, T0.7=Threshold0.7,
TI=TopImages. Similar to Table A19, but U2Net was used for FG extraction.

Pre-Train
Duration MoCo-v2 BYOL SwAV

baseline BG_RM BG_Swaps baseline BG_RM BG_Random baseline BG_RM BG_Random

Med. 14.4 17.1±0.3 (+2.7) 18.5±0.3 (+4.1) 20.4 22.9±0.2 (+2.5) 22.4±0.1 (+2.0) 16.1 19.0±0.3±0.1 (+2.9) 18.3±0.2 (+2.2)
Full 17.4 20.2 (+2.8) 21.9 (+4.5) 20.8 24.3 (+3.5) 23.7 (+2.9) 19.3 23.1 (+3.8) 21.2 (+1.9)

Table A21: Robustness: Rotation, Viewpoint, Background Shift. Background augmentations improve
performance on ObjectNet, a challenging test set that controls object orientation, viewpoint and background.
Similar to Table 14, but U2Net was used for FG extraction.

Pre-Train
Duration MoCo-v2 BYOL SwAV

baseline BG_RM BG_Swaps baseline BG_RM BG_Random baseline BG_RM BG_Random

ImageNet-A
Med. 3.1 3.3±0.1 (+0.2) 3.6±0.1 (+0.5) 4.4 5.8±0.3 (+1.4) 6.1±0.1 (+1.7) 3.7 4.2±0.1 (+0.5) 4.1±0.1 (+0.4)
Full 4.2 4.7 (+0.5) 5.3 (+1.1) 5.3 7.2 (+1.9) 7.2 (+1.9) 5.2 6.0 (+0.8) 5.7 (+0.5)

Only-FG ImageNet-A
Med. 2.8 2.8±0.0 (+0.0) 4.2±0.1 (+1.4) 3.2 4.8±0.1 (+1.6) 4.7±0.2 (+1.5) 2.7 4.0±0.1 (+1.3) 3.5±0.1 (+0.8)
Full 3.4 3.1 (-0.3) 4.7 (+1.3) 3.1 5.8 (+2.7) 5.1 (+2.0) 3.9 4.0 (+0.1) 3.8 (-0.1)

Table A22: Robustness: Natural Adversarial Examples. Background augmentations improve performance
on ImageNet-A, a data set of natural adversarial examples. Interestingly, the performance of all SSL methods
drops when presented with only foreground, but background augmentations provide some robustness against
this distribution shift as well. Similar to Table 15, but expanded to include only FG ImageNet-A.
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Pre-Train
Duration MoCo-v2 BYOL SwAV

baseline BG_RM BG_Swaps baseline BG_RM BG_Random baseline BG_RM BG_Random

ImageNet-A
Med. 3.1 3.4±0.1 (+0.3) 3.9±0.0 (+0.8) 4.4 6.0±0.2 (+1.6) 6.3±0.1 (+1.9) 3.7 4.1±0.0 (+0.4) 4.1±0.1 (+0.4)
Full 4.2 4.8 (+0.4) 5.4 (+1.2) 5.3 7.4 (+2.1) 7.1 (+1.8) 5.2 6.1 (+0.9) 6.1 (+0.9)

Only-FG ImageNet-A
Med. 2.8 3.2±0.3 (+0.4) 4.4±0.1 (+1.6) 3.2 4.9±0.2 (+1.7) 4.8±0.2 (+1.6) 2.7 4.0±0.1 (+1.3) 3.6±0.1 (+0.9)
Full 3.4 4.3 (+0.9) 4.6 (+1.2) 3.1 5.9 (+2.8) 5.0 (+1.9) 3.9 4.7 (+0.8) 4.0 (+0.1)

Table A23: Robustness: Natural Adversarial Examples. Background augmentations improve performance
on ImageNet-A, a data set of natural adversarial examples. Interestingly, the performance of all SSL methods
drops when presented with only foreground, but background augmentations provide some robustness against
this distribution shift as well. Similar to Table A22, but U2Net was used for FG extraction.

Pre-Train
Duration MoCo-v2 BYOL SwAV

baseline BG_RM BG_Swaps baseline BG_RM BG_Random baseline BG_RM BG_Random

Med. 27.7 31.1±0.4 (+3.4) 32.3±0.1 (+4.6) 36.3 39.7±0.1 (+3.4) 38.4±0.1 (+2.1) 27.9 32.0±0.2 (+4.1) 31.4±0.1 +3.5)
Full 30.4 33.4 (+3.0) 34.2 (+3.8) 34.4 40.5 (+6.1) 39.7 (+5.3) 29.4 33.6 (+4.2) 32.5 (+3.1)

Table A24: Robustness: Renditions. Background augmentations improve performance on ImageNet-R, a
data set of ImageNet-Renditions (e.g. paintings, sculpture). Similar to Table 16, but U2Net was used for FG
extraction.

Pre-Train
Duration MoCo-v2 BYOL SwAV

baseline BG_RM BG_Swaps baseline BG_RM BG_Random baseline BG_RM BG_Random

Med. 4.5 6.0±0.1 (+1.5) 8.6±0.2 (+4.1) 10.6 11.7±0.2 (+1.1) 11.6±0.2 (+1.0) 6.0 6.4±0.0 (+0.4) 6.7±0.1 (+0.7)
Full 7.8 10.1 (+2.3) 12.6 (+4.8) 10.4 13.7 (+3.3) 13.5 (+3.1) 9.1 10.2 (+1.1) 10.5 (+1.4)

Table A25: Robustness: Adversarial Attack. Background augmentations increase robustness to FGSM
adversarial attacks. Similar to Table 17, but U2Net was used for FG extraction.

Data Set MoCo-v2 BYOL SwAV

baseline BG_RM BG_Swaps baseline BG_RM BG_Random baseline BG_RM BG_Random

CIFAR-10 73.9 80.3 (+6.4) 77.5 (+3.6) 86.7 88.5 (+1.8) 87.9 (+1.2) 92.7 93.3 (+0.6) 93.3 (+0.6)
CIFAR-100 40.8 51.4 (+10.6) 46.3 (+5.5) 67.6 68.2 (+0.6) 67.1 (-0.5) 76.0 77.3 (+1.3) 76.8 (+0.8)

Table A26: CIFAR-10, 100. Background augmentations improve performance on linear evaluation on CIFAR-
10 and 100. Similar to Table 18, but U2Net was used for FG extraction.

VOC 07+12 detection COCO detection COCO instance seg.
Method AP50 AP AP75 AP50 AP AP75 APm50 APm APm75

MoCo-v2(repro.) 82.7±0.0 57.9±0.0 64.5±0.1 61.0 41.1 44.8 57.7 35.8 38.4
MoCo-v2+ BG_RM 82.6±0.1 57.6±0.1 64.5±0.2 60.9 41.2 44.8 57.8 35.9 38.5

MoCo-v2+ BG_Swaps 82.7±0.0 57.4±0.2 64.0±0.3 61.2 41.4 44.8 58.0 36.0 38.3
BYOL (repro.) 82.7±0.1 56.7±0.1 63.0±0.3 61.1 40.9 44.5 57.6 35.5 37.8

BYOL + BG_RM 83.0±0.1 57.0±0.1 63.9±0.2 61.5 41.1 44.3 57.8 35.5 37.8
BYOL + BG_Random 83.2±0.1 57.4±0.1 64.1±0.2 61.7 41.4 44.7 57.9 35.7 37.8

SwAV (repro.) 82.3±0.1 55.6±0.0 61.9±0.2 61.4 40.7 43.7 57.6 35.4 37.4
SwAV + BG_RM 82.6±0.0 55.8±0.1 62.0±0.1 61.2 40.6 43.8 57.4 35.1 37.0

SwAV + BG_Random 82.5±0.1 56.0±0.1 62.7±0.1 61.2 40.8 44.3 57.7 35.5 37.6

Table A27: Detection and Instance Segmentation. Background Augmentations result in small improve-
ments in detection and instance segmentation tasks, likely due to extensive supervision involved in subsequent
training. All VOC metrics reported are average of 3 independent runs. Similar to Table 20, but U2Net was used
for FG extraction.
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Supervised MoCo-v2 BYOL SwAV

baseline BG_RM BG_Swaps baseline BG_RM BG_Random baseline BG_RM BG_Random

22.1 28.8 32.3 31.9 27.6 31.7 29.1 17.0 20.1 17.4

Table A28: Background augmentations increase shape bias. SSL methods considered generally have a
higher shape bias than the supervised baseline. SwAV deviates from this pattern due to multi-crop (SwAV
w/o multi-crop shape bias: 27.4). Similar to Table 21, but U2Net was used for FG extraction.

Corruption MoCo-v2 BYOL SwAV

baseline BG_RM BG_Swaps baseline BG_RM BG_Random baseline BG_RM BG_Random

Saliency Method: DeepUSPS2

Noise 30.3 25.9 (-4.4) 30.6 (+0.3) 34.6 28.3 (-6.3) 30.2 (-4.4) 33.0 32.6 (-0.4) 33.3 (+0.3)
Blur 27.1 28.2 (+1.1) 27.9 (+0.8) 31.3 32.4 (+1.1) 33.0 (+1.7) 31.3 33.0 (+1.7) 32.8 (+1.5)

Weather 40.1 41.7 (+1.6) 42.3 (+2.2) 43.6 47.7 (+4.1) 47.3 (+3.7) 43.7 46.2 (+2.5) 45.5 (+1.8)
Digital 45.9 45.0 (-0.9) 44.2 (-1.7) 48.9 49.7 (+0.8) 49.4 (+0.5) 46.8 48.6 (+1.8) 48.7 (+1.9)

Saliency Method: U 2Net
Noise 30.3 30.3 (+0.0) 33.1 (+2.8) 34.6 29.3 (-5.3) 31.8 (-2.8) 33.0 31.8 (-1.2) 30.5 (-2.5)
Blur 27.1 27.8 (+0.7) 27.7 (+0.6) 31.3 32.4 (+1.1) 32.8 (+1.5) 31.3 32.7 (+1.4) 33.1 (+1.8)

Weather 40.1 41.6 (+1.5) 42.5 (+2.4) 43.6 47.6 (+4.0) 47.7 (+4.1) 43.7 46.7 (+3.0) 45.5 (+1.8)
Digital 45.9 46.2 (+0.3) 45.5 (-0.4) 48.9 50.3 (+1.4) 50.6 (+1.7) 46.8 48.6 (+1.8) 49.0 (+2.2)

Table A29: Robustness: Corruptions. Background augmentations generally improve robustness to corrup-
tions in ImageNet-C. We observe that across methods, robustness to added noise (e.g. Gaussian, Speckle) is
reduced as a result of background augmentations, while there is improved robustness to blur, weather and
digital corruptions. This maybe due to di�culty discerning between the foreground and background due to
the high frequency noise added throughout the image. All models received full pre-training.
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